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Unit 1

Course Structure

• Definition of the Lebesgue outer measure on the power set of R

• Properties of outer measure

• Carathéodory’s definition of the Lebesgue measure and basic properties.

• Measurability of an interval (finite or infinite)

1.1 Introduction

The mathematical concept of measure is a generalisation of length in R, area in R⊭ and volume in R⊯. We
will develop measure theory for the subsets of R, however it can be generalised for any arbitrary sets. Let us
try to have some idea of the length of an interval, say [0, 1]. The most intuitive idea of length is to just find the
difference between the extreme points of the interval, that is in this case 1−0 = 1. Also, adding or subtracting
the point 0 or 1 does not make any difference, that is, the length of (0, 1], [0, 1) and (0, 1) are essentially the
same. But what will happen if any one of the end points are infinite? Then intuitively, the length should also
be infinite (in this case we will define the algebraic operations related to the points at infinity, viz., −∞ and
+∞). The degenerate intervals, that is, the intervals where the end points are equal, deserve mention here.
Say we have the interval [a, a], or this can also be written as {a}. Then the length of this interval will be
a − a = 0. Also, taking cue from the idea of length in the physical perspective, it is clear that any subset of
an interval should have length less than that of the parent interval and translations of intervals don’t change
the length of intervals. Now, one can also question the length of the union of intervals. The case of [0, 1] and
[3, 4] is easy and straightforward. We need to just sum up the lengths of each intervals and the resulting length
will be 1 + 1 = 2. What happens when we consider the union of non-disjoint intervals, say for example [2, 4]
and [3, 5]. The intervals are overlapping and its union is simply [2, 5] having length 3 which is not equal to
the sum of the summands that is 2 + 2 = 4. This idea can be extended to countable union of intervals as
well. So, if we consider the length as a function from the set of all intervals over R to the set of extended
reals(definition in the next section), and denote the length of an interval I as l(I), then the properties of length
are straightforward and given below. It can also be observed that this function actually resembles the idea of
length in the physical world.

1. l(I) ≥ 0 for every interval I;

1



2 UNIT 1.

2. l(∅) = l([a, a]) = l({a}) = 0 for any a ∈ R;

3. l((a, b)) = l([a, b]) = l((a, b]) = l([a, b)] = b− a for b ≥ a;

4. I ⊂ J ⇒ l(I) ≤ l(J);

5. l(I + x) = l(I), for x ∈ R;

6. If I and J are two disjoint intervals, then l(I ∪ J) = l(I) + l(J);

7. For any mutually disjoint sequence of intervals {In}, we have

l

( ∞⋃
n=1

In

)
=

∞∑
n=1

l(In).

We shall construct a measure function for any general set A ⊂ R that generalises the idea of length, that is,
the measure function that we will define should satisfy the properties of length.

Objectives

After reading this unit, you will be able to

• define outer measure of a set using the idea of length of intervals and state its basic properties

• define the measure of a set with the help of outer measure and state its basic properties

• see that the idea of measure is actually a generalisation of the idea of length of intervals (finite or infinite)

1.2 Measure Theory

Before starting off with the technical stuff, let us be equipped with the basic definitions that we shall use
henceforth.

1.2.1 Extended Real Number System

The Real numbers along with the two infinite numbers −∞ and ∞ constitute the extended real numbers. It is
denoted by R∗ and is equal to R∪ {−∞,+∞}. Having adjoined the two numbers, we also need to define the
“interaction" of them with the other real numbers. The definitions/axioms are given below:

1. For any x ∈ R, x+∞ = ∞+ x = x− (−∞) = ∞. Also, x+ (−∞) = −∞+ x = x−∞ = −∞;

2. If x > 0, then ∞.x = x.∞ = ∞ and x.(−∞) = (−∞).x = −∞;

3. If x < 0, then ∞.x = x.∞ = −∞ and x.(−∞) = (−∞).x = ∞;

4. ∞+∞ = ∞ and (−∞) + (−∞) = −∞;

5. ∞.∞ = ∞;

6. ∞.0 = 0.∞ = (−∞).0 = 0.(−∞) = 0.

The operations such as ∞ + (−∞), or −∞ + ∞, or ∞.(−∞), (−∞).∞, or (−∞).(−∞) are not defined.
Also division by ∞ or −∞ is also not defined.
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1.2.2 Algebra and σ algebra of sets

Let S be a collection of subsets of R.

Definition 1.2.1. S is said to form an Algebra over R if it satisfies the following conditions:

1. ∅ ∈ S ;

2. If A ∈ S , the R \A ∈ S ;

3. If A,B ∈ S , then A ∪B ∈ S .

It is easy to check that S is an algebra if it is closed under finite union and complement of sets. Thus, S
is closed under finite intersection also.

Definition 1.2.2. S is said to form an σ-Algebra over R if it satisfies the following conditions:

1. ∅ ∈ S ;

2. If A ∈ S , the R \A ∈ S ;

3. If {An} be a sequence of sets in S , then
∞⋃
n=1

An ∈ S .

It is evident that a σ-algebra is always an algebra but the converse is not true always.

Example 1.2.3. 1. The power set P(R) forms both an algebra and σ-algebra over R.

2. For any a, b, c ∈ R, the collection {{∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} is also both algebra
and σ-algebra over R.

3. Let S be the collection of all sets that are either finite or have finite complements. Then S forms an
algebra but not a σ-algebra over R.

Theorem 1.2.4. Let S1 and S2 are two σ-algebras over R. Then S1 ∩ S2 forms a σ-algebra over R.

Proof. Left as exercise.

It is needless to say that any finite intersection of σ-algebras will also be a σ-algebra. What about the
arbitrary intersection of -algebras over R? The next definition gives an idea in this direction.

Definition 1.2.5. Let C be a family of sets in R and consider all the σ-algebras over R containing C . Then
the intersections of all such σ-algebras will also be a σ-algebra over R containing C . Such a σ-algebra is
called the σ-algebra generated by C and is the smallest σ-algebra containing C (Check!).

We are now equipped with the basic definitions and terminologies to finally attempt to define the measure
of a set.
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1.2.3 Lebesgue Outer Measure

We want to define measure in such a way so that it generalises the definition length of intervals that we
discussed previously. So, we will make use of the length to define the following.

Definition 1.2.6. Let P be the collection of all subsets of R. We define a function m∗ : P ⇒ R∗ as follows:

m∗(A) = inf

{ ∞∑
k=1

l(Ik) : A ⊂
∞⋃
k=1

Ik, Ik are open intervals

}
,

for any A ∈ P . Then the function m∗ is called Lebesgue outer measure and is define for any subset of R.

The idea is that, if A is any interval, then the outer measure will simply be the length of the interval.
Otherwise, we try to cover A by intervals (any kind) and take the infimum of the sum of the intervals that
cover A. It can be seen that the length of the intervals (a, b), [a, b), (a, b] and [a, b] are equal and hence,
we can use any kind of intervals to cover A and the definition of the outer measure can be correspondingly
defined. Let us check whether this outer measure serves our purpose or not. Let us list out the properties of
m∗ as the following theorem.

Theorem 1.2.7. Let m∗ be the Lebesgue outer measure defined on P . Then it satisfies the following proper-
ties.

1. 0 ≤ m ∗ (A) ≤ ∞ for every A ∈ P; (non-negative extended real valued)

2. m∗(A) ≤ m∗(B) for A ⊆ B for every A,B ∈ P; (monotonicity)

3. m∗(∅) = 0;

4. m∗({a}) = 0; (points are dimensionless)

5. m∗(I) = l(I) for any interval I;

6. m∗(A+ x) = m∗(A) for every A ∈ P; (translation invariance)

7. m∗

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

m∗(Ak) for any sequence of sets {Ak} in P; (countable subadditivity)

Proof. 1. Follows from definition.

2. Let A ⊆ B and {In} be a collection of open intervals such that

B ⊂
∞⋃
n=1

In.

Then {In} also covers A. By the definition of outer measure,

∞∑
n=1

l(In) ≥ m∗(A).

The above equation is true for all covers (by means of open intervals) of B and hence,

m∗(A) ≤ inf

{ ∞∑
n=1

l(In) : B ⊂
∞⋃
n=1

In, Ik are open intervals

}
= m∗(B).
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3. We know that ∅ ⊂ I for every open interval I . Let ϵ > 0 be an arbitrary real number. Consider the
sequence of intervals {In}, where In =

(
− ϵ

2n+2
,

ϵ

2n+2

)
. Then {In} is a collection of open intervals

covering ∅. Thus,

0 ≤ m∗(∅) ≤
∞∑
n=1

l(In)

=
∞∑
n=1

ϵ

2n+1

=
ϵ

22

∞∑
n=0

1

2n
=

ϵ

22
.2 =

ϵ

2
< ϵ.

Since ϵ is arbitrary, so m∗(∅) = 0.

4. Let ϵ > 0 be arbitrary. Consider the sequence In =
(
a− ϵ

2n+2
, a+

ϵ

2n+2

)
. Then the sequence {In}

covers {a}. Now do it similarly as the previous one.

5. First suppose that I = [a, b]. Let ϵ > 0. Then
(
a− ϵ

2
, b+

ϵ

2

)
covers I and

l
(
a− ϵ

2n+2
, a+

ϵ

2n+2

)
= b− a+ ϵ.

Since ϵ is arbitrary, so
m∗(I) ≤ b− a = l(I). (1.2.1)

Next, let {In} be a covering of [a, b] by bounded open intervals. By the Heine-Borel Theorem, there
exists a finite subset A of In’s covering [a, b]. So, a ∈ I1 for some I1 = (a1, b1) ∈ A. Also, if
b1 ≤ b, then b1 ∈ I2 for some I2 = (a2, b2) ∈ A. Similarly we can construct I1, I2, . . . , Ik such that
ai < bi−1 < bi. Then

∞∑
n=1

l(In) ≥
k∑
i=1

l(Ii)

=
k∑
i=1

(bi − ai)

= (bk − ak) + (bk−1 − ak−1) + . . .+ (b1 − a1)

= bk − (ak − bk−1)− . . .− (a2 − b1)− a1

> bk − a1.

Since a1 < a and bk > b so
∞∑
n=1

l(In) > b− a. (1.2.2)

Since {In} is arbitrary, so by the definition of outer measure,

m∗(I) ≥ b− a. (1.2.3)

From equation (1.2.1) and (1.2.3), we get the desired result.
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Next consider I as any arbitrary bounded interval. Then for any ϵ > 0, there is a closed interval J ⊂ I
such that l(J) > l(I)− ϵ. Notice that m∗(I) ≤ m∗(I) by monotonicity. So,

l(I)− ϵ < l(J) = m∗(J) [by previous argument]

≤ m∗(I) [by monotonicity]

≤ m∗(I) [by monotonicity]

= l(I) [by previous argument]

= l(I) [since I is a bounded interval].

Hence, l(I)− ϵ < m∗(I) ≤ l(I). Since ϵ > 0 is arbitrary, so l(I) = m∗(I).

Finally let I be an unbounded interval. Then then given any natural number n ∈ N, there is a closed
interval J ⊂ I such that l(J) = n. Hence, m∗(I) ≥ m∗(J) = l(J) = n. Since m∗(I) ≥ n and n ∈ N
is arbitrary, so m∗(I) = ∞ = l(I).

6. Let m∗(A) = M < ∞. Then for all ϵ > 0, there exists a sequence {In} bounded open intervals such

that A ⊂
∞⋃
n

In and

∞∑
n=1

l(In) < M + ϵ.

Hence, for x ∈ R, {In + x} is a covering of A+ x and so

m∗(A+ x) ≤
∞∑
n=1

l(In + x) =

∞∑
n=1

l(In) < M + ϵ.

Hence,
m∗(A+ x) ≤M. (1.2.4)

Now, let {Jn} be a collection of bounded open intervals such that A + x ⊂
∞⋃
n

Jn. Assume that

∞∑
n=1

l(Jn) < M . Then {Jn−x} is a covering ofA and
∞∑
n=1

l(Jn − x) =
∞∑
n=1

l(Jn) < M , a contradiction.

So,
∞∑
n=1

l(Jn) ≥M and hence

m∗(A+ x) ≥M. (1.2.5)

From equations (1.2.4) and (1.2.5), we get the desired result.

Next, let m∗(A) = ∞. The for any sequence {In} bounded open intervals such that A ⊂
∞⋃
n

In, we

must have
∞∑
n=1

l(In) = ∞.

ConsiderA+x. For any sequence {Jn} of bounded open intervals such thatA+x ⊂
∞⋃
n

Jn, the collec-

tion {Jn − x} is a set of bounded open intervals such that A ⊂
∞⋃
n=1

(Jn − x). So,
∞∑
n=1

l(Jn − x) = ∞.
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But, l(Jn) = l(Jn − x), so we must have
∞∑
n=1

l(Jn) = ∞. Since {Jn} is an arbitrary collection of

bounded open intervals covering A+ x, we must have m∗(A+ x) = m∗(A).

7. Let {Ak} be any countable collection of sets. The result holds trivially if m∗(Ak) = ∞ for some
k. So without loss of generality, we assume that m∗(Ak) < ∞ for each k. Then for all ϵ > 0

and for each k ∈ N, there is a countable set of open intervals {Ik,m} such that Ak ⊂
∞⋃
m=1

Ik,m and

∞∑
m=1

l(Ik,m) < m∗(Ak) +
ϵ

2k
. Then {Ik,m} for k,m ∈ N a countable collection of open intervals that

cover
∞⋃
k=1

Ak. So,

m∗

( ∞⋃
k=1

Ak

)
≤

∑
k,m

l(Ik,m)

=
∞∑
k=1

∞∑
m=1

l(Ik,m)

<
∞∑
k=1

(
m∗(Ak) +

ϵ

2k

)
=

∞∑
k=1

m∗(Ak) + ϵ.

Hence, m∗

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

m∗(Ak).

The above properties are nearly exhaustive list of properties satisfied by the outer measure. Now, let us
check whether it is our desired measure function. We see that nearly all the properties that we sought for are
satisfied by the outer measure but for the countable additivity, that is, for mutually disjoint collection of sets

{Ak} of sets in P , m∗

( ∞⋃
k=1

)
̸=

∞∑
k=1

m∗(Ak). But the outer measure does not actually satisfy additivity. But

since we are so close, we might need to refine the definition using the outer measure a bit so that this problem
is solved. In the year 1914, Caratheodory formulated a measurability criteria using the outer measure that is
formally accepted as the definition of measure. We will discuss more on this in the next section.

Example 1.2.8. The Cantor set C is uncountable with outer measure zero. Let Cn denote the union of the
intervals left at the nth stage while constructing the Cantor set. One may note that Cn consists of 2n closed
intervals, each of length 3−n. Thus,

m∗(Cn) ≤ 2n.3−n.

But, any point of C must be in one of the intervals comprising the union Cn for each n ∈ N and as such
C ⊂ Cn for each n ∈ N. Hence,

m∗(C) ≤
(
2

3

)n
.

This being true for each n ∈ N, letting n→ ∞ gives m∗(C) = 0.
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Exercise 1.2.9. 1. Show that any countable set has outer measure zero. Hence show that [0, 1] is uncount-
able. Is the converse true? Justify.

2. If m∗(A) = 0, then show that m∗(A ∪B) = m∗(A) +m∗(B) = m∗(B).

1.2.4 Lebesgue Measure

We begin by defining the measurability of a set due to Caratheodory.

Definition 1.2.10. Let A ⊂ R. Then A is said to be Lebesgue measurable if for any subset E of R,

m∗(E) = m∗(E ∩A) +m∗(E \A).

If A is measurable, then the outer measure is called the measure of A and is denoted by m(A).

This above definition can be understood as the additive “interaction" of A with every subset of R, or A
“splits" every subset of R in an additive manner. It is to be noted that for any set E,

E = E ∩ R = E ∩ (A ∪ (R \A)) = (E ∩A) ∪ (E \A).

So, by the countable subadditivity of outer measure,

m∗(E) ≤ m∗(E ∩A) +m∗(E \A).

So, in order to satisfy the measurability condition, it is sufficient if we prove only the reverse inequality, that
is,

m∗(E) ≥ m∗(E ∩A) +m∗(E \A) . (1.2.6)

Further, if m∗(E) = ∞, then obviously the above inequality will hold. So, we have to further add the criteria
m∗(E) <∞ to check the measurability of A. Now, let us check the measurability of certain sets.

Example 1.2.11. 1. The sets ∅ and R are measurable (Prove it!).

2. Any set A with outer measure zero is measurable. Indeed, for any subset E with finite outer measure,
m∗(E ∩ A) = 0. Also, m∗(E) ≥ m∗(E ∩ (R \ A)). Hence, equation (1.2.6) is satisfied for every
E ⊂ R. Hence, A is measurable.

3. From the definition of measurability, the complement of any measurable set is measurable.

Theorem 1.2.12. Let A and B be two measurable sets. Then A ∪B and A ∩B are measurable.

Proof. Let E be any set in R. Since A, B are measurable, so

m∗(E) ≥ m∗(E ∩A) +m∗(E ∩ (R \A))
= m∗(E ∩A) +m∗(E ∩ (R \A) ∩B) +m∗(E ∩ (R \A) ∩ (R \B)). (1.2.7)

But, E ∩ (A ∪B) = (E ∩A) ∪ (E ∩ (R \A) ∩B) and (R \A) ∩ (R \B) = R \ (A ∪B). So,

m∗(E ∩ (R \A) ∩ (R \B)) = m∗(E ∩ (R \ (A ∩B)) = m∗(E \ (A ∪B)). (1.2.8)

Also, by sub-additivity of outer measure,

m∗(E ∩ (R \A) ∩B) ≥ m∗(E ∩ (A ∪B))−m∗(E ∩A). (1.2.9)
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Using (1.2.8) and (1.2.9) in (1.2.7), we get,

m∗(E) ≥ m∗(E ∩ (A ∪B)) +m∗(E \ (A ∪B))

which implies that A∪B is measurable. Now, since A and B are measurable, their complements are also and
hence their union (R \A) ∪ (R \B) is also measurable. Since

A ∩B = R \ [(R \A) ∪ (R \B)],

so, A ∩B is measurable as the complement of a measurable set is measurable.

Using the principle of mathematical induction, one can easily show that the above theorem is true for any
finite collection of measurable sets. Also, the following result easily follows from the above theorem.

Corollary 1.2.13. If A and B are measurable, then A \B is measurable.

Proof. Since A \B = A ∩ (R \B), and both the sets being measurable, A \B is measurable.

Theorem 1.2.14. If E is measurable, then E + x is measurable for any real x.

Proof. Since E is measurable, so for any A ⊆ R and x ∈ R,

m∗(A) = m∗(A ∩ E) +m∗(A ∩ (R \ E))

= m∗[(A ∩ E) + x] +m∗[(A ∩ (R \ E)) + x] [outer measure is translation invariant]

= m∗[(A+ x) ∩ (E + x)] +m∗[(A+ x) ∩ ((R \ E) + x)]

= m∗[(A+ x) ∩ (E + x)] +m∗[(A+ x) ∩ (R \ (E + x))]

We replace A by A− x in the above and find that

m∗(A) = m∗(A− x) = m∗[A ∩ (E + x)] +m∗[A ∩ (R \ (E + x))]

which is the definition of measurability. Hence the result.

If we denote the set of all measurable sets as M , then we have seen that

1. ∅,R ∈ M ;

2. A ∈ M ⇒ R \A ∈ M ;

3. A,B ∈ M ⇒ A ∪B ∈ M .

Hence, M forms an algebra over R. Does it form a σ-algebra? The following theorem points in that direction.

Theorem 1.2.15. If {Ei} is any sequence of measurable sets, then
∞⋃
i=1

Ei and
∞⋂
i=1

Ei are measurable.

To prove the theorem, we will need the following lemma:

Lemma 1.2.16. Let {Ei}ni=1 be a finite collection of disjoint measurable sets. If A ⊆ R, then

m∗

(
n⋃
i=1

(A ∩ Ei)

)
= m∗

(
A ∩

(
n⋃
i=1

Ei

))
=

n∑
i=1

m∗(A ∩ Ei).

In particular, if A = R, then m

(
n⋃
i=1

Ei

)
=

n∑
i=1

m(Ei). This shows that the measure function is finitely

additive.
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Proof. We prove this by induction. The result is obvious when n = 1. Suppose that it holds for some n. So,

m∗

(
A ∩

(
n⋃
i=1

Ei

))
=

n∑
i=1

m∗(A ∩ Ei)

Consider n+ 1 disjoint measurable sets Ei. Since En+1 is measurable,

m∗

(
A ∩

(
n+1⋃
i=1

Ei

))
= m∗

(
A ∩

(
n+1⋃
i=1

Ei

)
∩ En+1

)
+m∗

(
A ∩

(
n+1⋃
i=1

Ei

)
∩ (R \ En+1)

)

= m∗(A ∩ En+1) +m∗

(
A ∩

(
n⋃
i=1

Ei

))

= m∗(A ∩ En+1) +
n∑
i=1

m∗(A ∩ Ei) [by induction hypothesis]

=

n+1∑
i=1

m∗(A ∩ Ei).

Hence the result.

We will now prove the original theorem for countable sets.

Proof. Let E =
⋃
i

Ei, and let

H1 = E1

H2 = E2 \ E1

H3 = E3 \ (E1 ∪ E2)

...

Hn = En \

(
n−1⋃
i=1

Ei

)
.

Then, {Hi} is a sequence of disjoint measurable sets such that E =
∞⋃
i=1

Hi. Let A ⊆ R. Then by the previous

lemma, we see that

m∗(A) = m∗

(
A ∩

(
n⋃
i=1

Hi

))
+m∗

(
A ∩

(
R \

(
n⋃
i=1

Hi

)))
≥

n∑
i=1

m∗(A ∩Hi) +m∗(A ∩ (R \ E)),

since R \ E ⊆ R \

(
n⋃
i=1

Hi

)
. Letting n→ ∞, we have

m∗(A) ≥
∞∑
i=1

m∗(A ∩Hi) +m∗(A ∩ (R \ E)).
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Since A ∩ E =
∞⋃
i=1

(A ∩Hi), we have by the countable sub-additivity of the outer measure, m∗(A ∩ E) ≤

∞∑
i=1

m∗(A ∩Hi). This, and the above gives us

m∗(A ∩ E) +m∗(A ∩ (R \ E)) ≤ m∗(A).

Hence E is measurable. Again, since
∞⋂
i=1

Ei = R \

( ∞⋃
i=1

(R \ Ei)

)
, so

∞⋂
i=1

Ei is also measurable. Hence the

proof is complete.

Hence, M forms a σ-algebra over R.

Theorem 1.2.17. If A and B are measurable, such that A ⊆ B, then m(A) ≤ m(B). Further, if m(A) <∞,
then m(B \A) = m(B)−m(A).

Proof. Since A ⊆ B, so we have
B = (B \A) ∪A

Since B \A and A are disjoint, so

m(B) = m(B \A) +m(A) (1.2.10)

≥ m(A)

Hence,
m(A) ≤ m(B)

Also, by (1.2.10), we get, since m(A) <∞, so

m(B \A) = m(B)−m(A).

If m∗(A) = ∞, then the result can’t be true. Consider B = R and A = R \ N. Then clearly, A ⊆ B. We
know that m∗(N) = 0 < ∞. So, by the previous theorem, m∗(A) = m∗(R)−m∗(N) = ∞− 0 = ∞. And
m∗(R) = ∞. To find m∗(B \ A), if we apply the above theorem, then we see that, m∗(B \ A) = ∞−∞,
which is undefined. Hence, we can’t apply the above theorem in this case.

Theorem 1.2.18. Every interval is measurable.

Proof. We will prove only for the open interval of type (a,∞), a ∈ R. For this, we need to show that

m∗(A) ≥ m∗(A ∩ (a,∞)) +m∗(A ∩ (−∞, a])

for any subset A of R. If m∗(A) = ∞, then the result is obvious. So, we assume that m∗(A) <∞. Let ϵ > 0

be arbitrary. Then there exists a sequence {Ik} of open intervals such that A ⊆
∞⋃
k=1

Ik such that

∑
k

l(Ik) < m∗(A) + ϵ.

For each k, let
I1k = Ik ∩ (a,∞), I2k = Ik ∩ (−∞, a]
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Then, {I1k} and {I2k} are sequence of open intervals covering A ∩ (a,∞) and A ∩ (−∞, a] respectively, and
m∗(I1k) +m∗(I2k) = l(I1k) + l(I2k) = l(Ik). Hence,

m∗(A ∩ (a,∞)) +m∗(A ∩ (−∞, a]) ≤
∑
k

l(Ik) < m∗(A) + ϵ

Since ϵ is arbitrary, so we get

m∗(A ∩ (a,∞)) +m∗(A ∩ (−∞, a]) ≤ m∗(A).

We can similarly show that (−∞, a) is measurable. Hence, for any arbitrary interval (a, b), we have

(a, b) = (−∞, b) ∩ (a,∞).

Showing the measurability of other types of intervals are elementary and left as exercise.

We will now attempt to show that the measure thus defined by Caratheodory, actually is the function that
we wished to seek. We are left to show the additivity of measure function. We have already shown the finite
additivity of measure previously. We will use that to show the case for countable number of measurable sets.

Theorem 1.2.19. Let {Ek} be countable collection of disjoint measurable sets. Then

m

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

m(Ek).

Proof. Since
∞⋃
k=1

Ek is measurable and by the sub-additivity of outer measure,

m

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

m(Ek).

We only need to show the opposite inequality. By monotonicity of measure, for any finite subcollection of
{Ek} we have,

n∑
k=1

m(Ek) ≤ m

( ∞⋃
k=1

Ek

)
for each n. Now, since the right hand side of the inequality is independent of n it follows that

∞∑
k=1

m(Ek) ≤ m

( ∞⋃
k=1

Ek

)
.

This along with the first equation of this proof yields the desired result.

Now, if we summarize the properties of the measure, then we see that

1. 0 ≤ m(A) ≤ ∞ for any A ⊂ R;

2. m(∅) = 0 = m(C), for any countable set C;

3. For A ⊂ B, m(A) ≤ m(B);

4. Any interval I is measurable and m(I) = l(I);
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5. m is translation invariant;

6. m is countably additive.

Hence, we can consider m as a function m : M → R∗ which is a direct generalisation of the length of
intervals that we were seeking throughout the unit. We will pose a significant question: “Is M = P?" We
will discuss it in the next unit.

Let us give few other definitions and properties of measurable sets.

Definition 1.2.20. Let {An} be a sequence of sets. Using union and intersection, we define the limit superior
and limit inferior as follows:

lim inf
n→∞

An =
⋃
n≥1

⋂
j≥n

Aj

and
lim sup
n→∞

An =
⋂
n≥1

⋃
j≥n

Aj .

It can be easily seen from the definition that lim inf An ⊆ lim supAn. If they are equal, then the resulting
set is denoted by limAn. It is clear from the definition that lim supAn is the set of points belonging to
infinitely many of the sets An. It is also immediate that if A1 ⊆ A2 ⊆ . . ., then limAn =

⋃
An and if

A1 ⊇ A2 ⊇ . . ., then limAn =
⋂
An. Now, we have the following theorem:

Theorem 1.2.21. Let {Ai} be a sequence of measurable sets. Then

1. if A1 ⊆ A2 ⊆ . . ., we have
m(limAi) = limm(Ai).

2. if A1 ⊇ A2 ⊇ . . ., and m(Ai) <∞ for at least one i, then

m(limAi) = limm(Ai).

Proof. 1. We write

B1 = A1

B2 = A2 \A1

B3 = A3 \A2

...

Bi = Ai \Ai−1.

Then clearly,
∞⋃
i=1

Ai =
∞⋃
i=1

Bi.

and the sets Bi are measurable and disjoint. Also note that

n⋃
i=1

Bi = An.
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So,

m(limAn) = m

( ∞⋃
i=1

Ai

)

=
∞∑
i=1

m(Bi)

= lim
n∑
i=1

m(Bi)

= limm

(
n⋃
i=1

Bi

)
= limm(An)

which was required to be proved.

2. Let p be the least integer such thatm(Ap) <∞. Thenm(Ai) <∞ for all i ≥ p. We set,Bi = Ai\Ai+1

and A =

∞⋂
i=1

Ai. Then Bi are pairwise disjoint sets and

Ap \A =
∞⋃
i=p

Bi.

Therefore,

m(Ap \A) =
∞∑
i=p

m(Bi) =

∞∑
i=p

m(AiAi+1).

But, m(Ap) = m(A) + m(Ap \ A) and m(Ai) = m(Ai+1) + m(Ai − Ai+1), for all i ≥ p, since
A ⊂ Ap and Ai+1 ⊂ Ai. Further, using the fact that m(Ai) <∞, for all i ≥ p, it follows that

m(Ap \A) = m(Ap)−m(A)

m(Ai \Ai+1) = m(Ai)−m(Ai+1), ∀i ≥ p.

Hence,

m(Ap)−m(A) =
∞∑
i=p

(m(Ai)−m(Ai+1))

= lim
n→∞

n∑
i=p

(m(Ai)−m(Ai+1))

= lim
n→∞

{m(Ap)−m(An)}

= m(Ap)− lim
n→∞

m(An).

Since m(Ap) <∞, it gives,
m(A) = lim

n→∞
m(An).

This proves the result.
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Exercise 1.2.22. 1. For k > 0 and A ⊆ R, let kA = {x : k−1x ∈ A}. Show that

i. m∗(kA) = km∗(A),

ii. A is measurable iff kA is measurable.

2. For A ⊆ R, let −A = {x : −x ∈ A}. Show that

i. m∗(A) = m∗(−A),
ii. A is measurable iff −A is measurable.

3. Let A and B be two measurable sets. Prove that

m(A ∪B) +m(A ∩B) = m(A) +m(B).

Sample Questions

1. Show that set set of all measurable sets form an algebra.

2. Show that set set of all measurable sets form a σ-algebra.

3. Show that m is translation invariant.

4. Show that any open set is measurable. Hence show that all closed sets are also measurable.

5. Show that the condition of m(Ai) can not be dropped in theorem 1.2.21.
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Unit 2

Course Structure

• Characterizations of measurable sets by open sets, closed sets

• Characterizations of measurable sets by Gδ and Fσ sets

• Measurability of Borel sets

• Existence of non-measurable sets.

2.1 Introduction

We are most acquainted with the intervals so far and have seen sets being approximated by open intervals in
the definition of outer measure. We have also seen that intervals and hence, open sets, closed sets, are all
measurable (exercise). Open sets and closed sets are the sets we come across quite regularly. So, if we can
understand measurability in terms of open and closed sets, we can get more insight into the structure of a
measurable set. In this unit, that is what we are going to do. Approximating a measurable set by open set,
closed set, Gδ set, Fσ sets and compact sets. Another important aspect of the study of measurable sets is the
existence of non-measurable sets. The question that we come across while studying measurable sets which
has also been pointed out in the previous unit is whether all sets are measurable? Most of the sets that we are
acquainted with are measurable. So we might think that all sets are measurable. But that is not so. And in this
unit, we will turn our attention towards those non-measurable sets.

Objectives

After reading this unit, you will be able to:

• learn the approximation of measurable set by open sets

• learn the approximation of measurable set by closed sets

• learn the approximation of measurable set by Gδ sets

• learn the approximation of measurable set by Fσ sets

17
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• learn what are Borel sets

• learn about the measurability of the Borel sets

• learn about the existence of non-measurable sets

2.2 Characterization by open and closed sets

We begin this section by the following theorem:

Theorem 2.2.1. For every ϵ > 0, there exists an open set U ⊆ R such that m(U) ≤ ϵ and U contains the set
Q or rational numbers.

Proof. Let ϵ > 0 and let q1, q2, . . . be an enumeration of the rational numbers. Construct U as

U =
⋃
n∈N

(
qn −

ϵ

2n+1
, qn +

ϵ

2n+1

)
Clearly, U is open and contains Q, and

m(U) ≤
∑
n∈N

m
(
qn −

ϵ

2n+1
, qn +

ϵ

2n+1

)
=
∑
n∈N

ϵ

2n
= ϵ

Hence the result.

We begin by describing Lebesgue outer measure in terms of open sets as follows:

Theorem 2.2.2. If S ⊆ R, then

m∗(S) = inf{m(U)|U is open and S ⊆ U}

Proof. Let x be the value of the infimum. Clearly, m∗(S) ≤ m(U) for every open set U containing S, and
hence, m∗(S) ≤ x. For the opposite inequality, let ϵ > 0, and let C be a cover of S by open intervals so that∑

I∈C
l(I) ≤ m∗(S) + ϵ

Then U =
⋃
C is an open set that contains S, so

x ≤ m(U) ≤
∑
I∈C

m(I) =
∑
I∈C

l(I) ≤ m∗(S) + ϵ

Since ϵ > 0 is arbitrary, so x ≤ m∗(S). Combining the two inequalities, we get the required result.

We will now use open sets to give a nice characterization of measurability. It says that every measurable set
can be approximated by an open set from the exterior up-to any extent according to our wish. The following
theorem can also be called the exterior approximation by open sets.

Theorem 2.2.3. A set S ⊆ R is Lebesgue measurable if and only if for every ϵ > 0, there exists an open set
U containing S such that m∗(U \ S) < ϵ.
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Proof. Let S be measurable, and ϵ > 0. Let m(S) < ∞. From the definition of Lebesgue outer measure, we

have a sequence {In} of open intervals such that S ⊂
∞⋃
n=1

In and

∞∑
n=1

l(In) < m∗(S) + ϵ.

Set U =
∞⋃
n=1

In. Then U is an open set containing S and

m∗(U) ≤
∞∑
n=1

l(In) < m∗(S) + ϵ

which implies that
m∗(U \ S) = m∗(U)−m∗(S) < ϵ, since m(S) <∞.

Further, if m(S) = ∞, let Sk = S ∩ [−k, k]. Then each Sk is measurable and m(Sk) < ∞ for all k. By the
preceding argument, for each k we can find an open set Uk containing Sk such that m∗(Uk \Sk) <

ϵ

2k
. Since

S =

∞⋃
k=1

Sk and S ⊂
∞⋃
k=1

Uk = U , it follows that

m∗(U \ S) = m(U \ S)

≤ m

( ∞⋃
k=1

(Uk \ Sk)

)

≤
∞∑
k=1

m(Uk \ Sk) < ϵ.

Conversely, let S ⊆ R, and suppose that for every n, there exists an open set Un containing S such that

m∗(Un \ S) < 1

n
. Let E =

⋂
n∈N

Un, and note that E is a measurable set containing S. But E \ S ⊆ Un \ S

for each n. So,

m∗(E \ S) ≤ m∗(Un \ S) <
1

n

for each n. We conclude that m∗(E \ S) = 0, and hence E \ S is measurable. Then S = E \ (E \ S) is
measurable as well.

We know that any arbitrary union of open sets is open. And finite intersection of open sets is open. But can
we replace finite intersection by arbitrary intersection? Consider the sets (−1/n, 1/n), n ∈ N. Then,⋂

n∈N

(
− 1

n
,
1

n

)
= {0}

which is not open. Hence, we can’t replace finite intersection by arbitrary intersection always. So if we
consider countable intersection of open sets, then it is called a Gδ set. The set in the above example is a Gδ
set. And those are definitely measurable. We can characterize measurability by Gδ sets.

Theorem 2.2.4. A set S is measurable if and only if there exists aGδ setG containing S such thatm∗(G\S) =
0.
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Proof. Let S be measurable. Then, for each n ∈ N, there exists an open set On containing S such that
m∗(On \ S) < 1/n. Take G =

⋂
n∈N

On. Then G is a Gδ set and S ⊆ G. Thus

m∗(G \ S) ≤ m∗(On \ S) <
1

n

for each n. Hence, m∗(G \ S) = 0.
Conversely, let there exist a Gδ set such that m∗(G \ S) = 0. Then G \ S is measurable. Also, G is

measurable since it is the countable intersection of measurable sets. Thus, S = G\(G\S) is also measurable.
Hence the proof.

Note that the complement of any open set is a closed set. So the characterization of measurability by closed
set is closely linked with that by open sets with a slight variation as we shall see. The theorem below is known
as the inner approximation of measurable sets by closed sets.

Theorem 2.2.5. A set S ⊆ R is measurable if and only if for every ϵ > 0, there exists a closed set F contained
in S such that m∗(S \ F ) < ϵ.

Proof. Let S be measurable. Then R \ S is also measurable. Thus for each ϵ > 0, there exists an open set
containing R \ S such that m∗(U \ (R \ S)) < ϵ. Take F = R \U . Then F is closed. Also, F is contained in
S. Since m∗(U \ (R \ S)) < ϵ, so m∗(S \ F ) < ϵ.

Converse can also be similarly shown.

Similar to the Gδ sets, we have something in case of closed sets. We know that, arbitrary intersection of
closed sets are closed and finite union of closed sets are closed. In a similar manner, the arbitrary union of
closed sets may not be closed (give counter example!). Countable union of closed sets are called Fσ sets.
These sets are not closed in general. However, they are also measurable. With the help of the above theorem,
we can characterize measurable sets with the help of Fσ sets as follows:

Theorem 2.2.6. A set S is measurable if and only if there exists an Fσ set F contained in S such that
m∗(S \ F ) = 0.

This theorem can be proved directly and also using the theorem for Gδ sets.

Proof. Left as an exercise.

From all the above theorems, we conclude the following corollary which gives a beautiful and important
structure of a measurable set:

Corollary 2.2.7. Let S ⊆ R. Then S is Lebesgue measurable if and only if for every ϵ > 0 there exists a
closed set F and an open set U such that F ⊆ S ⊆ U and m(U \ F ) < ϵ.(see figure 2.2.1)

Proof. Left as exercise.

We can also define measure with respect to closed sets.

Definition 2.2.8. If S ⊆ R, the Lebesgue inner measure of S is defined as

m∗(S) = sup{m(F )|F is closed and F ⊆ S}

From the above corollary, it is clear that m∗(E) = m(E) for any measurable set E. It is also apparent that
m∗(S) ≤ m∗(S) for any set S ⊆ R. The following theorem gives a nice characterization of measurability for
sets of finite measure.
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F

S

U

m(U \ F ) < ϵ

Figure 2.2.1: Structure of measurable set S

Theorem 2.2.9. Let S ⊆ R, and suppose that m∗(S) <∞. Then S is measurable if and only if

m∗(S) = m∗(S)

Proof. If S is measurable, then m∗(S) = m(S) = m∗(S). Conversely, suppose that m∗(S) < ∞ and
m∗(S) = m∗(S). Let ϵ > 0, and let F ⊆ S be a closed set and U ⊆ R and open set containing S so that

m∗(S) ≤ m(F ) +
ϵ

2
and m(U) ≤ m∗(S) +

ϵ

2

Then
m(U \ F ) = m(U)−m(F ) ≤

(
m∗(S) +

ϵ

2

)
−
(
m∗(S)−

ϵ

2

)
= ϵ

Since ϵ is arbitrary, it follows from the previous corollary, that S is measurable.

Theorem 2.2.10. Every compact subset of R is measurable.

Proof. By Heine-Borel theorem, every compact set on R is closed and bounded. So every compact set is
measurable.

Exercise 2.2.11. 1. Let E be Lebesgue measurable with m(E) <∞. Show that

(a) there exists a decreasing sequence of open sets Uk such that lim
k→∞

m(Uk) = m(E).

(b) there exists an increasing sequence of closed sets Fk such that lim
k→∞

m(Fk) = m(E).

2. Show that for any set A and ϵ > 0, there is an open set O containing A such that m∗(O) ≤ m∗(A) + ϵ.

3. Show that for any set A, there exists a measurable set E containing A such that m∗(A) = m(E).

4. Let E be a set with m∗(E) <∞. Show that E is measurable if and only if for any ϵ > 0 there is a finite
union B of open intervals such that

m∗(E∆B) < ϵ.
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5. Show that if m∗(E) = ∞ and for each ϵ > 0, there are intervals I1, I2, . . . , In such that

m∗

(
E∆

(
n⋃
i=1

Ii

))
< ϵ,

then at least one of the intervals Ii is finite.

2.3 Borel Sets

Recall that a σ-algebra on X is any non-empty collection of subsets of X that is closed under taking comple-
ments and countable unions. For example, the Lebesgue measurable subsets of R forms a σ-algebra on R. We
also recall the following result.

Theorem 2.3.1. Let C be any collection of σ-algebras on R. Then the intersection
⋂
C is also a σ-algebra on

R.

This is the smallest σ-algebra containing C and is known as the σ-algebra generated by C. It is important
for this definition that there is always at least one σ-algebra containing C, namely the power set P(R) of all
subsets of R.

Definition 2.3.2. The Borel algebra B is the σ-algebra on R generated by the collection of all open sets. A
set B ⊆ R is called a Borel set if B ∈ B.

By definition, every open set is a Borel set. Moreover, since the Borel sets are a σ-algebra, the complement
of any Borel set is a Borel set, and any countable union of Borel sets is a Borel set. The Borel σ-algebra can
also be described as the σ-algebra generated by these family of subsets of R.

1. Open intervals;

2. Open sets;

3. Closed intervals;

4. Closed sets;

5. Compact sets;

6. Left open, right closed intervals;

7. Right open, left closed intervals;

8. All intervals.

Theorem 2.3.3. Every Borel set is measurable.

Proof. Observe that the collection M of all Lebesgue measurable sets is a σ-algebra that contains the open
sets. Since B is the intersection of all such σ-algebras, it follows that B ⊆ M.

Theorem 2.3.4. Every open set, closed set, Fσ set, or Gδ set is a Borel set.

Proof. Every open set lies in B by definition. Since B is a σ-algebra, it follows immediately that closed sets,
Fσ sets, Gδ sets are all Borel sets as well.

Theorem 2.3.5. The Borel algebra is generated by the collection of all open intervals.
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Proof. Let A be a σ-algebra generated by the open intervals. Since B contains the open intervals, we know
that A ⊆ B. But, since every open set is the countable union of disjoint open intervals, A contains every open
set, and hence B ⊆ A.

We see that open sets, closed sets, Fσ sets and Gδ sets are among the simplest of the Borel sets. The next
result shows the relation between Lebesgue measurable sets and Borel sets.

Theorem 2.3.6. Every Lebesgue measurable set is the union of a Borel set and a set of Lebesgue measure
zero.

Proof. Let E be a Lebesgue measurable set. Then we have an Fσ (Borel set) set B such that B ⊂ E and
m(E \ B) = 0. But E = B ∪ (E \ B). Hence B is our desired Borel set and E \ B is the set with zero
Lebesgue measure.

Exercise 2.3.7. 1. Show that not all measurable sets are Borel sets.

2. Show that E ⊂ R is measurable if and only if there are Borel sets B1, B2 satisfying B2 ⊂ E ⊂ B1 and
m∗(B1 \B2) = 0.

2.4 Non-measurable Sets

There are sets which are non-measurable. For this, we first state Axiom of Choice.

Definition 2.4.1. Let C be a collection of non-empty sets. Then we can choose a member from each set in
that collection. In other words, there exists a function f defined on C with the property that, for each set S in
the collection, f(S) is a member of S.

The function f is called the choice function. Let us consider a few examples.

1. If C is the collection of subsets of {1, 2, . . .}, then we can define f a follows: f(S) is the least element
of S.

2. If C is the collection of all intervals of real numbers with positive, finite lengths, then we can define
f(S) to be the midpoint of the interval S.

Axiom of Choice cannot be derived from the rest of set theory but must be introduced as an additional axiom.
We will now construct a non-measurable set in the following way.

Theorem 2.4.2. There exists a non-measurable set.

Proof. Let x, y ∈ [0, 1]. Define a relation ′ ∼′ as

x ∼ y iff y − x ∈ Q1 = Q ∩ [−1, 1]

Verify that ’∼’ is an equivalence relation on [0, 1]. Then, [0, 1] gets partitioned into disjoint equivalence
classes, say Eα, where x and y can be in Eα if and only if x ∼ y holds. Since Q1 is countable, each Eα
is countable. Since [0, 1] is uncountable, there are uncountably many sets Eα. Using Axiom of Choice, we
consider a set V in [0, 1], containing just one element xα from each set Eα. Such set is called Vitali set.
Let {ri} be an enumeration of Q1, and for each n, write Vn = V + rn. We claim that Vn are disjoint. If
y ∈ Vn ∩ Vm, there exist xα and xβ ∈ V such that

y = xα + rn y = xβ + rm
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But then xβ − xα ∈ Q1, so xβ = xα by definition of V and we have n = m. So, Vn ∩ Vm = ∅ for n ̸= m.
Also [0, 1] ⊆

⋃∞
n=1 Vn ⊆ [−1, 2], since for all x ∈ [0, 1], x ∈ Eα for some α. Then

x = xα + rn

giving x ∈ Vn. The second inclusion is obvious.

If V is measurable, then Vn are also measurable and by translation invariance of measure, m(V ) = m(Vn).
Using the measurability of the sets Vn, we have

1 = m([0, 1]) ≤
∞∑
1

m(Vn) = m(V ) +m(V ) + · · · ≤ 3

But the sum can only be 0 or ∞. So, our assumption is false and V can’t be measurable.

It is generally not necessary for a measurable set to contain interval. For example, if we consider the set of
rational numbers, the we see that it does not contain any interval and its measure is zero. But, if the measure
of a set is positive, then we see a rather interesting feature of such sets. Let us state the following theorem:

Theorem 2.4.3. If T is a measurable set with positive measure. Define

T ∗ = {x− y : x ∈ T y ∈ T}

Then T ∗ contains an interval (−α, α) for some α > 0.

Proof. Since T is measurable, there exists a closed set C contained i T , of positive measure. Since m(C) =
limm(C ∩ [−n, n]), we may assume that C is a bounded set. Also, since T is measurable, there exists an
open set U ⊃ C such that m(U \ C) < m(C). Define the distance between two sets A and B as

d(A,B) = inf{|x− y| : x ∈ A, y ∈ B}

Since |x − y| is a continuous function of x and y, the distance between A and B is positive if A and B are
disjoint closed sets one of which is bounded. Let α be the distance between the closed sets C and R \ U , so
that α > 0. Let x be any point of (−α, α). We wish to show that C ∩ (C − x) ̸= ∅> For, otherwise, since
C − x = {y : y + x ∈ C}, we have that ∀x ∈ (−α, α), ∃z ∈ C such that

z′ = z + x ∈ C

and so that
x = z′ − z ∈ T ∗

Since |x| < α, we have C − x ⊂ U from the definition of α. So,

m(C \ (C − x)) ≤ m(U \ (C − x))

= m(U)−m(C − x)

= m(U)−m(C)

< m(U)

Hence m(C ∩ (C − x)) > 0 and so we must have C ∩ (C − x) ̸= ∅, as required.

Exercise 2.4.4. Show that if A is any set with m∗(A) > 0, then there is a non-measurable set E contained in
A.
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Sample Questions

1. Show that a set S is measurable if and only if for any ϵ > 0, there exists an open set U such that S ⊂ U
and m(U \ S) < ϵ.

2. Show that a set S is measurable if and only if for any ϵ > 0, there exists a closed set F such that F ⊂ S
and m(S \ F ) < ϵ.

3. Show that Borel sets are measurable.

4. Show that there exists a non-measurable set.



Unit 3

Course Structure

• Measurable functions : Definition on a measurable set in R and basic properties,

• Sequences of measurable functions,

• Simple functions, Measurable functions as the limits of sequences of simple functions,

3.1 Introduction

Measurable functions in measure theory are analogous to continuous functions in topology. A continuous
function pulls back open sets to open sets, while a measurable function pulls back measurable sets to measur-
able sets. Lebesgue measurable functions play an important role in the Lebesgue theory of integration. It plays
the same role in the theory as those bounded functions play in the theory of Riemann integration, which are
continuous almost everywhere. We begin this unit defining measurable functions and discuss a few examples
of measurable and non-measurable sets.

Objectives

After reading this unit, you will be able to

• differentiate between measurable and non-measurable functions and some basic examples

• learn about the sequence of measurable functions and their properties

• learn to approximate measurable functions with sequence of simple functions

3.2 Measurable Functions

Definition 3.2.1. An extended real valued function f defined on a Lebesgue measurable set E is said to be
Lebesgue measurable function if for each aR, the set f−1((a,∞]) = {x : f(x) > a} is measurable.

In practice, the domain of definition of f will usually be either R or R \ F , where m(F ) = 0. The
motivation behind this definition is in the fact that whether we are able to “measure" the inverse of intervals
of type (a,∞]. What about the other kind of intervals.

26



3.2. MEASURABLE FUNCTIONS 27

Theorem 3.2.2. The following statements are equivalent:

(a.) f is a measurable function,

(b.) ∀a ∈ R, the set f−1([a,∞]) = {x : f(x) ≥ a},

(c.) ∀a ∈ R, the set f−1([−∞, a)) = {x : f(x) < a},

(d.) ∀a ∈ R, the set f−1([−∞, a]) = {x : f(x) ≤ a}.

Proof. Let f be measurable. Then for every a ∈ R, the set {x : f(x) > a} is measurable. Now,

{x : f(x) ≥ a} =
∞⋂
n=1

{
x : f(x) > a− 1

n

}
.

Since the set
{
x : f(x) > a− 1

n

}
is measurable for each n, the set {x : f(x) ≥ a} is measurable for each

a ∈ R. Thus, (a) ⇒ (b).
Now, let us assume (b) is true. So for each a ∈ R, the set {x : f(x) ≥ a} is measurable. Thus, the

complement of the set is also measurable for each a ∈ R. Since

{x : f(x) < a} = R \ {x : f(x) ≥ a}

so, (c) is true. Hence, (b) ⇒ (c).

Let us assume that (c) is true. We show that (d) is true. Since (c) is true, so for each n ∈ N, the set{
x : f(x) < a+

1

n

}
is measurable. Now,

{x : f(x) ≤ a} =

∞⋂
n=1

{
x : f(x) < a+

1

n

}
.

Since the countable intersection of measurable sets is measurable, so the set {x : f(x) ≤ a} is measurable.
Thus, (c) ⇒ (d).

Lastly, we show that (d) ⇒ (a). Let us assume that (d.) is true. We know that for any a ∈ R,

{x : f(x) > a} = R \ {x : f(x) ≤ a}

Since the complement of measurable set is measurable, hence, {x : f(x) > a} is measurable. So, f is
measurable.

We also have an equivalent theorem as

Theorem 3.2.3. If an extended real function f is measurable then for every extended real number a, the set
{x : f(x) = a} is measurable.

Proof. Let f be measurable. Then, for every finite a,

{x : f(x) = a} = {x : f(x) ≥ a} ∩ {x : f(x) ≤ a}.

So, {x : f(x) = a} is measurable. For a = ∞,

{x : f(x) = ∞} =
∞⋂
n=1

{x : f(x) > n}
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Since for each n ∈ N, the set {x : f(x) > n} is measurable, so {x : f(x) = ∞} is measurable. Similarly, for
a = −∞, we see that

{x : f(x) = −∞} =
∞⋂
n=1

{x : f(x) < −n}

Since each {x : f(x) < −n} is measurable, so the set {x : f(x) = −∞} is measurable. This completes the
proof.

Exercise 3.2.4. 1. Suppose f is a measurable function defined on a measurable set E. Show that

(a) f−1([a, b)) is measurable;

(b) f−1([a, b]) is measurable;

(c) f−1{∞} and f−1{−∞} are measurable;

(d) f−1{c} is measurable;

(e) f−1(G) is measurable for any open set G in R.

2. Check whether the following functions are measurable in their respective domains.

(a) f(x) =
1

x
, on (0, 1).

(b) f : R → R defined as

f(x) = x2, x < 1

= 2, x = 1

= 2− x, x > 1.

Let us see an important example.

Example 3.2.5. Let us define a function f on the closed interval [0, 1] as

f(x) = 1; if x ∈ [0, 1] ∩Q
= 0; if x ∈ [0, 1] \Q.

Consider a ∈ R. Then we have

{x : f(x) > a} = ∅, if a ≥ 1

{x : f(x) > a} = [0, 1] ∩Q, if 0 ≤ a < 1

{x : f(x) > a} = [0, 1], if a < 0

In each case, the resulting sets are measurable.

The above function is called a characteristic function or indicator function of rational numbers in [0, 1]. We
formally define indicator function of any subset E of R as follows:

Definition 3.2.6. Let E be a subset of R. Then the function f : R → R is called the indicator function of E if

f(x) = 1; if x ∈ E

= 0; if x ̸∈ E

The indicator function of a particular set E is denoted by χE .
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We have the following theorem in connection with the indicator functions:

Theorem 3.2.7. Indicator function of a set E is measurable if and only if E is measurable.

Proof. Let a ∈ R. Then we see that

{x : f(x) > a} = ∅, if a ≥ 1

{x : f(x) > a} = E, if 0 ≤ a < 1

{x : f(x) > a} = R, if a < 0

Each of the sets ∅ and R is measurable. If the set E is measurable, then the function f is measurable.
Conversely, if the function f is measurable, then the set E is measurable. This completes the proof.

Theorem 3.2.8. Any constant function is measurable.

Proof. Let f(x) = c be a constant function on R. Also, let a ∈ R be arbitrary. Then

{x : f(x) > a} = ∅, if a ≥ c

{x : f(x) > a} = R, if a < c

Since both the sets ∅ and R are measurable, so f is measurable.

Theorem 3.2.9. Every continuous function is measurable.

Proof. Let f be a continuous function on R. Then for each a ∈ R, the set

{x : f(x) > a} = f−1(a,∞)

Since f is continuous and the set (a,∞) is open, so f−1(a,∞) is open and hence measurable. Hence the
theorem.

Theorem 3.2.10. Let f and g be two measurable functions. Then:

1. f ± c is measurable.

2. f ± g is measurable.

3. cf is measurable for each c ∈ R.

4. f2 is measurable.

5. fg is measurable.

Proof. 1. Since f is measurable. So, for each a ∈ R, the set {x : f(x) > a} is measurable. Now,

{x : f(x)± c > a} = {x : f(x) > a∓ c}

Since f is measurable, so the set {x : f(x) > a∓ c} is measurable for every a ∈ R. Hence the result.

2. Since f and g are measurable, so for each a ∈ R, the sets {x : f(x) > a} and {x : g(x) > a} are
measurable. To show that f + g is measurable, let A = {x : f(x) + g(x) > a}. Now,

x ∈ A only if f(X) > a− g(x)
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that is, only if there exists a rational number ri such that f(x) > ri > a − g(x), where {r1, r2, . . .} is
the enumeration of rational numbers. But then g(x) > a− ri and so

x ∈ {x : f(x) > ri} ∩ {x : g(x) > a− ri}

Hence,

A ⊆ B =

∞⋃
i=1

({x : f(x) > ri} ∩ {x : g(x) > a− ri})

which is a measurable set. Also, since A contains B, we have A = B. So, f + g is measurable. Then
f − g = f + (−g) is measurable.

3. Since f is measurable, so the set {x : f(x) > a} is measurable for every a ∈ R. Now, for c > 0,

{x : cf(x) > a} = {x : f(x) > c−1a}

which is a measurable set. Similarly we can show that {x : cf(x) > a} is measurable for c < 0.

4. For a ∈ R, the set

{x : f2(x) > a} = 0 if a < 0

= {x : f(x) >
√
a} ∩ {x : f(x) < −

√
a} if a ≥ 0

Since the sets in both the cases are measurable, hence f2 is measurable.

5. Finally

fg =
1

4
((f + g)2 − (f − g)2)

Since each f + g, f − g are measurable, so their square is also measurable. And hence the above set is
measurable.

Note 3.2.11. The results hold for extended real numbers except when f + g is not defined. For example when
f = ∞ and g = −∞ or vice versa. Similarly for the case f − g.

3.3 Sequence of Measurable Functions

In fact, the above results are true for any finite sequence of sets {fi}. But, what happens when we replace finite
sequence by infinite sequence? Actually, we have the following theorem for infinite sequence of functions:

Theorem 3.3.1. Let {fn} be a sequence of measurable functions defined on the same measurable set. Then

1. sup
1≤i≤n

fi is measurable for each n.

2. inf
1≤i≤n

fi is measurable for each n.

3. sup fn is measurable.

4. inf fn is measurable.

5. lim sup fn is measurable.
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6. lim inf fn is measurable.

7. lim fn (finite or infinite) is measurable on the same set, if it exists on every point of the set.

Proof. 1. Each fi is measurable. Let a ∈ R. Since,{
x : sup

1≤i≤n
fi(x) > a

}
=

∞⋃
i=1

{x : fi(x) > a},

Since each {x : fi(x) > a} is measurable, so
{
x : sup

1≤i≤n
fi(x) > a

}
is measurable.

2. We know that
inf

1≤i≤n
fi = − sup

1≤i≤n
(−fi)

Since fi is measurable for each i, so −fi is measurable for each i. Thus, by the previous subpart, we
arrive at the required conclusion.

3. Since each fi is measurable, for each a ∈ R, the set {x : fi(x) > a} is measurable. We also know that

{x : sup fn(x) > a} =
∞⋃
n=1

{x : fn(x) > a}

Hence, we arrive at the desired result.

4. We know that
inf fn = − sup(−fn)

and so inf fn is measurable.

5. Since

lim sup fn = inf

(
sup
i≥n

fi

)
a measurable function by the previous subparts.

6. Since
lim inf fn = − lim sup(−fn)

and so the required result.

7. Let lim fn exists for all points on the measurable set. Then

lim sup fn = lim fn = lim inf fn

and by previous subparts, lim sup fn and lim inf fn are measurable and hence, lim fn is also so.

Definition 3.3.2. A property is said to hold almost everywhere (abbreviated as a.e), if it holds everywhere
except on a set of measure zero.
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Example 3.3.3. Suppose f and g are extended real valued functions defined on a measurable set E. If f is
measurable and f = g a.e onE, then g is also measurable onE. To show this, let us assume any real number c.
We must show that the set {x ∈ E : g(x) > c} is a measurable subset of E. Define A = {x ∈ E : f ̸= g}.
Then by assumption, A is measurable with measure zero. Then g = f on the measurable set E \A, and

{x ∈ E : g(x) > c} = {x ∈ E \A : g(x) > c} ∪ {x ∈ A : g(x) > c}
= {x ∈ E \A : f(x) > c} ∪ {x ∈ A : g(x) > c}
= ({x ∈ E : f(x) > c} ∩ (E \A)) ∪ {x ∈ A : g(x) > c}.

The set {x ∈ A : g(x) > c} is measurable since it is a subset of a set of measure zero. Also, since f is a
measurable function on E, {x ∈ E : f(x) > c} is a measurable subset of E and hence its intersection with
E \A. Hence {x ∈ E : g(x) > c} is a measurable subset of E.

Example 3.3.4. Every Riemann integrable function defined on [a, b] is a measurable function on [a, b]. One
may recall that a bounded function f on [a, b] is Riemann integrable if and only if the set D of its discontinu-
ities has measure zero. Then f is continuous on [a, b] \D, hence measurable on [a, b] \D. Define g to be f
on [a, b] \D and zero on D. Then

{x ∈ [a, b] : g(x) > c} = {x ∈ [a, b] \D : g(x) > c} ∪ {x ∈ D : g(x) > c}.

And,

{x ∈ D : g(x) > c} = ∅, if c ≥ 0

= D, if c < 0 since g = 0 on D.

Thus g is a measurable function on [a, b]. Also, f = g except on a set of measure zero. By previous example,
f is measurable function. The converse of the statement is not true in general, that is, there are measurable
functions that are not Riemann integrable (Find an example!).

Example 3.3.5. Suppose f is a function defined on some measurable set E and {fn} is a sequence of mea-
surable functions defined on E such that f = lim fn a.e on E. Then f is measurable on E. Indeed, let us
assume that A = {x ∈ E : lim fn(x) is not defined of lim fn(x) ̸= f(x)}. Then the set A has measure
zero. Define a new sequence of functions {gn} on E by

gn(x) = fn(x), x /∈ A

= 0, x ∈ A,

and let g be given by

g(x) = f(x), x /∈ A

= 0, x ∈ A.

Since each gn equals a measurable function fn a.e on E, gn is measurable. If x ∈ A, lim gn(x) = 0 = g(x).
If x /∈ A, lim gn(x) = lim fn(x) = f(x) = g(x). Hence, lim gn(x) = g(x) on E. Since the pointwise limit
of a sequence of measurable functions is measurable, so g is measurable on E. Now, f = g a.e on E. Hence,
f is also measurable on E.

So far, we have only seen examples of measurable functions. It might seem that all functions are measur-
able. But that is not necessarily true.
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Example 3.3.6. Let V be a non-measurable subset of [0, 1] and define

f(x) = 1, x ∈ V

= −1, x ∈ [0, 1] \ V.

Then f is non-measurable function on [0, 1]. (Prove it!)

Exercise 3.3.7. 1. Show that any function defined on a set of measure zero is measurable.

2. If f and g are measurable functions on a common measurable setE, show that the sets {x ∈ E : f(x) ≤
g(x)} and {x ∈ E : f(x) = g(x)} are measurable.

3. If f is a measurable function on a measurable set E and if A is any measurable subset of E, then show
that f is a measurable function on A.

4. Let f and g be measurable functions on a measurable set E. Show that max{f, g} and min{f, g} are
measurable.

5. If f is a measurable function defined on a measurable set E, then show that f+ = max{f, 0}, f− =
−min{f, 0}, and |f | are measurable.

Sample Questions

1. Show that a function f defined on a measurable set E is measurable if and only if for every real number
a, the set {x ∈ E : f(x) ≥ a} is measurable.

2. Define measurable function. Show that every continuous function is measurable.

3. Show that the characteristic function on some set E is measurable if and only if E is measurable.

4. Show that the pointwise limit of a sequence of measurable functions defined on a measurable set E is
measurable.
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Unit 4

Course Structure

• Simple functions,

• Measurable functions as the limits of sequences of simple functions

4.1 Introduction

The most common example of measurable functions are the simple functions. So, we will learn to approximate
any measurable function with sequence of simple functions.

Objectives

After reading this unit, you will be able to

•

4.2 Simple Functions

Simple functions are really the “simplest" functions in certain respects. The easiest functions to deal with are
the constant functions. However, there are certain functions which are piecewise constant. Such functions are
called the simple functions.

We are acquainted with the definition of characteristic function of any setA, denoted by χA. We will define
simple functions using them.

Definition 4.2.1. Suppose

E =

n⋃
k=1

En,

where the sets Ek are measurable, mutually disjoint subsets of R and c1, c2, . . . , cn are real numbers. Then a
function ϕ defined on E by

ϕ(x) =
n∑
k=1

ckχEk
(x),

35
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is called a simple function.

A simple function assumes a finite number of real values and assumes each of these on a measurable set.
ϕ(x) = ck on Ek, 1 ≤ k ≤ n. A simple function can also be called a linear combination of characteristic
functions. Characteristic functions are also simple functions with only two sets of values 0 and 1 on two
disjoint sets. From the definition of simple functions, it can be evidently said that simple functions defined on
the measurable set E is measurable. Indeed, f is measurable if and only if all the sets Ek are measurable.

Example 4.2.2. 1. Each step function is a simple function.

2. Each characteristic function on a measurable set is a simple function.

4.3 Simple Approximation Theorem

We will now show that any measurable function defined on a measurable set can be approximated by simple
functions. This is known as the Simple Approximation theorem. The statement is as follows.

Theorem 4.3.1. Let f be a measurable function defined on a measurable set E. Then there exists a sequence
of simple functions {ϕk} on E such that

limϕk = f (finite or infinite)

for all x ∈ E. If f is bounded on E, then

limϕk = f (uniformly)

on E. If f is non-negative, the sequence {ϕk} may be constructed so that it is a monotonically increasing
sequence.

Proof. Suppose f is non-negative on E. We will construct a monotonically increasing sequence {ϕk} with
limϕk = f . The idea is to divide the range of f and approximate by level curves. Since f(E) ⊂ [0,∞], we
partition [0,∞] as follows:

Step 1. [0,∞] = [0, 1)∪[1,∞] =

[
0,

1

2

)
∪
[
1

2
, 1

)
∪ [1,∞]. DefineE11 = f−1

([
0,

1

2

))
,E12 = f−1

([
1

2
, 1

))
,

E1 = f−1([1,∞]), and

ϕ1(x) = 0.χE11 +
1

2
.χE12 + 1.χE1 .

Clearly, ϕ1 ≤ f on E.

Step 2.

[0,∞] = [1, 0) ∪ [1, 2) ∪ [2,∞]

=

[
0,

1

4

)
∪
[
1

4
,
1

2

)
∪
[
1

2
,
3

4

)
∪
[
3

4
, 1

)
∪
[
1,

5

4

)
∪
[
5

4
,
6

4

)
∪
[
6

4
,
7

4

)
∪
[
7

4
,
8

4

)
∪ [2,∞].

We have decomposed [0,∞] into 22 + 22 + 1 subintervals at the second step. We define the inverse
images:

E21 = f−1

([
0,

1

4

))
, E22 = f−1

([
1

4
,
1

2

))
, . . . ,

E28 = f−1

([
7

4
,
8

4

))
, E2 = f−1([2,∞]).
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Define

ϕ2 = 0.χE21 +
1

4
.χE22 + . . .+

7

4
.χE28 + 2χE2

=
2.22∑
i=1

i− 1

22
.χE2i + 2χE2 .

Hence,

E1i = E22i−1 ∪ E22i for i = 1, 2.

.

.

.

Step k. [0,∞] = [0, 1) ∪ [1, 2) ∪ [2, 3) ∪ · · · ∪ [k − 1, k) ∪ [k,∞] and partition into 2k + 2k + . . . + 2k + 1
subintervals = k.2k + 1 disjoint subintervals and form inverse images. Thus,

ϕk =

k.2k∑
i=1

i− 1

2k
.χEki

+ kχEk
.

Note that Eki = Ek+1 2i−1 ∪Ek+1 2i. To construct ϕk+1, divide the intervals
[
i− 1

2k
,
i

2k

)
in half, and

then ϕk to ϕk+1 at those x’s where ϕk changes.

Certainly, ϕk are non-negative simple functions. We must show that ϕk ≤ ϕk+1 and limϕk = f on E.
If f(x0) = ∞, then ϕk(x0) = k for all k and limϕk(x0) = ∞. If f(x0) < ∞, then for k > f(x0),

0 ≤ f(x0) − ϕk(x0) <
1

2k
and limϕk(x0) = f(x0). All that is left is monotonicity. We know that,

Eki = Ek+1 2i−1 ∪ Ek+1 2i, if x0 ∈ Eki, for some i, then ϕk(x0) =
i− 1

2k
and ϕk+1(x0) =

2i− 2

2k+1
=
i− 1

2k

or
2i− 1

2k+1
, and ϕk(x0) ≤ ϕk+1(x0). If x0 /∈ Eki, i = 1, 2, . . . , k.2k, then x0 ∈ Ek = f−1([k,∞]) =

f−1([k, k + 1)) ∪ f−1([k + 1,∞]). So, x0 is either in f−1([k, k + 1)), in which case, ϕk(x0) = k and

ϕk+1 =
j

2k+1
>

2k.2k

2k+1
= k = ϕk(x0), or x0 ∈ f−1([k + 1,∞]), and then ϕk+1(x0) = k+1 > k = ϕk(x0).

Thus, we have shown that for f ≥ 0,

0 ≤ ϕ1 ≤ . . . ≤ ϕk ≤ ϕk+1 ≤ . . .

and limϕk = f on E.

If f is non-negative and bounded onE, say 0 ≤ f ≤M onE, then for all k > M , 0 ≤ f(x)−ϕk(x) <
1

2k
for all x ∈ E, that is, limϕk = f uniformly on E.

In the general case (f may be negative), recall that f+ = max{f, 0} and f− = −min{f, 0}. This implies
that f = f+ − f−, where f+ and f− are non-negative measurable functions on E. Applying the above
arguments on f+ and f− and since the difference of two simple functions is again a simple function, so we
get the theorem.

Exercise 4.3.2. 1. Prove or disprove: The sum and difference of two simple functions is a simple function.

2. If ϕ is a simple function on a measurable set E, then show that ϕ is measurable.
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Sample Questions

1. State and prove the simple approximation theorem.



Unit 5

Course Structure

• Lusin’s theorem on restricted continuity of measurable functions,

• Egoroff’s theorem,

• Convergence in measure

5.1 Introduction

When studying about Lusin’s theorem and Egoroff’s theorem, it is necessary to know about the Littlewood’s
three principles. It gives intuitive knowledge about measure theory. The three celebrated Littlewood’s Princi-
ples for Lebesgue Measure on R are, roughly speaking:

1. Every measurable set of finite measure is nearly a finite union of intervals.

2. Every measurable function is nearly continuous.

3. Every convergent sequence of functions is nearly convergent.

The first principle can be proved using the concepts of unit 2 and has been left as exercise. The second and
third principles are known as Lusin’s theorem and Egoroff’s theorem respectively. The idea of convergence in
measure is also introduced in this unit. We are well aware with pointwise as well as the uniform convergence
of functions in analysis. A more general notion is the convergence almost everywhere (convergence except
on a measure zero set). But the concept of a.e convergence is almost same as that of pointwise convergence.
The convergence in measure is a more general concept, which was introduced by Riesz and Fischer in early
twientieth century. We start with the Egoroff’s theorem and later advance through the unit.

Objectives

After reading this unit, you will be able to

• state Lusin’s and Egoroff’s theorems and apply them appropriately;

• define the converegnce in measure and discuss its implications.

39
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5.2 Lusin’s and Egoroff’s Theorems

We will first prove the Egoroff’s theorem and Lusin’s theorem thereafter.

Theorem 5.2.1. Let E be a measurable set with m(E) < ∞. If {fn} is a sequence of measurable functions
that converges pointwise to a function f(x) on E, then for all ϵ > 0, there exists a closed set F ⊆ E such that
m(E \ F ) < ϵ and {fn(x)} converges to f(x) uniformly on F .

Proof. Let E be a measurable set with m(E) < ∞ and let {fn(x)} be a sequence of measurable functions
converging pointwise to f(x) on E. Let ϵ > 0. For each n ∈ N, define a set An(ϵ) to be the set of elements
in E such that |fk(x)− f(x)| < ϵ where k ∈ {n, n+ 1, . . .}. That is

An(ϵ) = {x ∈ E : |fk(x)− f(x)| < ϵ, k ∈ {n, n+ 1, . . .}}

Consider the condition that {fn(x)} converges uniformly to f(x) on any set A ⊆ E means that for all ϵ > 0,
there exists an N ∈ N such that if x ∈ A, then x ∈ AN (ϵ). Equivalently, {fn(x)} converges uniformly to
f(x) on A if and only if for all ϵ > 0, there exists an N ∈ N such that A ⊆ AN (ϵ). Furthermore, we note
that, for a fixed ϵ > 0, the collection of sets A1(ϵ), A2(ϵ), . . . , AN (ϵ), AN+1(ϵ), . . . is an ascending sequence
of sets. That is,

A1(ϵ) ⊆ A2(ϵ) ⊆ . . . ⊆ AN (ϵ) ⊆ AN+1(ϵ) ⊆ . . . .

Let ϵ > 0. Since {fn(x)} converges pointwise to f(x) on E, we have for this given ϵ, for each x ∈ E, there
exists an N(ϵ, x) ∈ N such that if n ≥ N(ϵ, x), then

|fn(x)− f(x)| < ϵ

So, for each x ∈ E, there exists an N(ϵ, x) ∈ N such that x ∈ AN(ϵ,x)(ϵ) and hence

E =
∞⋃
n=1

An(ϵ)

We will now use these to prove the main theorem.

For each k ∈ N, let ϵk =
1

k
>0. For each n ∈ N consider the sets An(ϵk) = an

(
1

k

)
. Then

E =
∞⋃
n=1

An

(
1

k

)

Additionally, since
{
An

(
1

k

)}
is a sequence of ascending sets that converge to E, for each k,

ϵ

2k+1
>0,

there exists an Nk ∈ N such that

m

(
E \ANk

(
1

k

))
<

ϵ

2k+1

Now, consider

A =
∞⋂
k=1

ANk

(
1

k

)
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Consider the Lebesgue measure of E \A.

m(E \A) = m

(
E \

∞⋂
k=1

ANk

(
1

k

))

= m

( ∞⋃
k=1

(
E \ANk

(
1

k

)))

≤
∞∑
k=1

m

(
E \ANk

(
1

k

))

≤
∞∑
k=1

ϵ

2k+1

≤ ϵ

2

So for every ϵ > 0, let k ∈ N be such that
1

k
< ϵ. Then

A =

∞⋂
k=1

ANk

(
1

k

)
⊆ ANk

(
1

k

)
⊆ ANk

(ϵk)

So, {fn(x)} converges uniformly to f(x) on A. Since A ⊆ E and m(E) <∞, we have that m(A) <∞. So
there exists a closed set F ⊆ A such that m(A \ F ) < ϵ

2
and hence

m(E \ F ) = m(E \A) +m(A \ F ) < ϵ

2
+
ϵ

2
= ϵ

and since {fn(x)} converges uniformly to f(x) on A we also have that {fn(x)} converges uniformly to f(x)
on F .

Lusin’s Theorem enables us to approximate any measurable function with a continuous function. We will
first prove an analogous theorem for simple measurable functions as follows:

Theorem 5.2.2. Let f be a simple function defined on a measurable set E. Then for each ϵ > 0, there is a
continuous function g on R and a closed set F contained in E for which

f ≡ g on F and m(E \ F ) < ϵ.

Proof. Let a1, a2, . . . , an be the finite number of distinct values taken by f and let the values be taken on the
sets E1, E2, . . . , En respectively. Since the a′ks are distinct, the sets Ek are disjoint. Then, by the theorem on
approximation by closed sets, we get closed sets F1, F2, . . . , Fn such that Fk ⊂ Ek for each k and

m(Ek \ Fk) < ϵ/n.



42 UNIT 5.

Also, the set F =
n⋃
k=1

Fk is closed. Now, since the sets Ek are disjoint, we have by countable additivity,

m(E \ F ) = m

((
n⋃
k=1

Ek

)
\

(
n⋃
k=1

Fk

))

= m

(
n⋃
k=1

(Ek \ Fk)

)

=

n∑
k=1

m(Ek \ Fk)

<

n∑
k=1

ϵ

n

= ϵ.

Now we define g on F as g(x) = ak for x ∈ Fk. Since F ′
ks are disjoint, so g is well-defined. We also see that

g is continuous on F (for x ∈ Fk, there is an open interval containing x which is disjoint from the other F ′
ks,

so g is constant on this open interval intersecting F ). Then by Tietz Extension theorem, g can be extended to
the R. This extension is the desired function.

We will now prove the Lusin’s Theorem as follows:

Theorem 5.2.3. (Lusin’s Theorem) Let f be a real-valued measurable function on E. Then for each ϵ > 0,
there is a continuous function g on R and a closed set F contained in E for which

f ≡ g on F and m(E \ F ) < ϵ.

Proof. By the previous theorem, we see that the result is true for simple functions. Let f be any arbitrary
positive measurable function. First let m(E) < ∞. By the Simple Approximation Theorem, there is a
sequence {fn} of simple functions defined on E that converges pointwise to f on E. Let n ∈ N. So, by the
previous theorem, for ϵ > 0, there is a closed set Fn and a continuous function gn defined on R such that

fn = gn on Fn and m(E \ Fn) < ϵ/2n+1.

By Egoroff’s Theorem, there is a closed set F0 contained in E such that {fn} converges uniformly to f on F0

and m(E \ F0) < ϵ/2. Now, define F =

∞⋂
n=0

Fn. Then

m(E \ F ) = m

(
E \

∞⋂
n=0

Fn

)

= m

( ∞⋃
n=0

(E \ Fn)

)

= m((E \ F0) ∪

( ∞⋃
n=1

(E \ Fn)

)

<
ϵ

2
+

∞∑
n=1

ϵ

2n+1
= ϵ.
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The set F is closed. Each fn is continuous on F since F ⊂ Fn and fn = gn on Fn and gn is continuous
on R. Finally, {fn} converges to f uniformly on F since F ⊂ F0 and {fn} converges uniformly to f on
F0. However, the uniform limit of continuous functions is continuous, so the restriction of f to the set F is
continuous. By Tietz Extension theorem, there is a continuous function g defined on all of R such that f = g
on F . g is the desired function.

Exercise 5.2.4. 1. Show that Egoroff’s theorem is also true if the sequence {fn} converges pointwise to
f almost everywhere on a measurable set E of finite measure.

2. Does the Egoroff’s theorem hold if the condition m(E) <∞ is removed? Justify your answer.

3. For a measurable function defined on a measurable set E, show that for every ϵ > 0, there is a continu-
ous function g defined on R such that m(x ∈ E : f(x) ̸= g(x)) < ϵ. Hence, show that there exists a
sequence {gn} of continuous functions on R such that gn → f a.e on E.

5.3 Convergence in Measure

We are already familiar with convergence of a sequence of functions, and in particular, we have also seen
certain theorems on the limits of sequence of measurable functions. Here in this section, we will study a new
kind of convergence of a sequence of functions on a set. This concept generalizes pointwise convergence of
sequence of functions.

Definition 5.3.1. Let {fn} be a sequence of measurable functions and f , a measurable function defined on a
measurable set E. Then the sequence {fn} converges in measure to f in E, if for each ϵ > 0,

lim
n→∞

m({x ∈ E : |fn(x)− f(x)| ≥ ϵ}) = 0.

If {fn} converges in measure to f in measure, then it is also denoted as fn
m−→ f .

The concept of fn
m−→ f on E means that for all sufficiently large n, the functions fn in the sequence {fn}

differ from the limit function f by a small quantity with the exception of a set of points whose measure is
zero. The above definition can also be equivalently given as follows.

Definition 5.3.2. A sequence {fn} of measurable functions is said to converge in measure to a measurable
function f on a set E if for each δ > 0 and ϵ > 0, there exists a positive integer N such that

m({x ∈ E : |fn(x)− f(x)| ≥ ϵ}) < δ, ∀n > N.

Theorem 5.3.3. If a sequence of measurable functions converges in measure, then the limit function is unique
a.e.

Proof. Let fn
m−→ f , and fn

m−→ g on E. Now, since

|f − g| ≤ |f − fn|+ |g − fn|,

we must have, for any ϵ > 0,

{x : |f(x)− g(x)| > 2ϵ} ⊆ {x : |f(x)− fn(x)| ≥ ϵ} ∪ {x : |g(x)− fn(x)| ≥ ϵ}.

But the measure of the set on the right hand side tends to zero as n→ ∞. So f = g a.e. on E.
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Theorem 5.3.4. (Riesz Theorem) If a sequence {fn} converges in measure to f on E, then there exists a
subsequence {fnk

} of {fn} which converges to f a.e on E.

Proof. Let us consider two sequence {ϵn} and {δn} of positive real numbers such that ϵn → 0 as n→ ∞ and
∞∑
n=1

δn <∞. We now choose a strictly increasing sequence {nk} of positive integers as follows.

Let n1 be a positive integer such that

m({x ∈ E : |fn1(x)− f(x)| ≥ ϵ1}) < δ1.

Such a number n1 must exist since fn
m−→ f on E. Similarly, let n2 be a positive number such that

m({x ∈ E : |fn2(x)− f(x)| ≥ ϵ2}) < δ2,

and n2 ≥ n1. Continuing in this process, we get a sequence {nk} such that

m({x ∈ E : |fnk
(x)− f(x)| ≥ ϵk}) < δk,

and nk ≥ nk−1 for all k. We shall now show that the subsequence {fnk
} converges to f a.e.

Define

Ak =
∞⋃
i=k

{x ∈ E : |fni(x)− f(x)| ≥ ϵi}, k ∈ N

and

A =

∞⋂
k=1

Ak.

Clearly, {Ak} is a decreasing sequence of measurable sets and hence,

m(A) = lim
k→∞

m(Ak).

But,

m(Ak) ≤
∞∑
i=k

δi → 0 as k → ∞.

Hence, m(A) = 0. It remains to be verified that {fnk
} converges to f on E \ A. Indeed, for x0 ∈ E \ A,

x0 /∈ Ak0 for some positive integer k0. That means,

x0 /∈ {x ∈ E : |fnk
(x)− f(x)| ≥ ϵk}, k ≥ k0.

This gives
|fnk

(x0)− f(x0)| < ϵk, k ≥ k0.

But ϵk → 0 as k → 0. Hence,
lim
k→∞

fnk
(x0) = f(x0).

Hence {fnk
} converges a.e to f on E.

Theorem 5.3.5. Let fn
m−→ f and gn

m−→ g on E. Then

1. fn + gn
m−→ f + g;

2. αfn
m−→ αf , α is a real number;
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3. f+n
m−→ f+, f−n

m−→ f− and |fn|
m−→ |f |.

Further, if m(E) <∞, then

a f2n
m−→ f2;

b fn.gn
m−→ f.g.

Proof. Since fn
m−→ f and gn

m−→ g, so for each ϵ > 0,

lim
n→∞

m({x ∈ E : |fn(x)− f(x)| ≥ ϵ}) = 0,

and
lim
n→∞

m({x ∈ E : |gn(x)− g(x)| ≥ ϵ}) = 0.

1. Now,
|(fn + gn)(x)− (f + g)(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)|.

Also,

{x ∈ E : |(fn+gn)(x)−(f+g)(x)| ≥ 2ϵ} ⊆ {x ∈ E : |fn(x)−f(x)| ≥ ϵ}∪{x ∈ E : |gn(x)−g(x)| ≥ ϵ}.

Since the measure of both the sets on the right hand side tends to zero as n → ∞, and since ϵ > 0 is
arbitrary, so the result follows.

2. If α = 0, it follows trivially. Let α ̸= 0. Then,

{x ∈ E : |αfn(x)− αf(x)| ≥ ϵ} = {x ∈ E : |fn(x)− f(x)| ≥ ϵ

|α|
.

Since the set on the right hand side has measure zero for n→ ∞, the result follows.

3. We know that, ∣∣f+n − f+
∣∣ ≤ |fn − f |∣∣f−n − f−
∣∣ ≤ |fn − f |.

Also,
||fn| − |f || ≤ |fn − f |.

The rest can be similarly done as the preceding part and is left as exercise.

Now, let m(E) <∞.

a Left as exercise.

b Left as exercise.

The condition m(E) < ∞ in the last two results can not be removed as can be seen from the following
example.
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Example 5.3.6. Take E = (0,∞). Consider for each n, fn(x) = x, x ∈ E. Then f(x) = x, x ∈ E. Let
gn(x) = cn, where {cn} is a sequence of positive real numbers such that cn → 0 as n→ ∞.

Here, m(E) = ∞, and we note that

m({x : |fn(x)gn(x)− f(x)g(x)| ≥ ϵ}) = m({x : |cnx| ≥ ϵ}) = ∞, ∀n.

This shows that fn.gn
m−→ f.g on E.

Definition 5.3.7. A sequence of functions is said to be fundamental with respect to a particular kind of
convergence if it forms a Cauchy sequence in that sense. Thus a sequence {fn} is fundamental in measure if
for any ϵ > 0,

lim
m,n→∞

m({x : |fn(x)− fm(x)| > ϵ}) = 0.

Theorem 5.3.8. If a sequence {fn} converges in measure to f , then {fn} is fundamental in measure.

Proof. It follows from the relation

{x : |fn(x)− fp(x)| ≥ ϵ} ⊆
{
x : |fn(x)− f(x)| ≥ ϵ

2

}
∪
{
x : |fp(x)− f(x)| ≥ ϵ

2

}
.

We now prove a ’completeness’ theorem for convergence in measure.

Theorem 5.3.9. If {fn} is a sequence of measurable functions which is fundamental in measure, then there
exists a measurable function f such that fn

m−→ f .

Proof. For every integer k, we can find nk such that n,m ≥ nk,

m

({
x : |fn(x)− fm(x)| ≥

1

2k

})
<

1

2k
,

and we may assume that for each k, nk+1 > nk. Let

Ek =

{
x : |fnk

(x)− fnk+1
(x)| ≥ 1

2k

}
Then if x ̸∈

⋃∞
k=mEk, we have for r > s ≥ m

|fnr(x)− fns(x)| ≤
r∑

i=s+1

|fni(x)− fni−1(x)| <
r∑

i=s+1

1

2i
=

1

2s

So, {fnk
(x)} is a Cauchy sequence for each x ̸∈ lim supEk =

⋂∞
m=1

⋃∞
k=mEk. But, for all m,

m(lim supEk) ≤ m

( ∞⋃
k=m

Ek

)
≤

∞∑
k=m

1

2k
=

1

2m−1
. (5.3.1)

So {fnk
} converges a.e to some measurable function f . Also from (5.3.1), we have that {fnk

} is uniformly
fundamental in R \

⋃∞
k=mEk, for each m. So, fnk

→ f uniformly on R \
⋃∞
k=mEk, and hence, for every

positive ϵ,
m({x : |fnk

(x)− f(x)| > ϵ/2}) → 0 as k → ∞. (5.3.2)

But,

{x : |fn(x)− f(x)| > ϵ} ⊆ {x : |fn(x)− fnk
(x)| > ϵ/2} ∪ {x : |f(x)− fnk

(x)| > ϵ/2}.

If n and nk are sufficiently large, the measure of the first set on the right is arbitrarily small, as {fn} is
fundamental in measure. But the second set has been shown to have arbitrarily small measure by (5.3.2) and
the result follows.
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The Riesz theorem can also be proved as a corollary of the above theorem.

Corollary 5.3.10. Let fn
m−→ f , where each fn and f are measurable functions. Then there exists a subse-

quence {nl} such that fnl
→ f a.e.

Proof. Clearly, {fn} is fundamental in measure, so from the proof of the previous theorem, we can find a
subsequence {fnl

} and a measurable function g such that fnl
→ g a.e and in measure. But fnl

m−→ f so by a
previous theorem, f = g, a.e. Hence proved.

Exercise 5.3.11. 1. Show that the a.e limit f of a sequence of measurable functions {fn} on a measurable
set E implies that fn

m−→ f on E. Is the converse true? Justify.

2. Show that if fn → f in measure and gn → g in measure, then fn − gn → f − g in measure.

3. Prove that almost uniform convergence implies convergence in measure.

4. Prove that every subsequence of a sequence fundamental in measure is again a fundamental in measure.

Sample Questions

1. State and prove Egoroff’s theorem.

2. State and prove Lusin’s theorem.

3. Define convergence in measure. Show that the limit of convergence in measure of a sequence {fn} of
measurable functions is unique a.e.

4. State and prove Riesz theorem for convergence in measure.

5. Show that the property of convergence in measure is closed under function addition. Is the same true
for function multiplication? Justify your answer.

6. When is a sequence of measurable functions said to be fundamental in measure? Show that pointwise
convergent sequence of measurable functions is fundamental in measure.

7. Let {fn} be a sequence of measurable functions which is fundamental in measure, then there exists a
measurable function to which {fn} convereges in measure.



Unit 6

Course Structure

• The Riemann Integral

• The Lebesgue integral : Integrals of simple functions and bounded function defined one a measurable
set with finite measure

6.1 Introduction

The theory of Riemann integration though very thoroughly useful and adequate for solving various problems,
in both pure and applied streams, has its own drawbacks. It does not meet the needs of a number of important
branches of mathematics and physics of comparatively recent development. First of all, the Riemann integral
of a function is defined on a closed interval and cannot be defined on an arbitrary set. Investigations in
probability theory, partial differential equations, hydromechanics and quantum mechanics often pose problems
which require integration over sets. Second and more important is the fact that the Riemann integrability
depends upon the continuity of the function. Of course, there are functions which are discontinuous and
yet Riemann-integrable, but these functions are continuous almost everywhere. Again, given a sequence of
Riemann integrable functions converging to some function in a domain, the limit of the sequence of integrated
functions may not be the Riemann integral of the limit function. In fact, the Riemann integral of the limit
function may not even exist. This is a major drawback of the Riemann theory of integration, apart from the fact
that even relatively simple functions are not integrable in the sense of Riemann. H. Lebesgue in his classical
work, introduced the concept of an integral, known after his name the Lebesgue integral, based on the measure
theory that generalizes the Riemann integral. It has the advantage that it takes care of both bounded and
unbounded functions and simultaneously allows their domains to be more general sets and thereby enlarges
the class of functions for which the Lebesgue integral is defined. Also, it gives more powerful and useful
convergence theorems relating to the interchange of the limit and integral valid under less restrictive conditions
required for the Riemann integral. We shall start with recollecting the Riemann integral and then gradually
develop the theory of Lebesgue integral and see that in fact, Lebesgue integral is a generalisation of Riemann
integral.

Objectives

After reading this unit, you will be able to

48
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• revise the idea of Riemann integrals from a new perspective

• define the integral of simple functions on measurable sets

• use the definition of simple function to define the integral of bounded measurable functions on measur-
able sets on R

6.2 Riemann Integral: A short recapitulation

We shall define the Riemann integral of a step function and then will extend it to more general bounded
functions f on [a, b] via approximation from above and below by step functions.

Definition 6.2.1. A real-valued function ϕ on [a, b] is called a step function if there is a partition

a = x0 < x1 < . . . < xn = b

of the interval such that ϕ is constant on each subinterval Ik = (xk−1, xk); that is,

ϕk(x) = ck, for x ∈ Ik, k = 1, 2, . . . , n,

with ϕk(xk) = dk, k = 0, 1, 2, . . . , n.

Definition 6.2.2. Let ϕ be a step function on [a, b] :

ϕ(x) =

{
ck, xk−1 < x < xk, k = 1, 2, . . . , n
dk, k = 0, 1, . . . , n, x = xk.

The Riemann integral of ϕ on [a, b], denoted by
∫ b
a ϕ(x)dx, is∫ b

a
ϕ(x)dx =

n∑
k=1

ck (xk − xk−1) .

We could write ϕ =
n∑
1

ckX(xk−1+xk) +
n∑
0

dkX{xk}, and
∫ b

a
ϕ(x)dx

=
π∑
k=1

ckm ((xk−1, xk)) +
n∑
k=0

dkm ({dk}) =
n∑
k=1

ck (xk − xk−1).

The step function’s values at the endpoints of the subintervals have no bearing on the existence or value of
the Riemann integral of a step function ( dk does not appear in the definition of the integral).

ϕ1(x) =


1, 0 ≤ x < 1
3, x = 1
2, 1 < x ≤ 2

and ϕ2(x) =

{
1, 0 ≤ x ≤ 1

2, 1 < x ≤ 2

ϕ1 = ϕ2 for 0 < x < 1 and 1 < x < 2, ϕ1(1) ̸= ϕ2(1), but∫ 2

0
ϕ1(x)dx = 1 · 1 + 2 · 1 =

∫ 2

0
ϕ2(x)dx.

Also, it should be noted that the value of the Riemann integral of a step function is independent of the choice
of the partition of [a, b] as long as the step function is constant on the open subintervals of the partition, for
example,

ϕ(x) =

{
1, 0 ≤ x ≤ 1

2, 1 < x ≤ 2
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Partition: {0, 1, 2},
∫ 2
0 ϕ(x)dx = 1 · 1 + 2 · 1 = 3, Partition:

{0, 1/2, 1, 7/4, 2},
∫ 2

0
ϕ(x)dx = 1 · 1/2 + 1 · 1/2 + 2 · 3/4+

2 · 1/4 = 3

More formally, the Riemann integral of a step function is well defined; it is independent of the particular
representation of ϕ. For example, if ϕ(x) = ck, xk−1 < x < xk and we add another partition point x∗,
xk−1 < x∗ < xk, we have

ck (xk − xk−1) = ck (xk − x∗ + x∗ − xk−1) = ck (xk − x∗) + ck (x
∗ − xk−1) .

We will now state few obvious properties of step functions and their corresponding integrals in the follow-
ing.

Theorem 6.2.3. If ϕ and ψ are step functions on [a, b], and k is any real number, then

1. (kϕ) is a step function on [a, b], and
∫ b
a (kϕ)(x)dx = k

∫ b
a ϕ(x)dx (homogeneous);

2. (ϕ+ ψ) is a step function on [a, b], and∫ b

a
(ϕ+ ψ)(x)dx =

∫ b

a
ϕ(x)dx+

∫ b

a
ψ(x)dx (additivity);

3.
∫ b

a
ϕ(x)dx ≤

∫ b

a
ψ(x)dx if ϕ ≤ ψ on [a, b] (monotone);

4. If a < c < b, the integrals
∫ c

a
ϕ(x)dx,

∫ b

c
ϕ(x)dx exist and

∫ c

a
ϕ(x)dx+

∫ b

c
ϕ(x)dx =

∫ b

a
ϕ(x)dx. (additive on the domain)

We now define the Riemann integral for more general bounded function f on [a, b].

Definition 6.2.4. Let f be a bounded function on [a, b], say α ≤ f ≤ β, for x ∈ [a, b]. Let ϕ, ψ denote

arbitrary step functions on [a, b] such that ϕ ≤ f ≤ ψ. The lower Riemann integral of f on [a, b],
∫ b

a

f(x)dx,

is defined as ∫ b

a

f(x)dx = sup

{∫ b

a
ϕ(x)dx| ϕ ≤ f, ϕ is a step function

}
.

The upper Riemann integral of f on [a, b],
∫ b

a
f(x)dx, is defined as

∫ b

a
f(x)dx = inf

{∫ b

a
ψ(x)dx| f ≤ ψ, ψ is a step function

}
.

Since α ≤ f , the set
{∫ b

a
ϕ(x)dx| ϕ ≤ f, ϕ is a step function

}
is not empty and since α ≤ f ≤ β

implies ∫ b

a
ϕ(x)dx ≤

∫ b

a
βdx = β(b− a),
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the set is bounded above. The least upper bound is a real number. The lower Riemann integral on a closed
bounded interval is well-defined. Similarly, for the upper Riemann integral.

Since ϕ ≤ ψ,
∫ b

a
ϕ(x)dx ≤

∫ b

a
ψ(x)dx by monotonicity of step functions. Since ϕ is arbitrary, we may

interpret this inequality as saying
∫ b

a
ψ(x)dx is an upper bound for the set

{∫ b

a
ϕ(x)dx| ϕ ≤ f, ϕ is a step function

}
.

But,
∫ b

a

f(x)dx is the smallest upper bound. So, we have,

∫ b

a

f(x)dx ≤
∫ b

a
ψ(x)dx.

Again, we can say that
∫ b

a

f(x)dx is a lower bound of the set

{∫ b

a
ψ(x)dx| f ≤ ψ, ψ is a step function

}
.

Since the upper Riemann integral
∫ b

a
f(x)dx is the greatest lower bound,

∫ b

a

f(x)dx ≤
∫ b

a
f(x)dx.

It follows that a bounded function f on [a.b] satisfies∫ b

a
ϕ(x)dx ≤

∫ b

a

f(x)dx ≤
∫ b

a
f(x)dx ≤

∫ b

a
ψ(x)dx

for any step functions ϕ ≤ f ≤ ψ on [a, b].
When this approximation from above and below approach a common value, then f will be Riemann inte-

grable.

Definition 6.2.5. A bounded function f on [a, b] is Riemann integrable on [a, b] whenever
∫ b

a

f(x)dx =

∫ b

a
f(x)dx.

We denote the common value by
∫ b

a
f(x)dx.

We state a necessary and sufficient condition for a bounded function f on [a, b] to be Riemann integrable.

Theorem 6.2.6. A bounded function f on [a, b] is Riemann integrable if and only if for every ϵ > 0, we have
step functions ϕ and ψ, ϕ ≤ f ≤ ψ on [a, b], so that

0 ≤
∫ b

a
ψ(x)dx−

∫ b

a
ϕ(x)dx =

∫ b

a
[ψ(x)− ϕ(x)]dx < ϵ.
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We have known from previous knowledge that continuous functions are Riemann integrable. But what
about discontinuous functions? We have seen that functions having finite number of discontinuities are con-
tinuous (as an example, the function [x] on [0, 3] is Riemann integrable). However, functions like the following

f(x) = 1, x ∈ [0, 1] ∩Q
= 0, x ∈ [0, 1] \Q

are not Riemann integrable. In fact, the discontinuities of f here is the whole set [0, 1]. Then, one must be
thinking that for f to be Riemann integrable, the set of its discontinuities must be “small". Here, this “small"-
ness is measured using Lebesgue measure. The following theorem gives us an answer for the relationship
between Riemann integrability and continuity for any f on [a, b].

Theorem 6.2.7. A bounded function on a closed bounded interval is Riemann integrable if and only if the
function is continuous a.e on the interval.

Before concluding this section, we will state the following theorem that shows that the integral properties
of step functions are retained by Riemann integrable functions.

Theorem 6.2.8. If bounded functions f and g are Riemann integrable on [a, b], and k is any real number, the

1. (kf) is Riemann integrable on [a, b], and∫ b

a
kf(x)dx = k

∫ b

a
f(x)dx (homogeneous);

2. (f + g) is Riemann integrable on [a, b], and∫ b

a
(f + g)(x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx (additive);

3.
∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx if f ≤ g on [a, b] (monotone);

4. If a < c < b, f is Riemann integrable on [a, c] and [c, b], and∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx (additive on the domain);

5. If α ≤ f ≤ β on [a, b],

α(b− a) ≤
∫ b

a
f(x)dx ≤ β(b− a) (mean value).

Exercise 6.2.9. Show that the function f defined on [0, 1] as

f(x) = 1; x ∈ [0, 1] ∩Q
= 0; x ∈ [0, 1] \Q

is not Riemann integrable.
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6.3 Lebesgue Integral

We develop the theory of Lebesgue integral for a bounded function f on a set E of finite Lebesgue measure.
The treatment is parallel to that of Riemann integral, replacing step functions with simple functions. For that,
we first need to define the integral of simple functions.

Definition 6.3.1. Suppose ϕ is a simple function defined on a measurable set E, that is

ϕ(x) =

n∑
k=1

ckχEk
(x)

with
n⋃
k=1

Ek = E, Ek are mutually disjoint with m(E) < ∞, ck are real numbers. The Lebesgue integral of

ϕ on E,
∫
E
ϕ is defined as ∫

E
ϕ =

n∑
k=1

ckm(Ek).

We would like to remark on a few things.

1. If ϕ is a step function on [a, b], ϕ is a simple function, and∫
E
ϕ =

n∑
k=1

ckm (Ek) =

n∑
k=1

ckm ((xk−1, xk)) +

n+1∑
k=1

dkm (xk−1)

=

n∑
k=1

ck (xk − xk−1) =

∫ b

a
ϕ(x)dx.

The Lebesgue integral of a step function agrees with the Riemann integral of a step function.

2. Because of the many possible representations of ϕ we must check to see that our definition is not
ambiguous. Suppose

E =

n⋃
i=1

Ei =

m⋃
j=1

Fj .

Somehow we want to refine both of these decompositions of E into a "common" decomposition. Each
set in this "common" decomposition would be a subset of Ei and Fj , ∗ And" suggests intersection:

E =
⋃
j

(Ei ∩ Fj) =
⋃
j

(Ei ∩ Fj) .

Now suppose ϕ =
∑
i

ciXEi =
∑
j

djXFj , {Ei} and {Fj} mutually disjoint collections of Lebesgue

measurable sets, m(E) <∞. Then we claim∑
i

cim (Ei) =
∑
j

djm (Fj) ,

the Lebesgue integral is independent of the representation. We know the nonempty E1 ⊓ Fj are mea-
surable and mutually disjoint. Because

n⋃
i=1

Ei = E =

m⋃
j=1

Fj ,
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∑
i

cim (Ei) =
∑
i

ci
∑
j

m (Ei ∩ Fj) =
∑
j

∑
j

cim (Ei ∩ Fj)

=
∑
j

∑
i

djm (Ei ∩ Fj) =
∑
j

dj
∑
j

m (Ei ∩ Fj)

=
∑
j

djm (Fj)

since if Ei ∩ Fj ̸= ∅, then ci = ciχE1 = ϕ = djχEj = dj , and the argument is complete.

Example 6.3.2. We calculate some Lebesgue integrals of simple functions.

1.

ϕ(x) =


−1, 0 < x ≤ 1

2, 1 < x ≤ 2

0, 2 < x ≤ 3.

ϕ = −1χ(0,1] + 2X(1,2]∫
(0,3]

ϕ = −1 · 1 + 2 · 1 = 1 =

∫ 3

0
ϕ(x)dx.

2.

ϕ(x) =

{
0, x rational, 0 ≤ x ≤ 1

1, x irrational, 0 ≤ x ≤ 1.

ϕ = −1χ[0,1]\Q∫
[0,1]

ϕ = 1m ([0, 1] \Q) = 1.

Theorem 6.3.3. If ϕ and ψ are simple functions defined on a set E with finite measure, and k is any real
number, then

1. (kϕ) is a simple function on E, and
∫
E
(kϕ) = k

∫
E
ϕ (homogeneous);

2. ϕ+ ψ is a simple function on E, and
∫
E
(ϕ+ ψ) =

∫
E
ϕ+

∫
E
ψ (additive);

3.
∫
E
ϕ ≤

∫
E
ψ if ϕ ≤ ψ on E (monotone);

4. If A and B are disjoint measurable subsets of E with E = A∪B, the integrals
∫
A
ϕ and

∫
B
ϕ exist and∫

E
ϕ =

∫
A
ϕ+

∫
B
ϕ (additive on the domain).

Proof. Suppose ϕ =

n∑
i=1

ciχEi , and ψ =

m∑
j=1

djχFj , where

E =

n⋃
i=1

Ei =

m⋃
j=1

Fj ,

{Ei} and {Fj} are mutually disjoint collections of measurable subsets of E.
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1.
∫
E
kϕ =

n∑
i=1

(kci)χEi = k
n∑
i=1

ciχEi = k

∫
E
ϕ.

2. Let Aij = Ei ∩ Fj . The non-empty sets in the collection of Aij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, are mutually
disjoint measurable sets whose union is E. Then

ϕ+ ψ =
n∑
i=1

m∑
j=1

(ci + dj)χAij ,

and ∫
E
(ϕ+ ψ) =

n∑
i=1

m∑
j=1

(ci + dj)m(Aij)

=

n∑
i=1

m∑
j=1

cim(Ei ∩ Fj) +
m∑
j=1

n∑
i=1

djm(Ei ∩ Fj)

=
n∑
i=1

ci

m∑
j=1

m(Ei ∩ Fj) +
m∑
j=1

dj

n∑
i=1

m(Ei ∩ Fj)

=
n∑
i=1

cim(Ei) +
m∑
j=1

djm(Fj)

=

∫
E
ϕ+

∫
E
ψ.

3. If ϕ ≤ ψ, then ψ − ϕ is a non-negative simple function on E, whose integral will be non-negative by
the definition of the integral, and then from parts 1 and 2, we have

0 ≤
∫
E
(ψ − ϕ) =

∫
E
ψ +

∫
E
(−ϕ) =

∫
E
ψ −

∫
E
ϕ

and thus ∫
E
ϕ ≤

∫
E
ψ.

4. We first observe that χE = χA + χB , E = A ∪B, A ∩B = ∅.∫
E
ϕ =

n∑
i=1

cim(Ei) =

n∑
i=1

cim ((Ei ∩A) ∪ (Ei ∩B))

=

n∑
i=1

cim (Ei ∩A) +
n∑
i=1

cim (Ei ∩B) .

But, {Ei∩A} and {Ei∩B} are collections of mutually disjoint measurable subsets ofA,B respectively,
with

A =
n⋃
i=1

(Ei ∩A), B =
n⋃
i=1

(Ei ∩B),

and since the integral is independent of the decomposition used, we have,∫
A
ϕ =

n∑
i=1

cim (Ei ∩A) ,
∫
B
ϕ =

n∑
i=1

cim (Ei ∩B) ,
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and thus, ∫
E
ϕ =

∫
A
ϕ+

∫
B
ϕ.

We will now define the Lebesgue integral of any bounded function defined on a measurable set E with
finite measure.

Definition 6.3.4. Suppose f is a bounded function defined on a measurable set E with finite measure, say
α ≤ f ≤ β on E, m(E) < ∞. Let ϕ and ψ denote simple functions such that ϕ ≤ f ≤ ψ on E. The lower

Lebesgue integral of f on E,
∫
E

f is given by

∫
E

f = sup

{∫
E
ϕ| ϕ ≤ f, ϕ is a simple function

}
.

The upper Lebesgue integral of f on E,
∫
E
f is given by

∫
E
f = inf

{∫
E
ψ| f ≤ ψ, ψ is a simple function

}
.

The constant simple functions α, β assure us that the lower and upper Lebesgue integrals are well-defined,
since the appropriate sets will be non-empty and bounded above and below. Now, by monotonicity, if ϕ and
ψ are simple functions such that ϕ ≤ f ≤ ψ, then∫

E
ϕ ≤

∫
E
ψ.

Because ψ is arbitrary,
∫
E
ϕ is a lower bound of the set

{∫
E
ψ| f ≤ ψ, ψ is a simple function

}
. Since∫

E
f is the greatest lower bound,

∫
E
ϕ ≤

∫
E
f . Similarly,

∫
E
ϕ ≤

∫
E
f for every ϕ ≤ f . Thus,

∫
E
f is

an upper bound of the set
{∫

E
ϕ| ϕ ≤ f, ϕ is a simple function

}
. Since

∫
E

f is the least upper bound, so∫
E

f ≤
∫
E
f .

We have established that a bounded function f on a set E of finite measure has lower as well as upper
integrals satisfying ∫

E
ϕ ≤

∫
E

f ≤
∫
E
f ≤

∫
E
ψ

for any simple function ϕ and ψ satisfying ϕ ≤ f ≤ ψ on E.
Similar to the notion of Riemann integrability, it is natural to guess that f , as above, will be Lebesgue

integrable when the two lower and upper integrals agree. We formally define it as follows.

Definition 6.3.5. A bounded function f , defined on a measurable set E with finite measure is Lebesgue

integrable on E whenever the lower and upper integrals are the same. Denote the common value by
∫
E
f .

Thus ∫
E

f =

∫
E
f =

∫
E
f.
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In this case, ϕ ≤ f ≤ ψ on E implies
∫
E
ϕ ≤

∫
E
f ≤

∫
E
ψ for any simple functions ϕ, ψ.

Theorem 6.3.6. Let f be a bounded function on the interval [a, b]. If f is Riemann integrable on [a, b], then
f is Lebesgue integrable on [a, b] and ∫ b

a
f(x)dx =

∫
[a,b]

f.

Proof. ∫ b

a

f(x)dx = sup

{∫ b

a
ϕ(x)dx| ϕ ≤ f, ϕ is a step function

}
= sup

{∫
[a,b]

ϕ| ϕ ≤ f, ϕ is a step function

}

≤ sup

{∫
[a,b]

ϕ| ϕ ≤ f, ϕ is a simple function

}

=

∫
[a,b]

f

≤
∫

[a,b]
f

≤ inf

{∫
[a,b]

ψ| f ≤ ψ, ψ is a simple function

}

≤ inf

{∫
[a,b]

ψ| f ≤ ψ, ψ is a step function

}

= inf

{∫
[a,b]

ψ(x)dx| f ≤ ψ, ψ is a step function

}

=

∫ b

a
f(x)dx.

Since f is Riemann integrable,
∫ b

a

f(x)dx =

∫ b

a
f(x)dx and the conclusion follows.

Thus, Riemann integrability implies Lebesgue integrability. Hence, Lebesgue integrability is a generalised
idea. The converse is not true in general as can be seen from the example below.

Example 6.3.7. Consider the function f on [0, 1] as follows:

f(x) = 1, x ∈ [0, 1] ∩Q
= 0, x ∈ [0, 1] \Q.

It can be checked that
∫ 1

0

f(x)dx = 0,

∫ 1

0
f(x)dx = 1. Thus, f is not Riemann integrable. However, it is

trivially integrable. It is a simple function and∫
[0,1]

f = 1m ([0, 1] ∩Q) = 0.
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Next we will prove a necessary and sufficient condition for a bounded function f on a set with finite measure
to be Lebesgue integrable.

Theorem 6.3.8. A bounded function f , defined on a set E with finite measure, is Lebesgue integrable if and
only if for every ϵ > 0, we have simple functions ϕ and ψ such that ϕ ≤ f ≤ ψ on E, so that

0 ≤
∫
E
ψ −

∫
E
ϕ =

∫
E
(ψ − ϕ) < ϵ.

Proof. Assume the bounded function f is Lebesgue integrable on the measurable set E,m(E) < ∞, and let
ϵ > 0. From the definitions of greatest lower bound and least upper bound we have simple functions ϕ̂ and
ψ̂, ϕ̂ ≤ f ≤ ψ̂ on E, so that∫

E
f − ϵ

2
=

∫
E

f − ϵ

2
<

∫
E
ϕ̂ ≤

∫
E

f

≤
∫
E
f ≤

∫
E
ψ̂ <

∫
E
f +

ϵ

2
=

∫
E
f +

ϵ

2
.

Thus 0 ≤
∫
E
ψ̂ −

∫
E
ϕ̂ =

∫
E
(ψ̂ − ϕ̂) < ϵ.

For the other direction, let ϵ > 0 be given along with simple functions ϕ and ψ, ϕ ≤ f ≤ ψ, so that

0 ≤
∫
E
ψ −

∫
E
ϕ =

∫
E
(ψ − ϕ) < ϵ. Then again, from greatest lower bound and least upper bound properties

∫
E
ϕ ≤

∫
E

f ≤
∫
E
f ≤

∫
E
ψ.

Hence 0 ≤
∫
E
f −

∫
E

f < ϵ and the conclusion follows from the arbitrary nature of ϵ.

Note 6.3.9. When the bounded function f is Lebesgue integrable on E, m(E) <∞, we have ϕ ≤ f ≤ ψ on

E,

∫
E
ϕ ≤

∫
E
f ≤

∫
E
ψ, and

∫
E
(ψ − ϕ) < ϵ, for some simple functions ϕ and ψ.

We will conclude this unit by stating the following theorem that gives us an idea of the relationship between
measurability and integrability of a bounded function f .

Theorem 6.3.10. Let f be a bounded function on a set E with finite measure. Then f is Lebesgue integrable
if and only if f is measurable on E.

Proof. Let |f | ≤ M on E and assume that f is measurable on E. We will show f is Lebesgue integrable by
constructing simple functions ϕ̂ and ψ̂ such that ϕ̂ ≤ f ≤ ψ̂ on E, so that

0 ≤
∫
E
(ψ̂ − ϕ̂) < ϵ.

Let Ek =

{
x
k − 1

n
M < f(x) ≤ k

n
M

}
,−n ≤ k ≤ n. Then E =

⋃
Ek, Ek mutually disjoint measurable

sets. We define ϕ̂, ψ̂ as follows.

ϕ̂ =
M

n

n∑
k=−n

(k − 1)χEk
and ψ̂ =

M

n

n∑
k=−n

kχEk
.
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Obviously ϕ̂ ≤ f ≤ ψ̂ and 0 ≤
∫
E
(ψ̂ − ϕ̂) =

M

n
m(E). Thus f is Lebesgue integrable on E by the previous

theorem.
Conversely suppose f is Lebesgue integrable and bounded on the set E, m(E) <∞. We will show that f

is a measurable function on E by showing that f equals almost everywhere the "inf" of a sequence of simple
functions.

Since f is bounded and Lebesgue integrable on E, we have simple functions ϕn and ψn so that ϕn ≤ f ≤
ψn on E,

∫
E
ϕn ≤

∫
E
f ≤

∫
E
ψn, and

∫
E
(ψn − ϕn) <

1

n
, n = 1, 2, 3, . . . .

Define two measurable functions:

ϕ∗ = sup {ϕ1, ϕ2, . . .} and ψ∗ = inf {ψ1, ψ2, . . .} .

Certainly ϕn ≤ ϕ∗ ≤ f ≤ ψ∗ ≤ ψn on E for all n ≥ 1. We want to show ϕ∗ = ψ∗ a.e on E and thus
conclude f = ψ∗ a.e. Hence, f will be measurable on E. Consider the set

{x ∈ E | ψ∗(x)− ϕ∗(x) > 0} =
⋃
k

{
x ∈ E | ψ∗(x)− ϕ∗(x) >

1

k

}
⊂
⋃
k

{
x ∈ E | ψn(x)− ϕn(x) >

1

k

}

for all n ≥ 1. If we show
{
x ∈ E | ψ∗(x)− ϕ∗(x) >

1

k

}
has measure zero we would be finished. We know

this set is measurable because ψ∗ − ϕ∗ is a measurable function.

By construction,
∫
E
(ψn − ϕn) <

1

n
. But then

1

n
>

∫
E
(ψn − ϕn) >

1

k
m

({
x| ψn(x)− ϕn(x) >

1

k

})
with E1 =

{
x| ψn − ϕn >

1

k

}
and E2 =

{
x| ψn − ϕn ≤ 1

k

}
. Thus

m

({
x| ψn(x)− ϕn(x) >

1

k

})
<
k

n
for all n ≥ 1.

i.e., m
({

x| ψ∗(x)− ϕ∗(x) >
1

k

})
= 0 and the proof is completed by recalling that a countable union of

sets of measure zero is a measurable set of measure zero.

Example 6.3.11. If f is a bounded, Lebesgue integrable function on a set E of finite measure, and g is a
bounded function on E such that g = f a.e. on E, then g is Lebesgue integrable on E and∫

E
g =

∫
E
f

The function f is measurable by the previous theorem and since f = g a.e on E so g is also measurable and
hence integrable. Let A = {x| f(x) ̸= g(x)}. The set A has measure zero, thus E −A is measurable and, by
the third assignment of exercise 6.3.12,∫

E
f =

∫
E\A

f +

∫
A
f =

∫
E\A

g =

∫
E\A

g +

∫
A
g =

∫
E
g.
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Exercise 6.3.12. 1. Find the Lebesgue integral of the following functions in the domain as indicated.

(a) f(x) =
√
x on 0 ≤ x ≤ 1

(b) f(x) = ex on 0 ≤ x ≤ ln 2

(c) f(x) is defined on [0, 2] as follows:

f(x) = x1/3, 0 ≤ x ≤ 1

= 2, 1 < x ≤ 2.

2. Show that if f and g are measurable on a set of finite measure and k is any real number, then f + g is

Lebesgue integrable on E and
∫
E
(f + g) =

∫
E
f +

∫
E
g.

3. For the above f and E with E = E1 ∪ E2, show that f is measurable on E1 and E2 and∫
E
f =

∫
E1

f +

∫
E2

f.

Sample Questions

1. Show that for two simple functions ϕ andψ defined on a setE with finite measure,
∫
E
(ϕ+ ψ) =

∫
E
ϕ+

∫
E
ψ.

2. When is a bounded function f defined on a measurable set E with finite measure, said to be Lebesgue
integrable? Show that such a function is Riemann integrable. Is the converse true? Justify your answer.

3. Deduce a necessary and sufficient condition for a bounded function f defined on a set E with finite
measure, to be Lebesgue integrable.

4. Show that a bounded function on a set E of finite measure is Lebesgue integrable if and only if it is
measurable on E.



Unit 7

Course Structure

• The integral of non-negative simple functions

• The integral of non-negative measurable functions on arbitrary measurable sets in R using integrals of
non-negative simple functions

7.1 Introduction

In the previous unit, we have mainly focused on introducing the idea of Lebesgue measurability of bounded
functions on sets of finite measure with the use of simple functions. As we have previously pointed out, Rie-
mann integrals were defined only on closed and bounded intervals and we have also defined the integrability
of functions on any arbitrary measurable set of finite measure. However, the question of unbounded sets still
remain open. In this unit, we will try to generalise the idea of integrability on any arbitrary measurable set
(finite or infinite measure). We first start by defining integral of simple measurable functions defined on a
measurable set which assumes only non-negative values. Using this, we will define measurability of any non-
negative measurable function defined any measurable set. Finally, the case of an arbitrary measurable function
on an arbitrary measurable set is addressed in the next unit.

Objectives

After reading this unit, you will be able to

• define the Lebesgue integral of non-negative simple functions on arbitrary measurable sets;

• define the Lebesgue integral of non-negative measurable functions on arbitrary measurable sets and
learn their properties.

7.2 The Lebesgue integral for non-negative measurable functions

Let us see a function and try to integrate it according to the idea of integration we learnt in the previous unit.

61
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Example 7.2.1. Let f be ddfined on the interval (0, 2) as follows:

f(x) =
1

x
; 0 < x ≤ 1

=
1

x− 2
; 1 < x < 2.

Then f is an unbounded function. Let us try to find its integral using the previous definitions. Let∫
(0,2)

f =

∫
(0,1]

f +

∫
(1,2)

f

= lim
ϵ→0

∫ 1

ϵ

1

x
dx+ lim

ϵ→0

∫ 2−ϵ

1

1

x− 2
dx

= lim
ϵ→0

∫
(ϵ,1]

1

x
dx+ lim

ϵ→0

∫
(1,2−ϵ)

1

x− 2
dx

= ∞−∞,

which is not defined. Does it mean that we won’t be able to define the integrals of such kind of functions? We
will exactly see this now.

In the above example, the function being unbounded, which is both positive and negative, causes problem
with the integral interpretations. One thing at a time. Let us try to picturise it in this way: any measurable
function can be written as the difference of two nonnegative measurable functions: f = f+ − f−. As a result
of this decomposition, it is natural to define the Lebesgue integral of f , whether f is positive, negative, or
both, as ∫

E
f =

∫
E
f+ −

∫
E
f−,

and this will be meaningful if we have meaning for
∫
E f

+and
∫
E f

−in some sense.
Then, we will proceed with the nonnegative measurable functions whose domains need not have finite

measure, and then in the next section remove the condition that f be nonnegative.

Example 7.2.2. f(t) =

{
t−1, 0 < t ≤ 1

(2− t)−1/2, 1 ≤ t < 2.∫
(0,2)

f=

∫
(0,1]

f +

∫
(1,2)

f=∞+ 2 = ∞

In the above example, f nonnegative and unbounded. But, how do we define the Lebesgue integral for a
nonnegative, not necessarily bounded, measurable function? The idea is inherent in the simple approximation
theorem. We can approximate any nonnegative measurable function f with a monotone increasing sequence
of nonnegative simple functions; 0 ≤ ϕn ≤ ϕn+1 ≤ · · · , limϕn = f onE. It is natural to define the Lebesgue

integral of f on E,
∫
E
f , by ∫

E
f =

∫
E
(limϕn) = lim

∫
E
ϕn.

Roughly speaking, we must make sense of
∫
E
ϕn, that is, the Lebesgue integral of a nonnegative simple

function. We will start with the definition of integral of any nonnegative measurable function.
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Definition 7.2.3. Let ϕ be a nonnegative simple function on R, that is,

ϕ(x) =
n∑
k=1

ckχEk
(x),

where Ek are mutually disjoint Lebesgue measurable subsets of R,

R =
n⋃
k=1

Ek,

and ck are nonnegative real numbers (Note: Nothing lost in assuming

n⋃
k=1

Ek = R,

for if not, then

E0 ≡ R \
n⋃
k=1

Ek

is a measurable set and

R =

π⋃
k=0

Ek,

)
Thus m (Ek) will be infinite for at least one k, 1 ≤ k ≤ n. Obviously a simple function ϕ has many
representations as linear combinations of characteristic functions.

Definition 7.2.4. The Lebesgue integral of a nonnegative simple function ϕ, on a measurable set E, written∫
E ϕ, is defined by ∫

E
ϕ =

n∑
1

ckm (E ∩ Ek) ,

where ϕ =

n∑
1

ckχEk
, Ek mutually disjoint, R =

n⋃
1

Ek, ck ≥ 0.

By convention, we define
∫
E
ϕ = 0 whenever ϕ = 0 on E, even if m(E) = 0. Also, the definition of

nonnegative simple function on E, with m(E) < ∞ agrees with the previous definition. It is to be noted
that despite more than one representations of a non-negative simple function ϕ, the Lebesgue integral is well-
defined. Suppose

ϕ =

n∑
1

ckχEk
, ck ≥ 0

and

ϕ =

m∑
1

djχDj , dj ≥ 0

with

R =

n⋃
1

Ek =

m⋃
1

Dj
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Ek and Dj mutually disjoint measurable subsets of R. We show that

n∑
1

ckm (E ∩ Ek) =
m∑
1

djm (E ∩Dj) ,

that is, the integral as we have defined it is independent of the representation of ϕ. Note that

Ek = Ek ∩

(
m⋃
1

Fj

)
=

m⋃
1

(Ek ∩ Fj)

and

Fj = Fj ∩

(
n⋃
1

Ek

)
=

n⋃
1

(Ek ∩ Fj) .

Thus,

n∑
1

ckm (E ∩ Ek) =
n∑
1

ckm

(
E ∩

(
m⋃
1

(Ek ∩ Fj)

))

=
n∑
1

ckm

(
m⋃
1

(E ∩ Ek ∩ Fj)

)

=
n∑
1

ck

m∑
1

m (E ∩ Ek ∩ Fj)

=

n∑
1

m∑
1

djm (E ∩ Ek ∩ Fj)

=
m∑
1

n∑
1

djm (E ∩ Ek ∩ Fj)

=

m∑
1

dj

n∑
1

m (E ∩ Ek ∩ Fj)

=
m∑
1

djm

(
E ∩

(
n⋃
1

(Ek ∩ Fj)

))

=

m∑
1

djm (E ∩ Fj)

since, for Ek ∩ E ∩ Fj ̸= ∅, ck = ckχEk
= ϕ = djχFj = dj , and if Ek ∩ E ∩ Fj = ∅, no contribution due

to m(∅) = 0. Finally, the Lebesgue integral of a nonnegative simple function is a nonnegative real number or
∞.

Theorem 7.2.5. If ϕ, ψ are nonnegative simple functions on R, if E is any measurable subset of R, and k is
any nonnegative real number, then

1. kϕ is a nonnegative simple function on E, and∫
E
(kϕ) = k

∫
E
ϕ (homogeneous);
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2. (ϕ+ ψ) is a nonnegative simple function on E, and∫
E
(ϕ+ ψ) =

∫
E
ϕ+

∫
E
ψ (additive);

3. ∫
E
ϕ ≤

∫
E
ψ if 0 ≤ ϕ ≤ ψ on E (monotone);

4. If E1 and E2 are disjoint measurable subsets of E with E = E1 ∪ E2, the integrals
∫
E1

ψ and
∫
E2

ψ

exist, and ∫
E
ψ =

∫
E1

ψ +

∫
E2

ψ (additive on the domain).

Proof. 1. Suppose ϕ =
∑

n
1ciχEi . Then kϕ =

∑
kciχEi and∫

E
(kϕ) =

n∑
1

(kci)m (E ∩ Ei) = k
n∑
1

cim (E ∩ Ei) = k

∫
E
ϕ.

2. Let ϕ =
n∑
1

ckχEk
and ψ =

m∑
1

djχFj , 0 ≤ ck, dj . The idea is to form the n ·m sets;

E1 ∩ F1, E1 ∩ F2, . . . , E1 ∩ Fm
E2 ∩ F1, E2 ∩ F2, . . . , E2 ∩ Fm
...

En ∩ F1, En ∩ F2, . . . , En ∩ Fm.

If Ek ∩ Fj ̸= ∅, define ϕ + ψ as ck + dj . The nonempty Ek ∩ Fj are mutually disjoint measurable
subsets of R,

R =
⋃
k,j

(Ek ∩ Fj) ,

and
ϕ+ ψ =

∑
k,j

(ck + dj)χEk∩Fj .

Thus ∫
E
(ϕ+ ψ) =

∑
k,j

(ck + dj)m (Ek ∩ Fj ∩ E)

=

n∑
k=1

m∑
j=1

(ck + dj)m (Ek ∩ Fj ∩ E)

=

n∑
k=1

ck

m∑
j=1

m (Ek ∩ Fj ∩ E) +

m∑
j=1

dj

n∑
k=1

m (Ek ∩ Fj ∩ E)

=

n∑
k=1

ckm (Ek ∩ E) +

m∑
j=1

djm (Fj ∩ E)

=

∫
E
ϕ+

∫
E
ψ.
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3. Suppose ϕ =
n∑
k=1

ckχEk
, Ek mutually disjoint, and ψ =

m∑
j=1

djχFj , Fj mutually disjoint, where

n⋃
1

Ek = R =
m⋃
1

Fj .

Since 0 ≤ ϕ ≤ ψ, 0 ≤ ck ≤ dj on nonempty Ek ∩ Fj and thus∫
E
ϕ =

n∑
k=1

ckm (Ek ∩ E) =
n∑
k=1

ck

m∑
j=1

m (Ek ∩ Fj ∩ E)

≤
m∑
j=1

dj

n∑
k=1

m (Ek ∩ Fj ∩ E) =

m∑
j=1

djm (Fj ∩ E)

=

∫
E
ψ.

4. ∫
E
ψ =

∑
djm (Fj ∩ E) =

∑
djm (Fj ∩ (E1 ∪ E2))

=
∑

dj [m (Fj ∩ E1) +m (Fj ∩ E2)]

=
∑

djm (Fj ∩ E1) +
∑

djm (Fj ∩ E2)

=

∫
E1

ψ +

∫
E2

ψ.

We will now define the Lebesgue integral of a nonnegative measurable function.

Definition 7.2.6. Definition A: If f is a nonnegative, measurable function, defined on a measurable set E,

the Lebesgue integral of f over E,
∫
E
f , is given by

∫
E
f ≡ sup

{∫
E
ϕ| ϕ ≤ f, ϕ is nonnegative and simple

}
.

The definition can also be given in terms of the simple approximation theorem as follows.

Definition 7.2.7. Definition B: If f is a nonnegative, measurable function, defined on a Lebesgue measurable
set E, and ϕn is a nonnegative monotone sequence of simple functions, 0 ≤ ϕn ≤ ϕn+1 on E, with

limϕn(x) = f(x) (finite or infinite)

for all x ∈ E, the Lebesgue integral of f over E,
∫
E
f , is given by

∫
E
f ≡ lim

∫
E
ϕn =

∫
E
(limϕn) .

Some comments are in order before we show the equivalence of these definitions, hereafter referred to as
A and B.

We need to keep few things in mind.
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1. Suppose f is nonnegative, bounded and measurable on a set E of finite measure. Then definition A
agrees with the previous definition of integral. By our previous discussions, we can say that

∫
E f =∫̄

Ef . But then, ∫
E

f = sup
{∫

E ϕ| ϕ ≤ f, ϕ simple
}

= sup

{∫
E
ϕ| ϕ ≤ f, ϕ simple and nonnegative

}
,

since f is nonnegative, and this is definition A.

2. Because f is nonnegative, we always have simple functions below f(ϕ = 0). Thus the set
{∫

E
ϕ | ϕ ≤ f

}
is nonempty and the "sup" is a nonnegative member of the extended reals.

3. If f is nonnegative and simple, say f = ϕ̂, then
∫
E
ϕ̂ ∈

{∫
E
ϕ | ϕ ≤ ϕ̂

}
and

∫
E
ϕ ≤

∫
E
ϕ̂ ;

∫
E
ϕ̂

is a member of and an upper bound of the set
{∫

E
ϕ | ϕ ≤ f

}
. Thus

∫
E ϕ̂ = sup

{∫
E ϕ | ϕ ≤ ϕ̄

}
.

Definition 5.3.2 and A are in agreement.

4. By the simple approximation theorem, we have a monotone sequence
{
ϕ̂m

}
of nonnegative simple

functions, 0 ≤ ϕ̂m ≤ ϕ̂m+1 on E with

lim ϕ̂m = f on E.

The sequence
{∫

E
ϕ̂m

}
is a nondecreasing sequence in the extended reals, so the limit is defined in the

extended reals: lim
∫
E
ϕ̂m is a nonnegative real number or ∞.

Theorem 7.2.8. The definitions A and B of the Lebesgue integral of a nonnegative measurable functions are
equivalent.

Proof. Left as exercise.

We have the familiar properties of the integral.

Theorem 7.2.9. If f and g are nonnegative measurable functions, defined on a measurable set E, and k is any
nonnegative real number, then

1. (kf) is nonnegative, measurable, and
∫
E
(kf) = k

∫
E
f (homogeneous);

2. (f + g) is nonnegative, measurable, and
∫
E
(f + g) =

∫
E
f +

∫
E
g (additive);

3.
∫
E
f ≤

∫
E
g if 0 ≤ f ≤ g (monotone);

4. If E1 and E2 are disjoint measurable subsets of E with E = E1 ∪ E2, the integrals
∫
E1

f and
∫
E2

f

exist in the extended reals, and∫
E
f =

∫
E1

f +

∫
E2

f (additive on domain).
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Proof. Measurability of the appropriate functions follows from the preceding units.

1. From the simple approximation theorem, we have a sequence
{
ϕ̂n

}
of simple functions satisfying 0 ≤

ϕ̂n ≤ ϕ̂n+1 with lim ϕ̂n = f . But then, 0 ≤ kϕ̂n ≤ kϕ̂n+1 and lim
n

(
kϕ̂n

)
= (kf). Using Definition

B,

k

∫
E
f = k lim

∫
E
ϕ̂n = lim

∫
E
kϕ̂n =

∫
E
kf.

2. limϕn = f, limψn = g implies lim (ϕn + ψn) = f+g. Thus, lim
∫
E
ϕn =

∫
E
f, lim

∫
E
ψn =

∫
E
g

implies lim
∫
E
(ϕn + ψn) =

∫
E
(f + g), etc.

3. If 0 ≤ ϕ ≤ f , then ϕ ≤ g. Thus {ϕ | ϕ ≤ f} ⊂ {ϕ | ϕ ≤ g}. Hence

sup

{∫
E
ϕ | ϕ ≤ f

}
≤ sup

{∫
E
ϕ | ϕ ≤ g

}
,

that is,
∫
E
f ≤

∫
E
g.

4.
∫
E
ϕn =

∫
E1

ϕn +

∫
E2

ϕn. The sequences
{∫

E
ϕn

}
,
{∫

E1

ϕn

}
, and

{∫
E2

ϕn

}
are monotonically

increasing, limits are defined and nonnegative, possibly in the extended reals. The result follows by
taking limits.

This completes the proof.

Exercise 7.2.10. 1. For f(x) =
1

x2
, calculate

∫
[1,∞)

f(x).

2. Calculate
∫
(0,1]

1√
x

.

Sample Questions

1. Show that the Lebesgue integral of a nonnegative simple function is independent of its representation.

2. For two nonnegative simple functions ϕ and ψ defined on R, show that∫
E
(ϕ+ ψ) =

∫
E
ϕ+

∫
E
ψ

where E is a measurable subset of R.

3. Show that for two disjoint subsets E1 and E2 of a measurable set E, if f is a nonnegative measurable

function defined on E such that
∫
E1

f and
∫
E2

f exists in the extended reals, then

∫
E
f =

∫
E1

f +

∫
E2

f.
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4. Prove or disprove: If f and g are two nonnegative measurable functions defined on a measurable set E

and f = g a.e. on E, then
∫
E
f =

∫
E
g.



Unit 8

Course Structure

• Monotone convergence theorem and Fatou’s lemma.

• The integral of Measurable functions and basic properties, Absolute character of the integral

• Dominated convergence theorem

8.1 Introduction

Given a sequence of functions {fn} that converges pointwise to some limit function f , it is not always true
that ∫

lim
n→∞

fn = lim
n→∞

∫
fn.

The Monotone Convergence Theorem (MCT), the Dominated Convergence Theorem (DCT), and Fatou’s
Lemma are three major results in the theory of Lebesgue integration that answer the question, “When does the
integral and limit operator commute?" Fatou’s Lemma is somewhat idea in this direction. However, the MCT
and DCT tell us that if certain restrictions are imposed on both the fn and f then the interchange of the limit
and integral is indeed possible.

Objectives

After reading this unit, you will be able to

• define the Lebesgue integral of arbitrary measurable functions on arbitrary measurable sets from the
idea of the preceding integral and learn their properties;

• state and apply monotone convergence theorem and Fatou’s lemma;

• state and apply the Lebesgue dominated convergence theorem.

70
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8.2 Fatou’s Lemma and Lebesgue Monotone converegnce theorem

Theorem 8.2.1. (Fatou’s Lemma) Let {fn} be a sequence of non-negative measurable functions. Then,

lim inf

∫
fndx ≥

∫
lim inf fndx

Proof. Let f = lim inf fn. Then f is a non-negative measurable function. From the definition of integration
of a non-negative measurable function, the result follows for each simple measurable function ϕ with ϕ ≤ f
we have ∫

ϕdx ≤ lim inf

∫
fndx

Case I When
∫
ϕdx = ∞. Then from the definition of the integration of simple measurable function, for some

measurable set A, we have m(A) = ∞ and ϕ > a > 0 on A. We write gk(x) = infj≥k fj(x), and
An = {x : gk(x) > a, ∀k ≥ n}, a measurable set. Then An ⊆ An+1, each n. But, for each x, {gk(x)}
is monotonically increasing and

lim
k→∞

gk(x) = f(x) ≥ ϕ(x)

So, A ⊆
⋃∞
n=1An. Hence, lim(An) = ∞. But for each n,∫

fndx ≥
∫
gndx > am(An)

So, lim inf
∫
fndx = ∞ and the result is true.

Case II When
∫
ϕdx < ∞. Write B = {x : ϕ(x) > 0}. Then m(B) < ∞. Let M be the largest value of ϕ,

and if 0 < ϵ < 1, write Bn = {x : gk(x) > (1 − ϵ)ϕ(x), k ≥ n}, where gk is as defined above. Then
the sets Bn are measurable, Bn ⊆ Bn+1 for each n, and

⋃∞
n=1(B \Bn) = ∅. As m(B) <∞, so there

exists N such that m(B \Bn) < ϵ for all n ≥ N . So, if n ≥ N∫
gndx ≥

∫
Bn

gndx

≥ (1− ϵ)

∫
Bn

ϕdx

= (1− ϵ)

(∫
B
ϕdx−

∫
B\Bn

ϕdx

)

≥ (1− ϵ)

∫
ϕdx−

∫
B\Bn

ϕdx

≥
∫
ϕdx− ϵ

∫
ϕdx− ϵM

Since ϵ is arbitrary, lim inf
∫
gndx ≥

∫
ϕdx, and since fn ≥ gn, we get the desired result.

Example 8.2.2. 1. Let fn =
1

n
χ[0,n]. Then∫

[0,∞)
fn = 1 ̸= 0 =

∫
[0,∞)

lim fn.

But
∫
[0,∞)

lim inf fn =

∫
[0,∞)

lim fn = 0 ≤ 1 = lim inf

∫
[0,∞)

fn.



72 UNIT 8.

2. Nonnegativity is necessary. Let us see with this example of fn = − 1

n
χ[0,n]. Then fn → 0 (uniformly)

on [0,∞).

lim

∫
[0,∞)

fn = −1 ̸=
∫
[0,∞)

lim fn = 0,

but ∫
E
lim inf fn = 0 > −1 = lim inf

∫
E
fn

for any measurable set E.

3. The inequality may be strict. Let fn = χ[n,n+1]. Then∫
E
lim inf fn = 0 < 1 = lim inf

∫
E
fn.

for any measurable set E.

Theorem 8.2.3. (Lebesgue Monotone Convergence Theorem - LMCT) If {fn} is a monotonically increas-
ing sequence of non-negative measurable functions converging to a function f , then∫

fdx = lim

∫
fndx.

Proof. We have by Fatou’s Lemma,∫
fdx =

∫
lim inf fndx ≤ lim inf

∫
fndx

By hypothesis, we have, f ≥ fn. So, we have by the property of integration of non-negative measurable
functions, ∫

fdx ≥
∫
fndx

and hence, ∫
fdx ≥ lim sup

∫
fndx

Combining, we have the desired result.

Theorem 8.2.4. Let f and g be two non-negative measurable functions. Then∫
(f + g)dx =

∫
fdx+

∫
gdx

Proof. We first consider the theorem for simple measurable functions ϕ and ψ. Let the values of ϕ be
a1, a2, . . . , an on the setsA1, A2, . . . , An and let the values ofψ be b1, b2, . . . , nm on the setsB1, B2, . . . , Bm.
Then the simple function ϕ+ ψ has the value aj + bj on the measurable set Ai ∩Bj . So, from the properties
of the integral of simple measurable functions we can say that∫

Ai∩Bj

(ϕ+ ψ)dx =

∫
Ai∩Bj

ϕdx+

∫
Ai∩Bj

ψdx

But the union of the disjoint setsAi∩Bj is R. So we have by the properties of integration of simple measurable
functions, ∫

(ϕ+ ψ)dx =

∫
ϕdx+

∫
ψdx
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Let f and g be any non-negative measurable functions. Let {ϕn}, {ψn} be sequences of measurable simple
functions ϕn converging to f and ψn converging to g. Then ϕn+ψn converges to f+g. But, by the properties
of the integral of simple measurable functions, we have∫

(ϕn + ψn)dx =

∫
ϕndx+

∫
ψndx

Letting the limit as n→ ∞, we get the desired result.

Theorem 8.2.5. Let {fn} be a sequence of non-negative measurable functions. Then∫ ∞∑
n=1

fndx =

∞∑
n=1

∫
fndx

Proof. By induction, we can show that the previous theorem applies to the sum of n functions. So, if

Sn =
n∑
i=1

fi

then ∫
Sndx =

n∑
i=1

∫
fidx.

But, {Sn} is a monotonically increasing sequence of functions converging to f =
∞∑
i=1

fi. So, the result

follows from Monotone Convergence Theorem.

Exercise 8.2.6. 1. Show that if f is a non-negative measurable function, then

f = 0 a.e iff
∫
fdx = 0.

2. Calculate the following integrals.

(a)
∫
(0,1]

t−1/2.

(b)
∫
[0,1)

(1− t2)−1/2.

(c)
∫
(0,2)

f(t) if f(t) is given by

f(t) = t−1 0 < t ≤ 1

= (2− t)−1/2, 1 ≤ t ≤ 2.

(d)
∫
[0,∞)

e−t.
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8.3 Lebesgue Integral and Lebesgue Integrability

Recall that for a measurable function f defined on a measurable set E,

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0},

are the positive and negative parts of f , respectively. Also, both are nonnegative measurable functions and

thus,
∫
E
f+ and

∫
E
f− can be calculated using the definitions of integration of nonnegative measurable func-

tion in the previous unit. Further, we have
f = f+ − f−.

We are now in a position to define the integrability of a general measurable function on a measurable set E.

Definition 8.3.1. If f is a measurable function defined on a measurable set E and
∫
E
f+ < ∞ and

∫
E
f− <

∞. Then we say that f is integrable, and its integral is given by∫
fdx =

∫
f+dx−

∫
f−dx.

It should be noted here that if one of the two integrals
∫
E
f+ and

∫
E
f− is finite, then also the integral of f

is not defined in R. In case both the integrals are infinite,
∫
E
f+ −

∫
E
f− would yield ∞−∞, which is not

defined.
This new definition is consistent with the definition of the integral of nonnegative function. Indeed, if f is

nonnegative, then f+ = f and f− = 0. Thus
∫
E
f− = 0 and hence the integral of f exists and is equal to

that of f+.

Example 8.3.2. 1. Let f be defined as

f(x) =
1

x
, 0 < x ≤ 1

=
1

x− 2
, 1 < x < 2.

Then ∫
(0,2)

f+ =

∫
(0,1]

1

x
= ∞ and

∫
(0,2)

f− =

∫
(1,2)

− 1

x− 2
= ∞.

Hence the Lebesgue integral of f is not defined on (0, 2).

2. Let f be defined as

f(x) = x−1/2, 0 < x ≤ 1

=
1

x− 2
, 1 < x < 2.

Then ∫
(0,2)

f+ =

∫
(0,1]

x−1/2 = 2 and
∫
(0,2)

f− =

∫
(1,2)

− 1

x− 2
= ∞.

Since one of the integrals is infinite, the integral of f is not defined in R. Let us now check the next
example.
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3.

f(x) = x−1/2, 0 < x ≤ 1

= −(2− x)−1/2, 1 < x < 2.

Then ∫
(0,2)

f+ =

∫
(0,1]

x−1/2 = 2 and
∫
(0,2)

f− =

∫
(1,2)

(2− x)−1/2 = 2.

The Lebesgue integral of f is defined and
∫
(0,2)

f = 2− 2 = 0, and hence f is Lebesgue integrable on

(0, 2).

Henceforth all Lebesgue integrable functions will be called integrable for simplicity.

Theorem 8.3.3. Suppose f is a measurable function defined on a measurable set E. Then f is integrable on
E if and only if |f | is integrable on E. Furthermore,∣∣∣∣∫

E
f

∣∣∣∣ ≤ ∫
E
|f |.

Proof. Assume f is integrable onE. We want to show that |f | is measurable and
∫
E
|f |+,

∫
E
|f |− <∞. But

since f is measurable, |f | is measurable,
∫
E
|f |− = 0, and

∫
E
|f |+ =

∫
E
|f | =

∫
E

(
f+ + f−

)
=

∫
E
f+ +

∫
E
f−

<∞ because f is integrable on E. Thus |f | is integrable on E.
Assume |f | is integrable on E. We show f is integrable on E. Since f is measurable by hypothesis,

and
∫
E
f+ +

∫
E
f− =

∫
E

(
f+ + f−

)
=

∫
E
|f | =

∫
E
|f |+ <∞, the nonnegative integrals

∫
E f

+,
∫
E f

−are

both finite. Consequently, f is integrable on E.∣∣∣∣∫
E
f

∣∣∣∣ = ∣∣∣∣∫
E
f+ −

∫
E
f−
∣∣∣∣ ≤ ∣∣∣∣∫

E
f+
∣∣∣∣+ ∣∣∣∣∫

E
f−
∣∣∣∣

=

∫
E
f+ +

∫
E
f− =

∫
E

(
f+ + f−

)
=

∫
E
|f |.

Theorem 8.3.4. If f is a measurable function defined on a measurable set E, and g is integrable on E with

|f | ≤ |g|, then
∫
E
|f | ≤

∫
E
|g| and f is integrable on E.

Proof. We have
∫
E
|f | ≤

∫
E
|g| <∞. To show that f is integrable on E requires f to be measurable on E

(which is already given) and
∫
E
f+ and

∫
E
f− are both finite.

But 0 ≤
∫
E
f+ +

∫
E
f− =

∫
E
|f | <∞, and the argument is complete.

The next result shows that measure zero sets do not affect integrability.

Theorem 8.3.5. If f = g a.e. on a measurable set E, and if g is integrable on E, then f is integrable on E
and ∫

E
f =

∫
E
g.
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Proof. The function g is measurable on E by the assumption of being Lebesgue integrable on E. Since f is
equal almost everywhere to a measurable function g, f is measurable on E. Hence f+ and f− are measurable

onE. LetA = {x ∈ E | f(x) ̸= g(x)}. Then f+ = g+ and f− = g− onE \A, and
∫
E\A

f+ =

∫
E\A

g+and∫
E\A

f− =

∫
E\A

g−, that is, f is measurable on E \A,
∫
E\A

f+,

∫
E\A

f− <∞ : f is integrable on E \A.

BecauseA is a measurable subset of E, f is measurable onA, m(A) = 0, and hence
∫
A
f+,

∫
A
f− = 0. But

then
∫
E
f+ =

∫
E\A

f+ +

∫
A
f+ <∞ and

∫
E
f− =

∫
E\A

f− +

∫
A
f− <∞ : The function f is integrable

on E. Then ∫
E
g =

∫
E
g+ −

∫
E
g− =

∫
E−A

g+ +

∫
A
g+ −

∫
E−A

g− −
∫
A
g−

=

∫
E−A

f+ +

∫
A
f+ −

∫
E−A

f− −
∫
A
f− =

∫
E
f+ −

∫
E
f−

=

∫
E
f.

Theorem 8.3.6. If f , g are integrable on a measurable set E, and k is any real number, then

1. (kf) is integrable on E, and
∫
E
(kf) = k

∫
E
f (homogeneous);

2. (f + g) is integrable on E, and
∫
E
(f + g) =

∫
E
f +

∫
E
g (additive);

3.
∫
E
f ≤

∫
E
g if f ≤ g on E (monotone);

4. If E1 and E2 are disjoint measurable subsets of E with E = E1 ∪ E2, f is integrable on E1 and E2,

and
∫
E
f =

∫
E1

f +

∫
E2

f ( additive on the domain ).

Proof. 1. If k ≥ 0,

∫
E
(kf)+ =

∫
E
kf+ = k

∫
E
f+ <∞ and

∫
E
(kf)− = k

∫
E f

− < ∞ because

kf+, kf−are nonnegative measurable functions. By definition, (kf) is integrable on E. Furthermore,∫
E
(kf) =

∫
E
(kf)+ −

∫
E
(kf)− = k

∫
E
f+ − k

∫
E
f− = k

∫
E
f , where the last equality is the def-

inition of f being integrable on E. If k < 0, (kf)+ = (−k)f−, (kf)− = (−k)f+,
∫
E
(kf)+ =

−k
∫
E f

− <∞, and
∫
E
(kf)− = −k

∫
E
f+ <∞, that is, (kf) is integrable on E. Again,

∫
E
(kf) =

∫
E
(kf)+ −

∫
E
(kf)− =

∫
E
(−k)f− −

∫
E
(−k)f+

= k

[∫
E
f+ −

∫
E
f−
]
= k

∫
E
f.
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2. Since f, g are integrable onE, |f |, |g| are integrable onE. Because
∫
E
|f | =

∫
E
|f |+ <∞,

∫
E
|g| =

∫
E
|g|+ <∞,

and |f + g| ≤ |f | + |g|,
∫
E
|f + g| ≤

∫
E
(|f |+ |g|) ≤

∫
E
|f |+

∫
E
|g| <∞. But |f + g|+ = |f + g|

and |f + g|− = 0,
∫
E
|f + g|+ <∞, that is, |f + g| is integrable on E, but then f + g is integrable on

E.

Now, f + g = (f+ + g+) − (f− + g−), that is, the integrable function (f + g) has been written as
the difference of two nonnegative measurable functions, (f+ + g+)and (f− + g−), whose integrals are
finite. Comment 5.4.2 reveals∫

E
(f + g) =

∫
E

(
f+ + g+

)
−
∫
E

(
f− + g−

)
=

∫
E
f+ +

∫
E
g+ −

∫
E
f− −

∫
E
g−

=

∫
E
f +

∫
E
g.

3. Since f ≤ g on E, f+− f− ≤ g+− g−, i.e., f++ g− ≤ g++ f−. Because (f+ + g−) , (g+ + f−)are
nonnegative measurable functions we may apply Proposition 5.7 to conclude∫

E
f+ +

∫
E
g− =

∫
E

(
f+ + g−

)
≤
∫
E

(
g+ + f−

)
=

∫
E
g+ +

∫
E
f−

Because all terms are finite, we may subtract:
∫
E f ≤

∫
E g.

4. ∫
E
f =

∫
E
f+ −

∫
E
f−

=

∫
E1

f+ +

∫
E2

f+ −
∫
E1

f− −
∫
E2

f−

=

∫
E1

f +

∫
E2

f.

Theorem 8.3.7. (Lebesgue Dominated Convergence Theorem) Let {fn} be a sequence of measurable func-
tions such that |fn| ≤ g, where g is integrable, and let lim fn = f a.e. Then f is integrable and

lim

∫
fndx =

∫
fdx.

Proof. Since for each n, |fn| ≤ g, we have |f | ≤ g a.e and so fn and f are integrable. Also, {g + fn} is a
sequence of non-negative measurable functions, so by Fatou’s Lemma

lim inf

∫
(g + fn)dx ≥

∫
lim inf(g + fn)dx.

So,
∫
gdx+ lim inf

∫
fndx ≥

∫
gdx+

∫
fdx. But,

∫
gdx is finite so

lim inf

∫
fndx ≥

∫
fdx.
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Again, {g − fn} is also a sequence of non-negative measurable functions, so

lim inf

∫
(g − fn)dx ≤

∫
lim inf(g − fn)dx.

So,
∫
gdx− lim sup

∫
fndx ≥

∫
gdx−

∫
fdx. So, lim sup

∫
fndx ≤

∫
fdx ≤ lim inf

∫
fndx. So, the result

follows.

Example 8.3.8. With the same hypothesis as the above theorem, we have lim
∫
|fn − f |dx = 0. In fact,

|fn − f | ≤ 2g, for each n. So applying the Lebesgue Dominated Convergence theorem, we get the desired
result.

Theorem 8.3.9. Let {fn} be a sequence of integrable functions such that

∞∑
n=1

∫
|fn|dx <∞.

Then the series
∑∞

n=1 fn(x) converges a.e., its sum f(x) is integrable and∫
fdx =

∞∑
n=1

∫
fndx.

Proof. Let ϕ(x) =
∑∞

i=1 |fn|. Then by the given condition,
∫
ϕdx <∞, so ϕ is finite-valued a.e.

Exercise 8.3.10. 1. Show that lim
∫
[0,1]

kx

1 + k2x2
= 0, where k is any nonnegative integer.

2. Show that if f and g are measurable , |f | ≤ |g| a.e., and g is integrable , then f is integrable.

3. Show that if f is an integrable function, then |
∫
fdx| ≤

∫
|f |dx.

4. Show that if f is integrable , then f is finite-valued a.e .

Sample Questions

1. State and prove LMCT.

2. State and prove Fatou’s lemma. Is the statement of Fatou’s lemma valid for any arbitrary sequence of
functions? Justify your answer.

3. If f is a measurable function defined on a measurable set E, and g is integrable on E with |f | < |g|,
then show that f is integrable on E.

4. Let f and g are equal a.e on e measurable set E. If g is integrable on E, show that f is also so.

5. If f, g are integrable on a measurable set E, and f < g on E, show that
∫
E
f <

∫
E
g.

6. State and prove Lebesgue dominated convergence theorem.



Unit 9

Course Structure

• Lebesgue integrability of the derivative of a function of bounded variation on an interval.

• Descriptive characterization of the Lebesgue integral on intervals by absolutely continuous functions.

• Riesz-Fischer theorem on the completeness of the space of Lebesgue integrable functions.

9.1 Introduction

In Riemann theory of integration it is known that differentiation and integration are inverse operations of each
other in the following sense:

1. If f is a Riemann integrable function over [a, b], then its indefinite integral

F (x) = R

∫ x

a
f(t)dt

defines a continuous function on [a, b]. Furthermore, if f is continuous at a point x0 ∈ [a, b], then F is
differentiable there at x0, and F ′ (x0) = f (x0).

2. If f is Riemann integrable over [a, b] and if there is a differentiable function F on [a, b] such that
F ′(x) = f(x) for x ∈ [a, b], then

R

∫ x

a
f(t)dt = F (x)− F (a), ∀x ∈ [a, b]

(This result is usually referred to as the Fundamental Theorem of Calculus.)

The present unit deals with similar types of interrelation between differentiation and Lebesgue integration.

Objectives

After reading this unit, you will be able to

• know the relationship between the differentiation and Lebesgue integration

• the relationship between absolute continuity and integration

79
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9.2 Differentiation of an integral

If f is an integrable function on an interval [a, b], then f is integrable on any subinterval [a, x] ⊂ [a, b]. The
function F given by

F (x) =

∫ x

a
f(t)dt+ c

, where c is a constant, is called the indefinite integral of f .

Theorem 9.2.1. Let f be an integrable function on [a, b]. Then the indefinite integral of f is a continuous
function of bounded variation on [a, b].

Proof. Let x0 be any point in [a, b]. Then

|F (x)− F (x0)| =

∣∣∣∣∫ x

x0

f(t)dt

∣∣∣∣
≤

∣∣∣∣∫ x

x0

|f(t)|dt
∣∣∣∣ .

But f being integrable, the function |f | is integrable over [a, b]. Therefore, given ϵ > 0, there is a δ > 0 such
that for every measurable set A ⊂ [a, b] with m(A) < δ, we have∫

A
|f | < ϵ.

In particular, ∣∣∣∣∫ x

x0

|f(t)|dt
∣∣∣∣ < ϵ, for |x− x0| < δ.

Hence |F (x)− F (x0)| < ϵ, whenever |x− x0| < δ. This proves the continuity of F at x0, and hence in
[a, b].

In order to establish that F is a function of bounded variation, let

P = {a = x0 < x1 < x2 . . . < xn = b}

be a partition of [a, b]. Then

n∑
i=1

|F (xi)− F (xi−1)| =
n∑
i=1

∣∣∣∣∣
∫ xi

xi−1

f(t)dt

∣∣∣∣∣
⩽

n∑
i=1

∫ xi

xt−1

|f(t)|dt

=

∫ b

a
|f(t)|dt

⇒ T ba(F ) =

∫ b

a
|f(t)|dt <∞

where T ba(F ) is the total variation of F on [a, b]. Hence the result follows.

Theorem 9.2.2. Let f be an integrable function on [a,b]. If∫ x

a
f(t)dt = 0,

for all x ∈ [a, b], then f = 0 a.e. in [a, b]
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Proof. If possible, let f ̸= 0 a.e. in [a, b]. Suppose f(t) > 0 on a set E of positive measure. Then there exists
a closed set F ⊂ E with m(F ) > 0. Put A = (a, b) \ F . Then A is an open set and we have

0 =

∫ b

a
f(t)dt =

∫
A∪F

f(t)dt =

∫
A
f(t)dt+

∫
F
f(t)dt

⇒
∫
A
f(t)dt = −

∫
F
f(t)dt.

But f(t) > 0 on F with m(F ) > 0 implies ∫
F
f(t)dt ̸= 0.

Therefore, ∫
A
f(t)dt ̸= 0.

Now, A being an open set, it can be expressed as a union of countable collection {(am, bn)} of disjoint open
intervals. Thus

0 ̸=
∫
A
f(t)dt =

∑
n

∫ bn

an

f(t)dt

⇒
∫ bn

an

f(t)dt ̸= 0 for some n

⇒ either
∫ an

a
f(t)dt ̸= 0 or

∫ bn

a
f(t)dt ̸= 0.

In either case, we see that if f is positive on a set of positive measure, then for some x ∈ [a, b] we have∫ x

a
f(t)dt ̸= 0.

Similar assertion is obtained if f is negative on a set of positive measure. Hence the result follows by contra-
diction.

Theorem 9.2.3. Let f be a bounded and measurable function defined on [a, b]. If

F (x) =

∫ x

a
f(t)dt+ F (a),

then F ′(x) = f(x) a.e. in [a, b].

Proof. Since f is bounded and measurable, it is integrable (cf. IV2.1). Therefore, in view of Theorem 4.1, F
is a continuous function of bounded variation on [a, b] and hence F ′ exists a.e. in [a, b], cf. Corollary 3.3. Let
|f | ≤ K. Set

fn(x) =
F (x+ h)− F (x)

h
,

with h = 1
n . Then

fn(x) =
1

h

∫ x+h

x
f(t)dt

⇒ |fn| ≤ K.
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Also, fn → F ′ a.e. If c ∈ [a, b] is arbitrary, then the Bounded convergence theorem implies that∫ c

a
F ′(x)dx = lim

n→∞

∫ c

a
fn(x)dx

= lim
h→0

1

h

∫ c

a
[F (x+ h)− F (x)]dx

= lim
h→0

[
1

h

∫ c+h

c
F (x)dx− 1

h

∫ a+h

a
F (x)dx

]
.

But F being a continuous function, we note that

lim
h→0

1

h

∫ c+h

c
F (x)dx = lim

h→0

1

h
R

∫ c+h

c
F (x)dx

= lim
h→0

1

h
F (c+ θh), 0 < θ < 1

= F (c);

and similarly

lim
h→0

1

h

∫ a+h

a
F (x)dx = F (a).

Thus ∫ c

a
F ′(x)dx = F (c)− F (a) =

∫ c

a
f(x)dx

⇒
∫ c

a

[
F ′(x)− f(x)

]
= 0.

This is true for all c in [a, b]. Hence, by the previous theorem, we have F ′ = f a.e.

Note that in the above theorem, the function considered is bounded and measurable. We extend it, in the
following theorem, to any measurable function which of course is integrable.

Theorem 9.2.4. Let f be an integrable function on [a, b], and suppose

F (x) =

∫ x

a
f(t)dt+ F (a).

Then F ′(x) = f(x) a.e. in [a, b].

Proof. Without any loss of generality, we may assume that f ≥ 0. Define a sequence {fn} of functions
fn : [a, b] → R, where

fn(x) = f(x) if f(x) ≤ n,

= n if f(x) > n.

Clearly, each fn is a bounded measurable function and so by the previous theorem, we have

d

dx

∫ x

a
fn = fn(x) a.e.

Also, f − fn ≥ 0 for all n, and hence the function Gn defined by

Gn(x) =

∫ x

a
(f − fn)
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is an increasing function of x, which must have a derivative almost everywhere, (since it is a function of
bounded variation); and this derivative would, clearly, be nonnegative. Thus, from the relation

F (x) =

∫ x

a
f(t)dt+ F (a) = Gn(x) +

∫ x

a
fn(t)dt+ F (a),

it follows that
F ′(x) = G′

n(x) + fn(x) a.e.

⩾ fn(x) a.e., ∀n.

Since n is arbitrary, we have

F ′(x) ⩾ f(x) a.e.∫ b

a
F ′(x)dx ⩾

∫ b

a
f(x)dx = F (b)− F (a).

Consequently, we get ∫ b

a
F ′(x)dx = F (b)− F (a)

=

∫ b

a
f(x)dx

⇒
∫ b

a

{
F ′(x)− f(x)

}
dx = 0.

Since F ′(x)− f(x) ⩾ 0, this gives that F ′(x)− f(x) = 0 a.e., and so F ′(x) = f(x) a.e.

An indefinite integral need not be differentiable everywhere, and even if it is differentiable, it need not
follow that F ′ = f everywhere.

Example 9.2.5. 1. 1. Consider the function f : [0, 2] → R given by

f(x) =

{
1 if 0 ⩽ x ⩽ 1

2 if 1 < x ⩽ 2

Then

F (x) =

∫ x

0
f(t)dt =

{
x if 0 ⩽ x ⩽ 1,

2x− 1 if 1 < x ⩽ 2

Here F defines a function which is continuous but not differentiable in [0, 2]. In fact, F is not differen-
tiable at x = 1.

2. Consider the function f : [0, 1] → R given by

f(x) =

{ 1
q if x = p/q

0 if otherwise.

Then

F (x) =

∫ x

0
f(t)dt = 0.

Here F defines a function differentiable in [0, 1]. However, F (x) ̸= f(x) for x = p/q in [0, 1].
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Exercise 9.2.6. 1. If f is the greatest integer function and F (x) =
∫ x
0 f(t)dt, determine F on [0, 5] and

verify that F ′(x) = f(x) a.e. in [0, 5].

2. Let

f(x) =

{
1 if x is rational
0 if x is irrational

If F is as in the preceding exercise, then verify that F ′(x) = f(x) a.e. in [0, 1].

9.3 Integral of the derivative

We are acquainted with the idea of absolute continuity of real functions. Let us try to find the relationship
between absolute continuity and the integral of a function f .

Theorem 9.3.1. Let f be an integrable function on [a, b]. Then the indefinite integral F of f is absolutely
continuous on [a, b].

Proof. Let ϵ > 0 be given. Then there is a δ > 0 such that for every measurable setA ⊂ [a, b] withm(A) < δ,
we have ∫

A
|f | < ϵ,

since the inetgrability of f implies that of |f |. Thus for any finite collection {(xi, x′i)}Ni=1 of pairwise disjoint
open intervals in [a, b] with

∑N
i=1(x

′
i − xi) < δ, we have

N∑
i=1

∣∣∣∣∣
∫ x′i

xi

f(t)dt ≤
∫ x′i

xi

|f(t)|dt < ϵ

⇒
N∑
i=1

|F (x′i)− F (xi)| < ϵ.

Hence, it follows that F is an absolutely continuous function.

We now prove the converse of the above theorem.

Theorem 9.3.2. If F is an absolutely continuous function on [a, b], then F is an indefinite integral of its
derivative; more precisely:

F (x) =

∫ x

a
f(t)dt+ C,

where f = F ′ and C is a constant.

Alternatively, we may state the theorem as: If F is absolutely continuous function on [a, b], then F ′ is
integrable over [a, b], and ∫ x

a
F ′(t)dt = F (x)− F (a).

Proof. The function F , being absolutely continuous, is of bounded variation, and so we may write

F = F1 − F2,
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where F1 and F2 are monotone increasing functions. Also, F ′ exists a.e. on [a, b] and

F ′ = F ′
1 − F ′

2

⇒
∣∣F ′∣∣ ⩽ ∣∣F ′

1

∣∣+ ∣∣F ′
2

∣∣ .
This gives ∫ b

a

∣∣F ′∣∣ ⩽ ∫ b

a

∣∣F ′
1

∣∣+ ∫ b

a

∣∣F ′
2

∣∣
⩽ F1(b)− F1(a) + F2(b)− F2(a)

<∞

⇒ F ′ is integrable over [a, b]. Write

G(x) =

∫ x

a
F ′(t)dt.

Then, by the previous theorem, G is an absolutely continuous function on [a, b] and so it the function H =
F −G. But, it may be noted that

H ′ = F ′ −G′ = 0 a.e.

Hence, H is a constant function, A (say). Hence,

F (x) =

∫ x

a
F ′(t)dt+A.

Taking x = a, we get A = F (a). This establishes the result.

From the preceding two theorems we can conclude the following:
A function f is absolutely continuous on [a, b] if and only if it is an indefinite integral of an integrable

function on [a, b].
It should also be noted that if the restriction of absolute continuity is removed, then F ′ need not be inte-

grable.

Example 9.3.3. Let F : [0, 1] → R be a function defined by

F (x) =

{
x2 sin

(
π
x2

)
if x ̸= 0

0 if x = 0.

The derivative F ′ exists on [0, 1] while F ′ is not integrable on [0, 1]. In fact,∫ 1

0

1

x

∣∣∣cos( π
x2

)∣∣∣ dx = ∞

Note 9.3.4. The class of absolutely continuous functions over [a, b] is identical with the class of functions
obtained by integrating Lebesgue integrable functions over [a, b] except that the corresponding functions in
two classes differ at the most by a constant.

As an application of Theorems 9.3.1 and 9.3.2, we prove a result on integration by parts which is similar to
that for the Riemann integral.

Theorem 9.3.5. Let f and g be integrable functions over [a, b]. Suppose

F (x) =

∫ x

a
f(t)dt+ F (a)
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and
G(x) =

∫ x

a
g(t)dt+G(a),

for all x ∈ [a, b]. Then ∫ b

a
F (t)g(t)dt+

∫ b

a
f(t)G(t)dt = F (b)G(b)− F (a)G(a).

Proof. By theorem 9.3.1, F and G are both absolutely continuous functions on [a, b] and hence so is FG.
Using theorem 9.3.2, we have ∫ b

a
(FG)′ = (FG)(b)− (FG)(a)

= F (b)G(b)− F (a)G(a).

Also, by a previous result, F ′ = f a.e. andG′ = g a.e. in [a, b], and therefore (FG)′ = FG′+F ′G = Fg+fG
a.e. in [a, b]. Hence ∫ b

a
F (t)g(t)dt+

∫ b

a
f(t)G(t)dt = F (b)G(b)− F (a)G(a).

Corollary 9.3.6. If f and g are absolutely continuous functions on [a, b], then∫ b

a
f(t)g′(t)dt+

∫ b

a
f ′(t)g(t)dt = f(b)g(b)− f(a)g(a).

Proof. Since f and g are absolutely continuous, f ′ and g′ are integrable over [a, b]. Also

f(x) =

∫ x

a
f ′(t)dt+ f(a)

and
g(x) =

∫ x

a
g′(t)dt+ g(a).

The result now follows from Theorem 9.3.5.

Sample Questions

1. Show that indefinite integral of and integrable function f on [a, b] is a continuous function of bounded
variation on [a, b].

2. If f is an integrable function on [a, b] and
∫ x

a
f(t)dt = 0 for all x ∈ [a, b], then show that f = 0 a.e.

on [a, b].

3. If f is a bounded measurable function on [a, b] and F (x) =
∫ x

a
f(t)dt+ F (a), then show that F ′(x) =

f(x) a.e. on [a, b]. What happens if f is integrable? Justify your answer.

4. If f is integrable on [a, b], show that its definite integral is absolutely continuous on [a, b].



Unit 10

Course Structure

• Contour Integration

• Conformal mapping, Bilinear transformation.

10.1 Introduction

This unit deals mainly with recollection of the basic idea of contour integration. Thereafter, the idea of
conformal mappings have been introduced. Conformal mappings are quite a new concept and has numerous
applications in various physical situations. They are precisely the mappings that preserves the angle and
shape of objects but not necessarily their size. The idea of conformal equivalences comes from the conformal
mappings and are quite interesting to study. Let us start one by one.

Objectives

After reading this unit, you will be able to

• recall the idea of contour integration

• understand the idea of conformal mappings

• study a special kind of conformal mappings called the bilinear transformation and their basic principles

10.1.1 Contour Integration

We already have had a basic idea of integration of a complex variable along a contour. To start, let us first
recall the definition of an arc in the complex plane and their types.

Definition 10.1.1. A set of points z = (x, y) in a complex plane is said to be an arc if

x = x(t), y = t(t) a ≤ t ≤ b

87
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where x(t) and y(t) are continuous functions of the real parameter t. This definition establishes a continuous
mapping of the interval a ≤ t ≤ b into the z-plane; and the image points are ordered according to increasing
values of t. The points of an arc C is given by means of the equation

z = z(t)

= x(t) + iy(t).

Definition 10.1.2. The arc C is called a simple arc, or a Jordan arc, if it does not cross itself; that is, C is
said to be simple if z(t1) ̸= z(t2) when t1 ̸= t2. And when the arc is simple except at the end points, that
is, z(a) = z(b), then C is a simple closed curve. The figure below gives an idea of (a) simple curve, (b)
non-simple curve and (c) simple closed curve.

Example 10.1.3. The unit circle z = eiθ, 0 ≤ θ ≤ 2π is a simple closed closed curve about the origin,
oriented in the anti-clockwise sense while z = e−iθ describes a simple closed curve in the clockwise sense.

Example 10.1.4. The points on the arc

z = ei2θ (0 ≤ θ ≤ 2π)

are the same as those making up the arcs in the previous example. The arc here differs, however, from each of
those arcs since the circle is traversed twice in the anticlockwise sense.

We now turn to integrals of complex-valued function f of the complex variable z. Such an integral is defined
in terms of the values f(z) along a given contour C, extending from a point z = z1 to a point z = z2 in the
complex plane. It is therefore, a line integral; and its value depends on the contourC as well as on the function
f . It is written as

∫
C f(z)dz or

∫ z2
z1
f(z)dz, the latter notation often being used when the value of the integral

is independent of the choice of the contour taken between the two fixed points. If f(z) = u(x, y) + iv(x, y)
then the value of the integral is∫

C
f(z)dz =

∫
C
(u+ iv)(dx+ idy) =

∫
C
(udx− vdy) + i

∫
C
(udy + vdx).

The integral can be calculated in another way. Let the equation

z = z(t), a ≤ t ≤ b (10.1.1)

represents the contour C, extending from a point z1 = z(a) to a point z2 = z(b). Let the function f be
piecewise continuous on C. We define the line integral, or contour integral of f along C as follows:∫

C
f(z)dz =

∫ b

a
f [z(t)]z′(t)dt (10.1.2)
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Note that, since C is a contour, z′(t) is also piecewise continuous on the interval a ≤ t ≤ b; so the existence
of the integral (10.1.2) is ensured.

It follows immediately from the definition (10.1.2) that for any constant z0,∫
C
z0f(z)dz = z0

∫
C
f(z)dz

and, ∫
C
[f(z) + g(z)]dz =

∫
C
f(z)dz +

∫
C
g(z)dz

Associated with the contour C used in the integral (10.1.2), is the contour −C, consisting of the same set of
points but with the order reversed so that the new contour extends from the point z2 to z1. The contour −C
has the parametric representation

z = z(−t), − b ≤ t ≤ −a

so, we have ∫
−C

f(z)dz =

∫ −a

−b
f [z(−t)] d

dt
z(−t)dt

= −
∫ −a

−b
f [z(−t)]z′(−t)dt

where z′(−t) denotes the derivative of z(t) with respect to t, evaluated at −t. Making the substitution τ = −t
in the last integral, we obtain ∫

−C
f(z)dz = −

∫ b

a
f [z(τ)]z′(τ)dτ

which is the same as ∫
−C

f(z)dz = −
∫
C
f(z)dz (10.1.3)

Now, consider a path C, denoted as z = z(t), a ≤ t ≤ b, that consists of a contour C1 from z1 to z2 followed
by a contour z2 to z3, the initial point of C2 being the final point of C1. There is a value c of t, a < t < b,
such that z(c) = z2. Also,

C = C1 + C2

Also, we can represent C1 as
z = z(t), a ≤ t ≤ c

and C2 as
z = z(t), c ≤ t ≤ b.

By a rule of the integrals of the functions w(t), we have,∫ b

a
f [z(t)]z′(t)dt =

∫ c

a
f [z(t)]z′(t)dt+

∫ b

c
f [z(t)]z′(t)dt

which means that, ∫
C
f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz

Sometimes the contour C is called the sum of its legs C1 and C2 and is denoted by C1 + C2.
Definite integrals in calculus can be interpreted as areas, and they have other interpretations as well. Except

in special cases , no corresponding helpful interpretation, geometric or physical, is available for integrals in
the complex plane. Let us look into a few examples for contour integrals.
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Example 10.1.5. Let us find the value of the integral

I =

∫
C
z̄dz

where C is the right-hand half
z = e2iθ (−π

2
≤ θ ≤ π

2
)

of the circle |z| = 2, from z = −2i to z = 2i. By the definition above, we have

I =

∫ π
2

−π
2

¯2eiθ(2eiθ)′dθ;

and since eiθ = e−iθ and (eiθ)′ = ieiθ, this means that

I =

∫ π
2

−π
2

2e−iθ2ieiθdθ = 4

∫ π
2

−π
2

dθ.

Note that when a point z is on the circle |z| = 2, it follows that zz̄ =, or z̄ = 4/z. Hence the result I = 4πi
can also be written as ∫

C

dz

z
= πi

Example 10.1.6. Let C1 denote the contour OAB which joins the origin O(0, 0) to A(0, 1) and B(1, 1); and
C2 be the contour joining B to O. Suppose we are to find the integral∫

C
f(z)dz

where, C = C1 + C2 and f(x, y) = y − x− i3x2. Then,∫
C
f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz

Now, ∫
C1

f(z)dz =

∫
OA

f(z)dz +

∫
AB

f(z)dz (10.1.4)

The leg OA can be represented as z = 0 + iy, 0 ≤ y ≤ 1; and since x = 0 at points on that leg, the values of
f there vary with the parameter y according to the equation f(z) = y, 0 ≤ y ≤ 1. As a result,∫

OA
f(z)dz =

∫ 1

0
yidy

= i

∫ 1

0
ydy

=
i

2
.

On the leg AB, z = x+ i, 0 ≤ x ≤ 1. So,∫
AB

f(z)dz =

∫ 1

0
(1− x− i3x2)dx

=

∫ 1

0
(1− x)dx− 3i

∫ 1

0
x2dx

=
1

2
− i.
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So, by equation (10.1.4), we have, ∫
C1

f(z)dz =
1− i

2
.

Again, the leg BO has parametric representation z = x+ ix, 0 ≤ x ≤ 1. So,∫
C2

f(z)dz =

∫ 0

1
−i3x2(1 + i)dx

= 3(1− i)

∫ 0

1
x2dx

= i− 1.

Then, the integrals of f along the paths C1 and C2 have different values even though those paths have the
same initial and the same final points. Now, we have∫

C
f(z)dz =

i− 1

2
.

Exercise 10.1.7. Evaluate each of the following integrals using contour integration.

1.
∫ 1+i

1−i
z3dz.

2.
∫ 2i

−3i
(z3 − z)dz

3.
∫
C

1

z
dz, where C is the

(a) arc of the circle 4 ei t, −π/2 ≤ t ≤ π/2.

(b) line segment between 1 + i and 4 + 4i.

4.
∫ 2

1
(t2 + i)2dt

5.
∫ π/2

0
e−2itdt

6.
∫
C
(z2 − 3|z|+ Imz)dz where C = 2 eit, 0 ≤ t ≤ π/2.

7.
∫
C
f(z)dz where f(z) = ey e1−ix and C = 2 eit, 0 ≤ t ≤ π/2.

10.1.2 Conformal Mappings

Let C be a smooth arc represented by the equation

z = z(t), a ≤ t ≤ b
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and let f(z) be a function defined at all points z on C. The equation

w = f(z(t)), a ≤ t ≤ b

is a parametric representation of the image γ of C under the transformation w = f(z).
Suppose that C passes through a point z0 = z(t0), at which f is analytic and that f ′(t0) ̸= 0. According to

the chain rule of differentiation, we get

w′(t0) = f ′(z0)z
′(t0)

and this gives
argw′(t0) = arg f ′(z0) + arg z′(t0) (10.1.5)

Now, let ψ0 be a particular value of arg f ′(z0), and let θ0 be the angle of inclination of a directed line
tangent to γ at z0. Then from equation (10.1.5), we get that

ϕ0 = ψ0 + θ0,

which is the value of argw′(t0) and is hence the angle of inclination of a directed line tangent to γ at the point
w0 = f(z0). Hence the angle of inclination of the directed line at w0 differs from the angle of inclination of
the directed line at z0 by the angle of rotation

ψ0 = arg f ′(z0).

Now, let C1 and C2 be two smooth arcs passing through z0, and let θ1 and θ2 be angles of inclination
of directed lines tangent to C1 and C2 respectively, at z0. We know from the preceding paragraph that the
quantities

ϕ1 = ψ0 + θ1

ϕ2 = ψ0 + θ2

are the angles of inclination of directed lines tangent to the image curves γ1 and γ2, respectively, at the point
w0 = f(z0). Thus, ϕ2 − ϕ1 = θ2 − θ1, that is, the angle ϕ2 − ϕ1 from γ1 to γ2 is the same in magnitude and
sense as the angle θ2 − θ1 from C1 to C2.

Because of this angle preserving property, a transformation w = f(z) is said to be conformal at a point if
f is analytic there and f ′(z0) ̸= 0.

Example 10.1.8. The mapping w = ez is conformal throughout the entire complex plane since (ez) = ez ̸= 0
for each z.

A mapping that preserves the magnitude of the angle between two smooth arcs but not necessarily the sense
is called an isogonal mapping.

Example 10.1.9. The transformation w = z, which is a reflection in the real axis, is isogonal but not confor-
mal.

Suppose that f is not a constant function and is analytic at a point z0. If, in addition, f ′(z0) = 0, then z0 is
called the critical point of the transformation f .

Example 10.1.10. The point z = 0 is a critical point of the transformation w = 1 + z2.

The behavior of an analytic function in a neighborhood of critical point is given by the following theorem
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Theorem 10.1.11. Let f be analytic at z0. If f ′(z0) = . . . = f (k−1)(z0) = 0, and f (k)(z0) ̸= 0 then the
mapping w = f(z) magnifies the angle at z0 by a factor k.

Proof. Since f is analytic at z0, so

f(z) = f(z0) + (z − z0)f
′(z0) +

(z − z0)
2

2!
f ′′(z0) + . . .

= f(z0) + (z − z0)
k

[
1

k!
f (k)(z0) +

1

(k + 1)!
(z − z0)f

(k+1)(z0) + . . .

]
= f(z0) + (z − z0)

kg(z) (say).

Thus,
f(z)− f(z0) = (z − z0)

kg(z),

and hence
arg(w − w0) = k arg(z − z0) + arg g(z).

We now come across an important example of conformal maps of the unit disk.

Example 10.1.12. Consider a map f : D 7→ D of the form

f(z) =
a− z

1− az

where D is the open unit disk and a is a point inside D. We note that f is analytic in the unit disk since∣∣∣∣1a
∣∣∣∣ = 1

|a|
> 1

since |a| < 1. Now,

f ′(z) = − 1 + |a|2

(1− az)2
̸= 0

in D. Hence f is conformal in D. Also, we can check that,

(f ◦ f)(z) = z

This shows that f is a bijective conformal map from D onto D.

The above example is in fact a conformal map moving the origin to the point a. In fact, there are many
such bijective conformal maps from the unit circle onto itself. We will discuss them shortly. For now, let us
see the following definition:

Definition 10.1.13. Let U and V be any two subsets of the complex plane. Then U and V are said to be
conformally equivalent if there exists a bijective analytic map f : U → V . An important fact is that, given
such a function f , its inverse is automatically analytic.

We have the following theorem in this context:

Theorem 10.1.14. If f : U → V is analytic and injective, then f ′(z0) ̸= 0 for all z0 ∈ U . In particular, the
inverse of f defined on its range is analytic, and thus the inverse of a conformal map is also analytic.
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The Unit Disk and the Upper Half Plane

The upper half plane, denoted by H, consists of the complex numbers with positive imaginary part, that is

H = {z ∈ C : Im(z) > 0}

A remarkable fact, which at first seems surprising, is that the unbounded set H is conformally equivalent to
the unit disc. Moreover, an explicit formula giving this equivalence exists. Indeed, let

F (z) =
i− z

i+ z
, G(w) = i

1− w

1 + w

Theorem 10.1.15. The map F : H → D is a conformal map with inverse F : D → H.

Proof. First we observe that both the maps are analytic in their respective domains. Then, notice that any
point on the upper half plane is closer to i than to −i. So, |F (z)| < 1 and F maps H into D. To prove that G
maps into the upper half-plane, we must compute Im(G(w)) for w ∈ D. For this, let w = u+ iv. Then

Im(G(w)) = Re
(
1− u− iv

1 + u+ iv

)
= Re

(
(1− u− iv)(1 + u− iv)

(1 + u)2 + v2

)
=

1− u2 − v2

(1 + u)2 + v2
> 0

since |w| < 1. Hence G maps the D to the upper half plane. Finally,

F (G(w)) =
i− i1−w1+w

i+ i1−w1+w

=
1 + w − 1 + w

1 + w + 1− w
= w

We can similarly show that G(F (z)) = z. This proves the theorem.

An interesting aspect of these functions is their behaviour on the boundaries of our open sets. Observe that
F is analytic everywhere on C except at z = −i, and in particular it is continuous everywhere on the boundary
of H, namely the real line. If we take z = x real, then the distance from x to i is the same as the distance from
i to −i, therefore |F (x)| = 1. Thus F maps R onto the boundary of D.

Example 10.1.16. Translations and dilations provide simple examples. If h ∈ C, the translation z 7→ z + h
is a conformal map from C to itself whose inverse is w 7→ w − h.

For any non-zero complex number c, the map z 7→ cz is a map from C to itself, whose inverse isw 7→ c−1w.
If |c| = 1, then c = eiψ for some real ψ, then the map is a rotation by angle ψ. If c > 0 then the map is a
dilation. Finally, if c < 0 the map consists of a dilation by the factor |c|, followed by a rotation of π.

Example 10.1.17. The map

f(z) =
1 + z

1− z
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takes the upper half disc {z ∈ C : |z| < 1 and Im(z) > 0} conformally to the first quadrant {w = u + iv :
u > 0 and v > 0}. Indeed, if z = x+ iy, then

f(z) =
1− (x2 + y2)

(1− x)2 + y2
+ i

2y

(1− x)2 + y2

The inverse map, given by

g(w) =
w − 1

w + 1

is clearly analytic in the first quadrant. Moreover, for all w in the first quadrant, |w + 1| > |w − 1|, since the
distance of w to −1 is greater than the distance of w from 1. Thus g maps into the discD. An easy calculation
also shows that the imaginary part of g(w) is positive whenever w is in the first quadrant. So we conclude that
f is conformal since g is the inverse of f .

To examine the action of f on the boundary, note that if z = eiθ belongs to the upper half circle, then

f(z) =
1 + eiθ

1− eiθ

=
e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2

=
i

tan(θ/2)

As θ travels from 0 to π, we see that f(eiθ) travels along the imaginary axis from infinity to 0. Moreover, if
z = x is real, then

f(z) =
1 + x

1− x

is also real. So, we see that f is actually a bijection from (−1, 1) to the positive real axis, with f(x) increasing
from 0 to infinity as x travels from −1 to 1. Note also that f(0) = 1.

10.1.3 Bilinear Transformations

Bilinear Transformations are a special kind of conformal maps. We formally define them as follows:

Definition 10.1.18. A mapping of the form

S(z) =
az + b

cz + d
,

where a, b, c, and d are complex constants satisfying ad − bc ̸= 0, is called a Bilinear transformation or a
linear fractional transformation (LFT) or Möbius Transformation. If ad− bc = 0, then S(z) is a constant map
(Prove it!).

Example 10.1.19. Let S be a Möbius Transformation on the upper half plane H where,

S(z) =
az + b

cz + d

where ad− bc > 0. Then S maps H conformally onto itself.
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If S is a Möbius Transformation, then

S−1(z) =
dz − b

−cz + a
,

satisfies S(S−1(z)) = S−1(S(z)) = z. Then, S−1 is the inverse of S. Now, if S and T are both linear
fractional transformations, then it follows that S ◦ T is also so. S can be defined on the extended complex
plane C∞ with S(∞) = a/c and S(−d/c) = ∞. Since S has inverse, it maps C∞ to C∞. It is worth saying
that every Möbius transformation as given in the definition is analytic in C \ {−d/c}.

If S(z) = z + a, it is called Translation; if S(z) = az with a ̸= 0, it is called dilation; if S(z) = expiθ, it
is called rotation; if S(z) = 1/z, it is called inversion.

Theorem 10.1.20. If S is a Möbius Transformation, then S is the composition of translations, dilations,
rotations, and inversions.

Proof. First, let us suppose that c = 0. Hence, S(z) =
a

d
z +

b

d
. Hence, S1(z) =

a

d
z, then S2 ◦ S1 = S and

we are done.

Now, let c ̸= 0 and put S1(z) = z +
d

c
, S2(z) =

1

z
, S3(z) =

ad− bc

c2
z, S4(z) = z +

a

c
. Then,

S ≡ S4 ◦ S3 ◦ S2 ◦ S1.

Hence the result.

Example 10.1.21. Let S(z) = az. If a is real, then it scales the plane whereas, if a = eiθ, then it scales the
plane. So, if a = r eiθ, then it does both.

Figure 10.1.1: Scale and rotate

Example 10.1.22. Let S(z) = az + b. Adding the term b adds translation to the previous example. The
representation is given in figure 10.1.2.

Example 10.1.23. Let S(z) =
1

z
. It turns the unit circle inside out. Note that S(0) = ∞ and S(∞) = 0. In

the figure 10.1.3, the circle that is outside the unit circle in the z plane is inside the unit circle in the w plane
and vice-versa. Note that the arrows on the curves are reversed.

Theorem 10.1.24. A linear fractional transformation maps lines and circles to lines and circles.
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Figure 10.1.2: Scale, rotate and translate

Figure 10.1.3: Inversion

Proof. We start by showing that inversion maps lines and circles to lines and circles. Given z and w = 1/z,
we define x, y, u and v as

z = x+ iy, and w =
1

z
=

x− iy

x2 + y2
= u+ iv,

so,
u =

x

x2 + y2
, and v =

−y
x2 + y2

.

Now, every circle or line can be described by the equation

Ax+By + C(x2 + y2) = D.

If C = 0 it describes a line, otherwise a circle. We convert this to an equation in u, v as follows.

Ax+By + C(x2 + y2) = D

⇒ A

x2 + y2
+

B

x2 + y2
+ C =

D

x2 + y2

⇒ Au−Bv + C = D(u2 + v2).

We have shown that a line or circle in x, y is transformed to a line or circle in u, v. This shows that inversion
maps lines and circles to lines and circles.

We note that for the inversion w = 1/z,
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1. Any line not through the origin is mapped to a circle through the origin.

2. Any line through the origin is mapped to a line through the origin.

3. Any circle not through the origin is mapped to a circle not through the origin.

4. Any circle through the origin is mapped to a line not through the origin.

Now, to prove that an arbitrary fractional linear transformation maps lines and circles to lines and circles, we
factor it into a sequence of simpler transformations.

First suppose that c = 0. So,

S(z) =
az + b

d
.

Since this is just translation, scaling and rotating, it is clear it maps circles to circles and lines to lines.
Now suppose that c ̸= 0. Then

S(z) =
az + b

cz + d
=
a

c
+
b− ad/c

cz + d
.

So, w = S(z) can be computed as a composition of translations, dilations, rotations, and inversions. We know
that each of the transforms in this sequence maps lines and circles to lines and circles. Therefore the entire
sequence also follows the same.

Now let us investigate about the fixed points of S. Fixed points of S are precisely the roots of the equation

S(z) = z

⇒ cz2 + (d− a)z − b = 0.

Hence, a Möbius Transformation can have at most two fixed points unless it is the identity transformation.
Now, let S1 be a Möbius Transformation and let a, b, c be distinct points in C∞ with, S1(a) = α, S1(b) = β,

S1(c) = γ. Let S2 be another Möbius Transformation with the same property. Then, S−1
2 ◦ S1 has a, b, c as

fixed points. So, S−1
2 ◦S1 is identically equal to the identity transformation. Thus, S1 ≡ S2. Hence, a Möbius

Transformation is uniquely determined by its action on three distinct points in C∞.
Let z1, z2, z3 be points in C∞. Define S : C∞ 7→ C∞ by

S(z) =

(
z − z3
z − z4

)(
z2 − z4
z2 − z3

)
if z2, z3, z4 ∈ C

=
z − z3
z − z4

if z2 = ∞

=
z2 − z4
z − z4

if z3 = ∞

=
z − z3
z2 − z3

if z4 = ∞

In all the cases, S(z2) = 1, S(z3) = 0, and S(z4) = ∞ and S is the only transformation having the property.

Definition 10.1.25. If z1 ∈ C∞, then (z1, z2, z3, z4), called the cross ratio of z1, z2, z3 and z4, is the image
of z1 under the unique Möbius Transformation that takes z2 to 1, z3 to 0 and z4 to ∞.
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Exercise 10.1.26. 1. Show that an LFT S given by

S(z) =
az + b

cz + d

where ad− bc = 0, is a constant.

2. Show that the map

S(z) =
z − i

z + i

maps the x-axis to the unit circle and the upper half-plane to the unit disk.

Sample Questions

1. Show that the Möbius transformation S(z) =
az + b

cz + d
, where ad − bc > 0 maps the upper half plane

conformally to itself.

2. Show that a Möbius Transformation is the composition of translations, dilations, rotations, and inver-
sions.

3. Show that an LFT maps lines and circles to lines and circles.



Unit 11

Course Structure

• Idea of analytic continuation.

• Multivalued functions

• Branch cuts, branch point.

11.1 Introduction

This unit is divided into two sections. The first section deals with the analytic continuation of functions and
the second section deals with the idea of multivalued functions. First the idea of analytic continuation deals
with extending the domain of an analytic function to some “larger" one while preserving the analyticity. It is
primarily based on the uniqueness of entire functions (more famously called the interior uniqueness theorem)
which is discussed in unit 12 12.1.9. Next comes the multivalued functions. As the name suggests, a “function"
having multiple values is called multivalued. However, the definition is not that simple. From basic set theory,
we know that a relation, where a point of the domain has more than one images, fails to be a function. As
opposed to the real line, the numbers in the complex plane has two aspects, one being the magnitude and the
other the amplitude. The multivalued-ness of such functions arises due to this amplitude as we shall later see.

Objectives

After reading this unit, you will be able to

• define analytic continuation of function f and discuss certain examples and consequences

• define and understand the multivalued functions and related terminology

11.1.1 Analytic Continuation

Our main aim in this section is whether a given domain of an analytic function can be extended to a larger
one. We now formally define analytic continuation of a function analytic in a domain D.

Definition 11.1.1. Let the function f be analytic in a domain D. If there exists another function g analytic in a
domain D1 such that

100
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1. D ∩D1 ̸= ϕ,

2. f(z) = g(z), ∀z ∈ D ∩D1,

then we say that g is a direct analytic continuation of f and vice-versa.

Theorem 11.1.2. (Uniqueness of analytic continuation) Let f be analytic in domainD. If f1, f2 be two direct
analytic continuations of f in the domain D1, then f1(z) = f2(z), ∀z ∈ D1.

Proof. By hypothesis, f(z) = f1(z) = f2(z), ∀z ∈ D ∩D1, where D ∩D1 ̸= ϕ. Hence, f1, f2 which are
analytic in D1 coincide in the subdomain D ∩ D1. Hence, by the interior uniqueness theorem for analytic
functions we have, f1(z) = f2(z), ∀z ∈ D1.

The function F defined by

F (z) = f(z), z ∈ D

= f1(z), z ∈ D1

is analytic in the union domain D ∪D1.

Example 11.1.3. Let f(z) =
∞∑
n=0

zn and g(z) =
1

1− z
. Then, f is defined and analytic only in the disc

D : |z| < 1 and f(z) =
1

1− z
in D. f is not defined when |z| ≥ 1. But the function g is analytic in the

domain D1 : C \ {1}. Hence, f(z) = g(z), ∀z ∈ D ∩D1(= D). Hence, g is a direct analytic continuation of
f from D to D1.

Example 11.1.4. Let f(z) =
∞∑
n=0

zn, g(z) =
1

1− i

∞∑
n=0

(
z − i

1− i

)n
. Then f is defined and analytic only in the

domain D : |z| < 1 and f(z) =
1

1− z
for all z ∈ D. f is not defined when |z| ≥ 1. We now find the domain

of analyticity of the function g. Let t =
z − i

1− i
. Then

g(z) =
1

1− i

∞∑
n=0

tn

and it is analytic in the domain D1 : |t| < 1, that is, in |z − i| < |1 − i| =
√
2. Thus, D1 is the domain

|z − i| <
√
2. Clearly D ∩D1 ̸= ∅. Now, in D1,

g(z) =
1

1− i

1

1− t
=

1

1− z
.

Hence f(z) = g(z) for all z ∈ D ∩D1. Thus, g is a direct analytic continuation of f and vice versa.

11.1.2 Natural Boundary

Let γ be a closed curve which is the boundary of a region D and f is analytic in D. Then γ is called a natural
boundary of f if the function f can not be analytically continued beyond any point of γ. If γ is dense with
singularities of f , then γ is a natural boundary of f .
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11.2 Multivalued Functions

A multivalued function f(z) has two or more distinct values for each value of z. Important multivalued
functions are

√
z, z1/n,

√
(z − a)(z − b), log z, zα, for any non-integral α, and the inverse trigonometric

functions. In order to use the multi-valued functions , we must use a single branch to ensure single-valuedness.
This is done by introducing cuts in the convenient positions of the complex plane, which are commonly called
the branch cuts. In order to illustrate this, let us use the simplest example, say w =

√
z. If z = reiθ, then the

square root has two branches: w1 = r1/2eiθ/2 and w2 = −r1/2eiθ/2.
Let us go around z = 0. If we start at some point z0 = reiθ with the branch w1, and go along any closed

curve around z = 0, then r remains the same while θ changes to θ+2π. As z moves,w1 changes continuously,
and when z returns to the original point, w1 has changed to w2. Going around z = 0 gain changes w2 again
to w1. Any other path which excludes z = 0 has ordinary single-valued behaviour. The point z = 0, in this
case acts as a singularity called branch point for the function and is very different from pole.The function

√
z

is double valued in any region which includes z = 0 as an interior point. If z goes on a circuit around z = 0,
w changes to −w. If we stay in a region that does not include the branch point, then while z moves around
w1 does not change to w2. This is achieved by restricting the movement of z to a region R which excludes
the branch point. For this purpose, we just introduce a "cut" in the complex plane around the branch point and
extending to infinity. This is known as the branch cut. The function remains single-valued as long as z does
not cross over the branch cut. If it crosses the cut, then w moves on to the next branch.

Example 11.2.1. The function log z is the inverse of the exponential. So, if

z = ew

then,
w = log z

The logarithm has infinite number of branches. We can write from z = ew,

z = reiθ

= reiθ+i2nπ

= eln r+iθ+i2nπ

where, n = 0,±1,±2, · · · , any integer. So, the logarithm is

log z = ln r + iθ + i2nπ

Each time z moves in a closed curve around the branch point 0, θ increases by 2π and we go from one branch
to another, and this can go on forever. θ goes through multiples of 2π and the infinite set of values of logarithm
differ by 2nπi. We can get a single-valued function by picking a cut, such as the negative real axis

log z = ln r + iθ, − π ≤ θ < π

At two points z1, z2, on either side of the cut,

log z1 = ln r − iπ

log z2 = ln r + iπ
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Sample questions

1. Show that the direct analytic continuation of an analytic function f over a domain D is unique.

2. Show that the power series

z − 1

2
z2 +

1

3
z3 − . . .

may be continued analytically to a wider region by means of the series

log 2− 1− z

2
− (1− z)2

2.22
− (1− z)3

3.23
− . . .

3. Show that the function f(z) =
∞∑
n=0

z2
n

has the unit circle as its natural boundary.



Unit 12

Course Structure

• Zeros of an analytic function

• Singularities and their classification

12.1 Introduction

From previous knowledge, we know that if a function f is analytic at some point α, then α is called a regular
point of f . Any point other than the regular points are called singularities. Singularities are of various kinds as
we shall see here in this unit. Firstly, we shall start with the zeros of f . The zeros are a particular regular points
of f , where the functional value is equal to 0. The zeros and the singularities are somewhat connected and
gives an idea of the number of zeros an analytic function can possibly have in a given region. The properties
that we shall see here are however true for any a-points of f , that is, the points of f in the domain where
f(z) = a for some complex number a. Indeed, if we define another analytic function g(z) = f(z)− a, then
the properties of the zeros of g and the properties of the a-points of f are equivalent. The singularities are
classified in this unit and in the next unit, we shall deal with the characteristics of them.

Objectives

After reading this unit, you will be able to

• define the zeros of analytic functions

• tell about the zeros of analytic functions by looking at its Taylor series expansion about some point

• know the singularities of complex functions and differentiate between their types

• tell about the poles of a complex function by looking at their Laurent series expansion about some point

104
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12.1.1 Zeros of an analytic function

If a function f is analytic at a point α, then α is called a zero of f if f(α) = 0. Recall that if a function f is
analytic at a point α then f has a Taylor series expansion

f(z) =
∞∑
n=0

an(z − α)n,

where

an =
f (n)(α)

n!
.

If α is a zero of f then a0 = 0. Other than a0, if a1 = a2 = · · · = am−1 = 0, and am ̸= 0, then α is called a
zero of f of order m. Zeros of order one and two are called simple and double zero respectively. α is called a
zero of infinite order if f (k)(α) = 0 for all k ≥ 0. Our first result shows that non-constant functions analytic
in a domain can not have zero of infinite order.

Theorem 12.1.1. Let f be analytic in a domain D. If f has a zero of infinite order at α ∈ D, then f ≡ 0.

Proof. Let Z = {z0 ∈ D : f has an infinite order zero at z0}. We show that Z is clopen in D. Let Zk =
{z0 ∈ D : f (k)(z0) = 0}. Then each Zk is closed and so

Z = ∩kZk

is closed. To show that Z is open, z0 ∈ Z. We know that f agrees with its Taylor series on an open disk D′

centered at z0

f(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)

k = 0

on D′. Since f ≡ 0, so D′ ⊂ Z. Thus, Z is open. Bur since D is connected, Z is either empty or Z = D.
But, we have α ∈ Z. So Z = D. Hence f ≡ 0.

Corollary 12.1.2. A nonconstant analytic function on a domain D only has zeros of finite order in D.

So, in general, the zeros of an analytic function is finite ordered. Motivation can be had from the structure
of polynomials. We know that any complex polynomial can be factorised completely. The following result
gives a general idea to factorise any general analytic function f by just looking at the Taylor’s series expansion
of f near their zeros.

Theorem 12.1.3. Let α be a zero of f of order m. Then, near α, f(z) = (z − α)mϕ(z), where ϕ is analytic
at α and ϕ(α) ̸= 0.

Proof. Since f is analytic at α and α is a zero of f of order m, so near α, f has a Taylor series expansion

f(z) = am(z − α)m + am+1(z − α)m+1 + · · ·
= (z − α)m(am + am+1(z − α) + · · · ),

where am ̸= 0. Now, let
ϕ(z) = am + am+1(z − α) + · · · .

Then ϕ is analytic at α with ϕ(α) = am ̸= 0.
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The converse of the above theorem is also true. That is, if near a point α, f is of the form

f(z) = (z − α)mϕ(z),

where ϕ is analytic at α and ϕ(α) = am ̸= 0, then f has a zero of order m at α. (Prove it!)

Exercise 12.1.4. 1. Prove the above statement.

2. Find the zeros of each of the following functions. Also mention the order of each of the zeros with
proper justifications:

a. ez −1; b. sin z;

c.
sin z

z
; d.

(z + 3)

z2 + z − 6
;

e. (z − 3)2 cos z f. cos z − ez +z

3. Let f and g has zero of order m and n respectively at z0. What can be said about the functions f ± g
and fg at z0?

12.1.2 Singularities and their classification

For a function f , a point α is called a regular point of f if f is analytic at α. The points where f is not analytic
are called the singular points or singularities of f . Let a point α be a singular point of f . If f is analytic in a
deleted neighbourhood of α, then α is called an isolated singularity of f . If α is not an isolated singularity of
f , then it is called non-isolated singularity of f .

Let α be an isolated singularity of f . Then we have a positive real number r, such that f has a Laurent
series expansion of the form

f(z) =
∞∑
n=0

an(z − α)n +
∞∑
n=1

bn(z − α)−n

valid in 0 < |z − α| < r. an and bn are given as follows:

an =
1

2πi

∫
γ

f(z)dz

(z − α)n+1
and bn =

1

2πi

∫
γ

f(z)dz

(z − α)−n+1
,

where γ is a simple closed curve in 0 < |z − α| < r. The sum

∞∑
n=0

an(z − α)n

is called the analytic part and the sum
∞∑
n=1

bn(z − α)−n

is called the principal part of f at the isolated singularity α. If the principal part is a terminating series, then
the point α is called the pole of f . α is called the pole of f of orderm if bm ̸= 0 and bm+1 = bm+2 = · · · = 0.
Poles of order one and two are called simple pole and double pole respectively. If the principal part is non-
terminating, then α is called an essential singularity of f . And if all the coefficients bn of the principal part
are zero then α is called removable singularity of f .
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Theorem 12.1.5. α is a pole of a function f of order m if and only if f can be written in the form

f(z) =
ϕ(z)

(z − α)m

near α, where, ϕ is analytic at α and ϕ(α) ̸= 0.

Proof. If α is a pole of order m, then

f(z) =
∞∑
n=0

an(z − α)n +
m∑
n=1

bn(z − α)−n,

where bm ̸= 0 and bk = 0 for k > m. This gives,

f(z) =

( ∞∑
n=0

an(z − α)n+m + b1(z − α)m−1 + · · ·+ bm

)
(z − α)−m

=
ϕ(z)

(z − α)m

where

ϕ(z) =
∞∑
n=0

an(z − α)n+m + b1(z − α)m−1 + · · ·+ bm

and ϕ(α) = bm ̸= 0.
Conversely, if

f(z) =
ϕ(z)

(z − α)m
,

where ϕ satisfies the given criteria, then, due to analyticity of ϕ at α,

ϕ(z) =

∑∞
n=0 an(z − α)n

(z − α)m

=
a0

(z − α)m
+

a1
(z − α)m−1

+ · · ·+ am + am+1(z − α) + am+2(z − α)2 + · · ·

=
a0

(z − α)m
+

a1
(z − α)m−1

+ · · ·+ am−1

(z − α)
+

∞∑
n=0

am+n(z − α)n.

Hence, α is a pole of f of order m, since a0 ̸= 0.

Exercise 12.1.6. 1. Find the singularities of each of the following functions and classify them. For poles,
specify their orders.

a.
ez −1

z2
b.

cos z

z2

c.
sinh z

z4
d.

1− cos z

z2

e.
sin z

z
f.

z

ez −1

g. exp

(
1

z

)
h. (z − 1) cos

(
1

z

)
.
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2. If f , g have poles of order m, n respectively at z0, then their pointwise product fg has a pole of order
m+ n at z0.

3. Suppose a function f has a pole of order m at z0 and a function g has a zero at z0 of order n. What can
be said about the functions f ± g, fg and f/g at z0?

4. Give an example of a function holomorphic in all of C except for essential singularities at the two points
0 and 1.

5. Prove or disprove: If f and g have a pole and an essential singularity respectively at the point z0, then
fg has an essential singularity at z0.

Theorem 12.1.7. The zeros of an analytic function f ( ̸≡ 0) are isolated points, that is, if α is a zero of f , then
there exists a neighbourhood of α which contains no other zeros of f unless f ≡ 0.

OR

If f is an analytic function on a domain D and f(α) = 0 for some α ∈ D, then there exists a neighbourhood
of α where f(z) ̸= 0.

Proof. Let α be a zero of f of order m. Then f(z) = (z − α)mϕ(z), where ϕ is analytic at α and ϕ(α) ̸= 0.

Take ϵ =
1

2
|ϕ(α)|. Since ϕ is continuous at α, there exists a δ > 0 such that

|ϕ(z)− ϕ(α)| < ϵ for |z − α| < δ.

Hence,

|ϕ(z)| = |ϕ(α) + ϕ(z)− ϕ(α)|
≥ |ϕ(α)| − |ϕ(z)− ϕ(α)|

> |ϕ(α)| − 1

2
|ϕ(α)| = 1

2
|ϕ(α)|

for |z − α| < δ. Hence, ϕ(z) ̸= 0 in |z − α| < δ. Since f(z) = (z − α)mϕ(z), it follows that f(z) ̸= 0 in
0 < |z − α| < δ. Hence, α is an isolated zero of f .

The above theorem is important since it shows that the number of zeros of f in a “small" area can not be
“numerous". Also notice that in the course of proving the above theorem, we have shown the following.

Theorem 12.1.8. If f is analytic at α and f(α) ̸= 0, then there exists a neighbourhood of α in which f(z) ̸= 0.

Proof. Same as done in the previous theorem.

One of the most important applications of theorem 12.1.7 is perhaps the interior uniqueness theorem or
identity theorem, which completely characterizes an analytic function in a domain D by its behaviour on a
subset of D. We have highlighted the term domain because the domain, which is an open connected set, plays
an important role in proving the theorem. The statement is given as follows.

Theorem 12.1.9. Let f and g be analytic in a domain D such that f(z) = g(z) on a set S ⊂ D having a limit
point z0 ∈ D. Then f(z) ≡ g(z), for all z ∈ D.
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Proof. Let ϕ(z) = f(z) − g(z). Then ϕ is analytic in D and ϕ(z) = 0 on S. Hence, S ⊂ Z(ϕ), where
Z(ϕ) is the set of zeros of ϕ in D. Since z0 is a limit point of S, then there exists a sequence {zn} of
zeros of ϕ in D such that zn → z0. Since ϕ(zn) = 0 for all n and ϕ is continuous at z0, so we have
ϕ(z0) = lim

n→∞
ϕ(zn) = 0 so that z0 is a zero of ϕ in D. Since the zeros of a function are isolated points, this

can happen only when ϕ(z) ≡ 0 in a neighbourhood of z0. We now split D into two sets A and B, where
A = {α ∈ D : α is a limit point of Z(ϕ)} and B = D \ A. Then D = A ∪ B, where A ∩ B = ∅ and
A is non-empty since z0 ∈ A. Let α be an arbitrary point of A. Then α is a limit point of Z(α) and hence
ϕ(z) ≡ 0 in a neighbourhood of α. Hence, α is an interior point of A and so A is open. We now show that B
is also open. Let β ∈ B. Then β is not a limit point of Z(ϕ). Since ϕ is continuous at β, there exists a δ > 0
such that ϕ(z) ̸= 0 in {z : |z − β| < δ} ⊂ D. Thus, β is an interior point of B and hence B is open. Since
D is connected, it can not be written as the union of two disjoint non-empty open sets. Hence, we must have
either A = ∅ or B = ∅. Since A ̸= ∅ we must have B = ∅. Thus, A = D. So every point of D is a limit point
of Z(ϕ) and hence Z(ϕ) = D, that is ϕ(z) = 0 for all z ∈ D, that is f(z) ≡ g(z) on D.

We see that the connectedness of D was used to prove the uniqueness of f . The following is an example to
illustrates that this connectedness of D is necessary for the validity of the above theorem.

Example 12.1.10. Let D = C \ {z : 1 ≤ |z| ≤ 3} and let f : D → C be defined by

f(z) = 0 for |z| < 1

= 2 for |z| > 3.

Also let g be another function defined on D such that g(z) = 0 for all z ∈ D. Then f(z) = g(z) on |z| < 1
having closure |z| ≤ 1. Of this, {z : |z| < 1} ⊂ D, but f ̸≡ g on D.

A few applications of the above result can be listed as follows:

1. Let f and g be two analytic functions defined on a domain D and let {zn} be a sequence of points in D
having a limit point in D. If f(zn) = g(zn) for each n ∈ N, then f(z) ≡ g(z) on D. For example, let

f and g be two functions defined on the domain D = {z : |z| < 1} such that f
(
1

n

)
= g

(
1

n

)
. Then

f ≡ g on D.

2. Trigonometric identities like sin2 x+cos2 x = 1 can be extended to the complex plane using the identity
theorem.

Example 12.1.11. Suppose f is entire and f(R) ⊂ R. Then f(z) = f(z) for all z ∈ C. It is easy to show
that g(z) = f (z) is analytic if f is so (Prove it!). If x ∈ R, then

g(x)− f(x) = 0,

since x and f(x) are real. So, g
∣∣
R = f

∣∣
R, and hence by identity theorem, f ≡ g.

Exercise 12.1.12. 1. Show that for any complex numbers z1 and z2, ez1+z2 = ez1 ėz2 .

2. Let f be a non-constant analytic function defined on the domain D = {z : |z| ≤ 2} such that

f

(
n

2n+ 1

)
= 0. Does such a function exist on D? Justify your answer.

3. Let f be an analytic function defined on the open unit circle such that f
(
1

n

)
=

1

n2
. Find f .
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Sample Questions

1. Show that an analytic function f defined on a domain D having an infinite ordered zero is identically
equal to zero.

2. Show that a function f analytic on a domain D has a zero of order m at α ∈ D if and only if it can be
represented as

f(z) = (z − α)mϕ(z),

near α where ϕ is analytic at α with ϕ(α) ̸= 0.

3. Find the Laurent series expansion of f(z) = (1− z)cos

(
1

z

)
about the point z = 0. Hence show that

f has an essential singularity at 0.

4. Show that a point α is a pole of a function f of order m if and only if f can be written in the form

f(z) =
ϕ(z)

(z − α)m

near α, where, ϕ is analytic at α and ϕ(α) ̸= 0.

5. Show that the zeros of a non-constant analytic function f is an isolated point.

6. If f is analytic at α and f(α) ̸= 0, then show that exists a neighbourhood of α in which f(z) ̸= 0.

7. State and prove the interior uniqueness theorem. Is the result true for any arbitrary domain? Justify
your answer.

8. If possible, find a function f analytic in the unit disc {z : |z| < 1} satisfying the following relation

f

(
1

n

)
=

(−1)n

n
,

for each positive integer n.

9. Let f , g be analytic functions in a domain D. Which of the following conditions imply f ≡ g on D?

(a) There is a sequence {zn} of distinct points in D such that f(zn) = g(zn) for all n ∈ N.

(b) There is a convergent sequence {zn} of distinct points in D with its limit in D such that f(zn) =
g(zn) for all n ∈ N.

(c) γ is a smooth path in D joining distinct points a, b ∈ D and f = g on γ.

(d) w ∈ D is such that f (k)(w) = g(k)(w) for all n ≥ 0.

10. Suppose that f is an entire function, and that in every power series (that is, for every z0 ∈ C) f(z) =
∞∑
n=0

cn(z − z0)
n, at least one coefficient is zero. Prove that f is a polynomial.



Unit 13

Course Structure

• Limit point of zeros and poles

• Characteristics of the singularities

• Behaviour of a function at the point at infinity

13.1 Introduction

The previous unit gave us an introduction to the zeros and the types of singularities of a function f . In this
unit, we will be mainly concerned with the behaviour of f near the singularities. Also, from the previous
unit, we have got the idea that the zeros and poles of f are isolated. This means that the zeros of any analytic
function can not be limit points of zeros of f . Also, the poles can also not be a limit point of poles. So, what
do we call the limit points of the zeros and poles of f? We will explore these concepts in this unit.

Objectives

After reading this unit, you will be able to

• identify the limit points of zeros and poles of a function as essential singularities

• know the type of singularity of a function by just analysing its behaviour near that point

• classify functions depending upon its behaviour at the point at infinity

13.1.1 Limit points of Zeros and poles

Theorem 13.1.1. If α is a pole of f , then f(z) → ∞ as z → α.

Proof. Let α be a pole of f of order m. Then,

f(z) =
ϕ(z)

(z − α)m
,

111
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where, ϕ is analytic at α and ϕ(α) ̸= 0. So,

|f(z)| = ϕ(z)

|z − α|m
.

Since ϕ is continuous at α, so for

ϵ =
1

2
|ϕ(α)| > 0,

we can find a δ > 0, such that
|ϕ(z)− ϕ(α)| < ϵ

for |z − α| < δ. Hence,

|ϕ(z)| = |ϕ(z)− ϕ(α) + ϕ(α)|

≥ |ϕ(α)| − 1

2
|ϕ(α)|

=
1

2
|ϕ(α)|,

for |z − α| < δ. Hence,

|f(z)| >
1
2 |ϕ(α)|
|z − α|m

for 0 < |z − α| < δ. Let M > 0 be a large number. Then |f(z)| > M if

1
2 |ϕ(α)|
|z − α|m

> M,

or, 0 < |z − α|m <
1
2 |ϕ(α)|
M

or, 0 < |z − α| <
1
2 |ϕ(α)|
M

1
m

.

This shows that f(z) → ∞ as z → α.

Theorem 13.1.2. Limit point of the zeros of a function f which is not identically equal to zero is an essential
singularity of the function.

Proof. Let α be a limit point of the zeros of f . Then, by definition, every neighbourhood of α contains
infinitely many zeros of f . If possible, let f be analytic at α. Then f is continuous at the point α. So, for any
ϵ > 0, there exists a δ > 0 such that |f(z) − f(α)| < ϵ for |z − α| < δ. But, there is an infinite number of
zeros of f in |z − α| < δ. For these zeros, we must have, |f(α)| < ϵ, that is, f(α) = 0. Hence, α is a zero
of f . This is impossible unless f is identically equal to zero since zeros are isolated points. Hence f is not
analytic at α.

Now, if possible, let α be a pole of f . Then, f(z) → ∞ as z → α, that is, given any number M > 0,
we can find a δ > 0 such that |f(z)| > M is valid in 0 < |z − α| < δ. But the deleted neighbourhood
0 < |z − α| < δ has infinite number of zeros of f so that |f(z)| > M is not true for infinite number of points
in 0 < |z − α| < δ. Hence α cannot be a pole of f . Thus f has an essential singularity at α.

Theorem 13.1.3. The limit point of the poles of a function f is a non-isolated essential singularity of f .

Proof. Let α be a limit point of the poles of f . Since every neighbourhood of α contains infinite number of
poles of f , α cannot be a regular point of f . Hence α is a singularity of f which is non-isolated. Hence the
result.
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The above results are very important since it gives and idea of the number of zeros of an analytic function
over a bounded domain. Also, functions which are analytic except for poles can not have infinite number of
zeros in a bounded domain. But, if we consider the whole complex plane then there are analytic functions
which have infinite number of zeros in C. Say, for example, the function f(z) = sin z. The zeros of f are
n, n = 0, 1, 2, . . .. The limit point of the zeros is infinity. Hence, we can say that the point at infinity is an
essential singularity of sin z. The behaviour of functions at the point at infinity is discussed in details in the
later section.

Theorem 13.1.4. Let f be an analytic function. Then α is a zero of f of order m if and only if α is a pole of
1

f
of order m.

Proof. Let α be a zero of f of order m. Then

f(z) = (z − α)mϕ(z),

near α, where ϕ is a function analytic at α and ϕ(α) ̸= 0. Then clearly,

1

f
(z) =

1

f(z)
=

1

(z − α)mϕ(z)
=

ψ(z)

(z − α)m
,

where
ψ(z) =

1

ϕ(z)
,

is analytic at α and ψ(α) =
1

ϕ(α)
̸= 0. The converse also holds.

Corollary 13.1.5. If α is an essential singularity of f , then it is also an essential singularity of
1

f
.

Proof. Left as exercise.

Exercise 13.1.6. Locate the singularities of the following functions in the extended complex plane C∗ =
C ∪ {∞}

a. cos
1

z
b.

1

ez −1

c.
z

sin π
z

d.
ez

1 + z2

13.1.2 Riemann’s Theorem On Removable Singularity

Theorem 13.1.7. If a function f is bounded and analytic in a deleted neighbourhood 0 < |z − α| < δ, of a
point α, then either f is analytic at α or α is a removable singularity of f .

Proof. Since f is analytic in 0 < |z − α| < δ, so there it has a Laurent expansion of the form

f(z) =
∞∑
n=0

an(z − α)n +
∞∑
n=1

bn(z − α)−n (13.1.1)

If γ : |z − α| = ρ, ρ < δ then the coefficients bn are given by

bn =
1

2πi

∫
γ

f(z)dz

(z − α)−n+1
(13.1.2)
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for n = 1, 2, · · · Since f is bounded in the deleted neighbourhood, there exists aM > 0 such that |f(z)| ≤M
in 0 < |z − α| < δ. Hence,

|bn| =
1

2π

∣∣∣∣∫
γ

f(z)dz

(z − α)−n+1

∣∣∣∣
≤ M

2π
ρn−12πρ

= Mρn.

Since b′ns are constants and ρ can be chosen arbitrarily small, we conclude bn = 0, n = 1, 2, · · · . Hence,
equation (13.1.1) reduces to

f(z) =

∞∑
n=0

an(z − α)n

in 0 < |z−α| < δ. If f(α) = a0, this power series representation of f is actually valid in |z−α| < δ, and in
that case, f is analytic at α. Otherwise f can be made analytic at α by letting f(α) = a0. The point α is then
a removable singularity of f .

13.1.3 Casorati-Weierstrass Theorem

Theorem 13.1.8. Let α be an isolated essential singularity of a functionf and let z0 be any given complex
number. Then, for any ϵ > 0, the inequality |f(z) − z0| < ϵ is satisfied at some point z in each deleted
neighbourhood of α.

Proof. Since α is isolated, there exists a deleted neighbourhood 0 < |z − α| < δ of α where f is analytic. If
possible, let

|f(z)− z0| < ϵ (13.1.3)

be not satisfied at any point in that deleted neighbourhood. Then |f(z)− z0| ≥ ϵ for all z in 0 < |z − α| < δ.
Let

g(z) =
1

f(z)− z0
,

in 0 < |z − α| < δ. Then

|g(z)| =
∣∣∣∣ 1

f(z)− z0

∣∣∣∣ ≤ 1

ϵ

in 0 < |z − α| < δ. Hence g is bounded and analytic in 0 < |z − α| < δ. By Riemann’s Theorem on
removable singularity, α is a removable singularity of g. Let g(α) be defined such that g is analytic at α.
Since f cannot be a constant function, g is also not a constant function. Since g is analytic at α, it has a Taylor
series representation at α. Hence, either g(α) ̸= 0 or g has a zero at α. So, its reciprocal

1

g(z)
= f(z)− z0

is either analytic at α or has a pole there which contradicts the hypothesis that α is an essential singularity of
f . Hence the result.

Corollary 13.1.9. If α is an isolated essential singularity of f , then for arbitrary positive numbers δ and M ,
there is a point z in 0 < |z − α| < δ at which |f(z)| > M .

Hence from all the above theorems , we can conclude that
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1. If f(z) tends to a finite limit as z tends to α, then α is either a regular point or a removable singularity
of f .

2. If f(z) → ∞ as z → α, then α is a pole of f .

3. If f(z) does not tend to any definite limit, finite or infinite, then α is an essential singularity of f .

Example 13.1.10. The function e
1
z has an essential singularity at 0. We will show that it takes on every given

non zero w(= ρ exp(iθ)) ∈ C in any arbitrarily small neighbourhood of 0. Setting z = r eit, we need to solve

exp
1

z
= exp

(
cos t

r
− i

sin t

r

)
= ρ eiθ .

By equating the absolute values, we obtain

cos t

r
= log ρ.

On the other hand, by looking at arguments, we see that a solution is given when

−sin t

r
= θ.

Using cos2 t+ sin2 t = 1, we have

r =
1√

(log ρ)2 + θ2
.

But we are allowed to increase θ by integral multiple of 2π, without changing w. Bearing this in mind, it is
clear from the above expression for r that we can make r as small as we please.

Exercise 13.1.11. 1. Prove, using the Casorati-Weierstrass Theorem, that if f has an essential singularity
at z0, and if w is any complex value whatever, then there exists a sequence {zn} such that

lim
n→∞

zn = z0 and lim
n→∞

f(zn) = w.

2. Suppose f is analytic in the punctured disk 0 < |z| < 1 except for poles {zn} converging to 0. Show
that the range of f in the punctured disk is dense in the complex plane.

3. Let f be an entire function which is not a polynomial. If B is a bounded set then show that the image
of C \B is dense in C.

13.1.4 Behaviour of a function at the point at infinity

As we have already seen before, the function sin z has an essential singularity at ∞. We have deduced this
from the behaviour of the zeros of sin z. However, what can be said about the zeros of any complex function
f in general. Let us look at sin z and consider the point z = 0. Clearly, z = 0 is a zero of sin z. Also, let us
consider the Taylor’s series expansion of sin z about z = 0.

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ . . .

What if we change the variable z to a new variable w, where w =
1

z
. Then, the above equation will be

transformed into
g(w) = sin

1

w
=

1

w
− 1

3!.w3
+

1

5!.w5
− 1

7!.w7
+ . . .
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As z → 0, w → ∞. So, the above equation give the expansion of the function g near infinity. Since the
principal part of the series is non-terminating. This implies that 0 is an essential singularity of g and hence,
∞ is an essential singularity of sin z. Thus, to understand the behaviour of a function f near infinity, we need
to understand the behaviour of f near 0. We formalise this in the next paragraph.

Definition 13.1.12. The point z = ∞ is called an isolated singularity of a function f if f is analytic in the
exterior of a disc {z ∈ C : |z| > R}.

This is quite natural because through stereographic projection, the region {z ∈ C : |z| > R} corresponds
to a punctured disc on the sphere centered at the north pole.

Also, z = ∞ is an isolated singularity of f(z) if and only if z = 0 is an isolated singularity of g(z) =

f

(
1

z

)
. We can use the following definitions to classify the singularities at z = ∞.

Definition 13.1.13. Let z = ∞ be an isolated singularity of f(z).

1. f(z) has removable singularity at z = ∞ if f
(
1

z

)
has a removable singularity at z = 0;

2. f(z) has a pole of order m ≥ 1 at z = ∞ if f
(
1

z

)
has a pole of order m ≥ 1 at z = 0;

3. f(z) has an essential singularity at z = ∞ if f
(
1

z

)
has an essential singularity at z = 0.

The following result gives an idea of the series expansion of f near the point at infinity.

Theorem 13.1.14. Let f(z) be a function of a complex variable z.

1. If z = ∞ is an isolated singularity of f(z), then

f(z) =
∞∑

n=−∞
anz

n (|z| > R),

where R is a positive number.

2. If z = ∞ is a removable singularity of f(z), then an = 0 for all n > 0:

f(z) =
0∑

n=−∞
anz

n (|z| > R).

3. If z = ∞ is a pole of f(z) of order m ≥ 1, then am ̸= 0 and an = 0 for all n > m:

f(z) =

m∑
n=−∞

anz
n (|z| > R).

4. If z = ∞ is an essential singularity of f(z), then an ̸= 0 for infinitely many positive integers n.

Proof. Left as exercise.

Example 13.1.15. 1. f(z) = z3 has a pole of order 3 at infinity.

2. ez has an essential singularity at infinity.
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3. e
1
z has a removable singularity at infinity.

Having discussed the singularities, let us now discuss when ∞ can be a zero of f . A motivation can be

drawn by studying the behaviour of f near 0. Consider the example of f(z) = sin
1

z
. The Laurent expansion

of f about z = 0 is given by

sin
1

z
=

1

z
− 1

3!.z3
+

1

5!.z5
− 1

7!.z7
+ . . .

Replacing
1

z
by w we get

sinw = w − w3

3!
+
w5

5!
− . . .

which indicates a zero at w = 0. We now formalise the definition using the Laurent series expansion of f near
∞.

Definition 13.1.16. Let f(z) be a function of complex variable and let the Laurent series expansion of f near
z = ∞ be given as follows:

f(z) =
0∑

n=−∞
anz

n (|z| > R).

Then z = ∞ will be called a zero of f of order m if a−m ̸= 0 and an = 0 for all n > −m. The Laurent series
will then become

f(z) =

−m∑
n=−∞

anz
n (|z| > R).

We will conclude this unit by considering the zeros and singularities of rational functions at infinity. We
know that a function f is called a rational function if

f(z) =
p(z)

q(z)
,

where both p(z) and q(z) are polynomials in C of degrees m and n respectively. Then z = ∞ is

1. a zero of order n−m of f(z) if n > m;

2. a removable singularity of f(z) if n = m;

3. a pole of f(z) of order m− n if n < m.

Exercise 13.1.17. 1. Show that an entire function f has a removable singularity at infinity if and only if f
is constant.

2. Show that an entire function f has a pole of orderm at infinity if and only if f is a polynomial of degree
m.

3. Characterise those rational functions which have removable singularity at infinity.

4. Characterise those rational functions which have a pole of order m at infinity.

5. Discuss about the essential singularity of a rational function at infinity.
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Sample Questions

1. Show that if α is a pole of f , then f(z) → ∞ as z → α.

2. Show that the limit points of the zeros of a function f is an essential singularity unless f ≡ 0.

3. State and prove Riemann’s theorem on removable singularity.

4. State and prove Casorati Weierstrass theorem.



Unit 14

Course Structure

• Theory of Residues, Argument Principle

• Rouche’s Theorem

• Maximum Modulus Theorem, Schwarz Lemma

14.1 Introduction

The inspiration behind this unit is a desire for an answer to the following question: if f has an isolated
singularity at z = α, what are the possible values for

∫
γ f where γ is a simple closed curve not passing

through α? If the singularity is removable, then clearly the integral will be zero. If z = α is a pole or an
essential singularity, then the answer is not always zero. We investigate the problem by introducing the theory
of residues. Residue theory is also very instrumental in solving certain real integrals as we shall explore later.

Objectives

After reading this unit, you will be able to

• define the residue of a function and state the Cauchy’s Residue theorem

• solve real integrals using the residue theorem

• state the maximum modulus theorem and study its applications

14.1.1 Theory of Residues

Definition 14.1.1. Let f has an isolated singularity at z = α and let

f(z) =
∞∑
n=0

an(z − α)n +
∞∑
n=1

bn(z − α)−n

be its Laurent expansion about z = α. Then the residue of f at z = α is the coefficient b1. We denote it as
Res(f ;α) = b1.

119



120 UNIT 14.

We know that

bn =
1

2πi

∫
γ

f(z)dz

(z − α)−n+1

where γ is any simple closed curve lying in a deleted neighbourhood 0 < |z − α| < r of α and α ∈ Intγ. So
for n = 1, we have

b1 =
1

2πi

∫
γ
f(z)dz

Hence, ∫
γ
f(z)dz = 2πib1

Theorem 14.1.2. If α be a pole of f of order m, then

Res(f ;α) =
1

(m− 1)!
lim
z→α

dm−1

dzm−1
(z − α)mf(z)

Proof. Since α is a pole of f of order m,

f(z) = ϕ(z) +
b1

z − α
+ . . .+

bm
(z − α)m

,

where ϕ is analytic at α and bm ̸= 0. Hence,

(z − α)mf(z) = (z − α)mϕ(z) + b1(z − α)m−1 + . . .+ bm.

Differentiating the above equation with respect to z m− 1 times we get,

dm−1

dzm−1
{(z − α)mf(z)} =

dm−1

dzm−1
{(z − α)mϕ(z)}+ b1(m− 1)!

Since ϕ(z) is analytic at α, so taking limit as z → α to the above equation, we get

lim
z→α

dm−1

dzm−1
{(z − α)mf(z)} = 0 + b1(m− 1)!

Hence, the result.

Corollary 14.1.3. If α is a simple pole of f , then Res(f ;α) = lim
z→α

(z − α)f(z). Also, if m = 2, then

Res(f ;α) = lim
z→α

d

dz

{
(z − α)2f(z)

}
.

Exercise 14.1.4. 1. Find the residue of the following functions at each of the poles:

a. ez b. e
1
z c. sin z

z2
d.

1

z(z2 + 1)(z − 2)2

d. cot z

2. Let p, q be analytic at z = z0. Assume p(z0) ̸= 0, q(z0) = 0, q′(z0) ̸= 0. Find

Res

(
p(z)

q(z)
; z0

)
.
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3. Find the residue of f at z = 0 where

f(z) =
sinh z ez

z5
.

Theorem 14.1.5. (Cauchy’s Residue Theorem) If f is analytic within and on a simple closed curve γ except
for a finite number of singular points a1, a2, · · · , an within γ, then∫

γ
f(z)dz = 2πi

n∑
k=1

Res(f ; ak)

Proof. Since there are finite number of singularities, they must be isolated. Round each singularity ak, k =
1, 2, · · · , n, we draw a circle γk with radius so small that these n circles do not intersect each other and they
all lie within γ. Then f becomes analytic within and on the multiply connected region bounded by γ, γ1, . . .,

γ

γ1

γ2 γk

γn. According to Cauchy Goursat Theorem, extended to such regions, we have,∫
γ
f(z)dz =

n∑
k=1

∫
γk

f(z)dz

= 2πi.Res(f ; a1) + 2πi.Res(f ; a2) + . . .+ 2πi.Res(f ; an)

= 2πi

n∑
k=1

Res(f ; ak)

all the integrals taken in the positive sense.

The theory of residues can be used to evaluate improper real integrals. We consider the following cases:

1. When we evaluate the integral of the form∫ 2π

0
f(cos θ, sin θ)dθ,

where f(cos θ, sin θ) is a real rational function of cos θ and sin θ, we use the transformation z = eiθ

and choose the contour C as the unit circle |z| = 1. Then,

cos θ =
1

2

(
z +

1

z

)
, sin θ =

1

2i

(
z − 1

z

)
and,

dz = i eiθ dθ ⇒ dθ =
dz

iz
.
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Example 14.1.6. Let

I =

∫ 2π

0

cos2 3θ

5− 4 cos 2θ
dθ

=
1

2

∫ 2π

0

1 + cos 6θ

5− 4 cos 2θ
dθ

= Real part of
1

2

∫ 2π

0

1 + ei6θ

5− 4 cos 2θ
dθ. (14.1.1)

Let

I1 =

∫ 2π

0

1 + ei6θ

5− 4 cos 2θ
dθ.

Let z = eiθ. Then, dz = i eiθ dθ. Also we have,

cos 2θ = cos2 θ − sin2 θ

=
1

4

(
z +

1

z

)2

+
1

4

(
z − 1

z

)2

=
1

2

(
z2 +

1

z2

)
We take C : |z| = 1. Then we will get,

I1 =

∫
C

1 + z6

5− 2
(
z2 + 1

z2

) dz
iz

=
1

i

∫
C

z(1 + z6)

5z2 − 2z4 − 2
dz

= −1

i

∫
C

z(1 + z6)

2z4 − 4z2 − z2 + 2
dz

= −1

i

∫
C

z(1 + z6)

(2z2 − 1)(z2 − 2)
dz. (14.1.2)

Let

f(z) =
z(1 + z6)

(2z2 − 1)(z2 − 2)
.

Then the poles of f are at z = ± 1√
2

and z = ±
√
2, of which, z = ± 1√

2
lie inside C. Also, the poles

are simple. Now,

Res

(
f ;

1√
2

)
= lim

z→ 1√
2

(
z − 1√

2

)
z(1 + z6)

2
(
z + 1√

2

)(
z − 1√

2

)
(z2 − 2)

= lim
z→ 1√

2

z(1 + z6)

2
(
z + 1√

2

)
(z2 − 2)

=

1√
2

(
1 + 1

8

)
2. 2√

2

(
1
2 − 2

) = − 3

16
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and similarly,

Res

(
f ;− 1√

2

)
= lim

z→− 1√
2

(
z + 1√

2

)
z(1 + z6)

2
(
z + 1√

2

)(
z − 1√

2

)
(z2 − 2)

= − 3

16
.

Hence, from residue theorem we get from equation (14.1.2),

I1 = −1

i
.2πi.(sum of residues of f at poles within C) = −1

i
.2πi

(
−3

8

)
=

3π

4
.

Hence from equation (14.1.1), we get,

I = Real part of
1

2
.I1 = Real part of

1

2
.
3π

4
=

3π

8
.

2. When we want to evaluate integrals of the form∫ ∞

−∞
f(x)dx

where, f is a rational function of the real variable x. The improper integral converges if

(a) the degree of the denominator of f exceeds that of the numerator by more than one, and

(b) the denominator of f does not vanish on the real line.

We assume that f satisfies both the conditions. Also we have the following lemma:

Lemma 14.1.7. If f(z) → 0 uniformly as z → ∞, then

lim
R→∞

∫
C1

f(z)dz = 0

where C1 is the semi-circle |z| = R, Imz > 0.

If
f(z) =

a0 + a1z + · · ·+ anz
n

b0 + b1z + · · ·+ bmzm
, an ̸= 0, bm ̸= 0

and m > n + 1, then zf(z) → 0 uniformly as z → ∞. Hence we can apply the above lemma for a

function of this type. Now we proceed with the evaluation of the integral
∫ ∞

−∞
f(x)dx. We choose a

curve C (see figure 14.1.1) consisting of

(a) the semi-circle C1 : |z| = R, Imz > 0 and

(b) the line segment C2 of the real axis from −R to R.

Since f is a rational function function, it has a finite number of singularities which are poles, we choose
R sufficiently large so that all the poles of f in the upper half plane lie within C. If αk is a pole of f
within C, then by residue theorem, we have

2πi.
∑
k

Res(f ;αk) =

∫
C
f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz =

∫
C1

f(z)dz +

∫ R

−R
f(x)dx.

(14.1.3)
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y

x
−R 0 RC2

C1

Figure 14.1.1: Structure of C

By the lemma,

lim
R→∞

∫
C1

f(z)dz = 0.

Hence, taking limit as R→ ∞ in equation (14.1.3), we get∫ ∞

−∞
f(x)dx = 2πi.

∑
k

Res(f ;αk).

Example 14.1.8. Let

I =

∫ ∞

−∞

x2

(x2 + 1)(x2 + 4)
dx.

We take

f(z) =
z2

(z2 + 1)(z2 + 4)

and consider ∫
C
f(z)dz

where, C = C1 +C2, C1 : z = Reiθ, 0 ≤ θ ≤ π and C2 : [−R,R], for some real R, sufficiently large.

y

x
−R 0 RC2

C1

Poles of f are at z = ±i and z = ±2i, of which i and 2i lie within C. Now,

Res(f ; i) =
i

6
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and,

Res(f ; 2i) = − i

3

By Residue theorem, ∫
C
f(z)dz = 2πi(Res(f ; i) +Res(f ; 2i))

= 2πi

(
i

6
− i

3

)
=

π

3
. (14.1.4)

Now, since the degree of the denominator of f exceeds that of the numerator by more than one, zf(z) →
0 uniformly as z → ∞. Hence,

lim
R→∞

∫
C1

f(z)dz = 0.

Also,∫
C
f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz =

∫
C1

f(z)dz +

∫ R

−R
f(x)dx =

∫ R

−R

x2

(x2 + 1)(x2 + 4)
dx.

Thus, equation (14.1.4) becomes, ∫ R

−R

x2

(x2 + 1)(x2 + 4)
dx =

π

3

Taking R→ ∞ in the above equation, we get,∫ ∞

−∞

x2

(x2 + 1)(x2 + 4)
dx =

π

3
.

3. Suppose we want to evaluate integrals of the form∫ ∞

−∞
f(z) cosmxdx or

∫ ∞

−∞
f(z) sinmxdx, (14.1.5)

where m > 0 and f is a rational function of x. We know that the improper integrals given in equation
(14.1.5) would converge if

(a) the degree of the denominator of f exceeds that of the numerator and

(b) the denominator of f does not vanish on the real axis.

We assume that f satisfies both the conditions. We first state the lemma due to Jordan.

Lemma 14.1.9. If f(z) → 0 uniformly as z → ∞, then

lim
R→∞

∫
C1

eimz f(z)dz = 0, m > 0

where C1 : |z| = R, Imz > 0.
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We now consider the evaluation of the integrals in equation (14.1.5). Let C be the closed contour
consisting of C1 : |z| = R, Imz > 0, and C2 : [−R,R] (figure is same as 14.1.1). We choose R
sufficiently large so that all the poles of eimz f(z), that is, of f(z), lying in the upper half plane , are
contained inside C. Hence, if αk is a pole of f within γ, by residue theorem,

2πi.
∑
k

Res(eimz f(z);αk) =

∫
C

eimz f(z)dz

=

∫
C1

eimz f(z)dz +
∫
C2

eimz f(z)dz

=

∫
C1

eimz f(z)dz +
∫ R

−R
eimx f(x)dx.

Taking R→ ∞ and applying Jordan’s lemma, we get,

2πi.
∑
k

Res(eimz f(z);αk) =

∫ ∞

−∞
eimx f(x)dx

=

∫ ∞

−∞
f(x) cosmxdx+ i

∫ ∞

−∞
f(x) sinmxdx.

Equating the real and imaginary parts, we get the values of the given integrals.

Example 14.1.10. Let us evaluate the integral∫ ∞

−∞

cosx

x2 + a2
dx, a > 0.

We take

f(z) =
1

x2 + a2

and consider the integral ∫
C

eiz

z2 + a2
dz,

where C = C1 + C2, C1 : |z| = R, Imz > 0 and C2 : [−R,R], R being sufficiently large. The poles

y

x
−R 0 RC2

C1

of
eiz

z2 + a2
are precisely the poles of f . But the poles of f are ±ia of which only ia lies inside C and
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the pole is a simple pole. By residue theorem,

2πi.Res(eiz f(z); ia) =

∫
C

eiz f(z)dz

=

∫
C1

eiz f(z)dz +
∫
C2

eiz f(z)dz

=

∫
C1

eiz f(z)dz +
∫ R

−R
eix f(x)dx. (14.1.6)

Since the degree of the denominator of f exceeds that of the numerator, f(z) → 0 uniformly as z → ∞.
Hence, by Jordan’s lemma,

lim
R→∞

∫
C1

eiz f(z)dz = 0.

Taking limit as R→ ∞ in equation (14.1.6), we get∫ ∞

−∞

eix

x2 + a2
dx = 2πi.Res(eiz f(z); ia)

= 2πi lim
z→ia

(z − ia) eiz

(z − ia)(z + ia)

= 2πi.
e−a

2ia
=
π e−a

a
.

Now,

π e−a

a
=

∫ ∞

−∞

eix

x2 + a2
dx

=

∫ ∞

−∞

cosx

x2 + a2
dx+ i

∫ ∞

−∞

sinx

x2 + a2
dx.

Equating the real part, we have ∫ ∞

−∞

cosx

x2 + a2
dx =

π e−a

a
.

4. Suppose we want to evaluate a real definite integral for which the corresponding complex integrand has

a simple pole on the real axis. We consider the integral
∫ ∞

−∞
f(x)dx, where f(z) has a simple pole

at z = α on the real axis. We take the integral
∫
C
f(z)dz, where C = C1 + C2 + C3 + C4, and

C1 : |z| = R, Imz > 0; C2 : [−R,α− ϵ]; C3 : |z−α| = ϵ, Imz > 0; C4 : [α+ ϵ, R] (see figure 14.1.3).

Here,C1 is positively oriented andC3 is negatively oriented andR is sufficiently large and ϵ is arbitrarily
small. We have indented the contour C at α since α is a simple pole of f . Let k be the sum of the
residues of f at its singularities within C. Then by residue theorem,

2πik =

∫
C
f(z)dz

=

∫
C1

f(z)dz +

∫
C2

f(z)dz +

∫
C3

f(z)dz +

∫
C4

f(z)dz

=

∫
C1

f(z)dz +

∫ α−ϵ

−R
f(z)dz +

∫
C3

f(z)dz +

∫ R

α+ϵ
f(z)dz

=

∫
C1

f(z)dz +

∫
C3

f(z)dz +

∫ ∞

−∞
f(x)dx (14.1.7)
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−R 0 RC2 α− ϵ α+ ϵ

C3

C1

C4α

Figure 14.1.2: Structure of C

when R→ ∞ and ϵ→ 0. We assume that

lim
R→∞

∫
C1

f(z)dz = 0.

Also, since α is a simple pole of f , near α f has a Laurent series expansion of the form

f(z) = ϕ(z) +
a

z − α
,

where ϕ is analytic at α and a = Res(f ;α). Hence,∫
C3

f(z)dz = a

∫
C3

dz

z − α
+

∫
C3

ϕ(z)dz.

On C3, z − α = ϵ eiθ, 0 ≤ θ ≤ π. Hence,∫
C3

f(z)dz = a

∫ 0

π

iϵ eiθ dθ
ϵ eiθ

+

∫
C3

ϕ(z)dz = −iπa+
∫
C3

ϕ(z)dz.

Since ϕ is analytic at α, there exists a positive number M such that in a small neighbourhood of α,
|ϕ(z)| ≤ M . We choose ϵ so small that C3 lies in this neighbourhood. Hence, |ϕ(z)| ≤ M , for all
z ∈ C3. Hence, ∣∣∣∣∫

C3

ϕ(z)dz

∣∣∣∣ ≤Mπϵ→ 0 as ϵ→ 0.

Therefore,

lim
ϵ→0

∫
C3

f(z)dz = −iπa = −iπRes(f ;α).

Now, from equation (14.1.7) we can evaluate the real definite integral
∫ ∞

−∞
f(x)dx.

Example 14.1.11. Suppose we want to evaluate the integral∫ ∞

0

sinx

x
dx.

We consider the integral ∫
C

eiz

z
dz =

∫
C
f(z)dz,

where f(z) =
eiz

z
and C = C1 + C2 + C3 + C4, and C1 : |z| = R, Imz > 0; C2 : [−R,−ϵ];

C3 : |z| = ϵ, Imz > 0; C4 : [ϵ, R]. Here, C1 is positively oriented whereas C3 is negatively oriented.
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−R 0 RC2 −ϵ ϵ

C3

C1

C4

Figure 14.1.3: Structure of C

We have indented the contour C at the origin since the origin is a simple pole of f . Since f is analytic
within and on C, by Cauchy Goursat theorem,

0 =

∫
C
f(z)dz

=

∫
C1

f(z)dz +

∫
C2

f(z)dz +

∫
C3

f(z)dz +

∫
C4

f(z)dz

=

∫
C1

f(z)dz +

∫ −ϵ

−R
f(z)dz +

∫
C3

f(z)dz +

∫ R

ϵ
f(z)dz

=

∫
C1

f(z)dz +

∫
C3

f(z)dz +

∫ ∞

−∞
f(x)dx (14.1.8)

when R→ ∞ and ϵ→ 0. By Jordan’s lemma,

lim
R→∞

∫
C1

f(z)dz = 0.

Also, we know that,

lim
ϵ→0

∫
C3

f(z)dz = −iπ.Res(f ; 0)

= −iπ lim
z→0

z eiθ

z
= −iπ.

Thus, when R→ ∞ and ϵ→ 0, we have, from equation (14.1.8),

0 = −iπ +

∫ ∞

−∞
f(x)dx

or,
∫ ∞

−∞

eix

x
dx = iπ

or,
∫ ∞

−∞

cosx+ i sinx

x
dx = iπ.

Equating the imaginary parts, we get ∫ ∞

−∞

sinx

x
dx = π,

and since
sinx

x
is an even function, so ∫ ∞

0

sinx

x
dx =

π

2
.
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Exercise 14.1.12. 1. Evaluate the following integrals using residue theorem

a.
∫
|z|=1

z + 1

z2 − 2z
dz b.

∫
|z|=3

z + 1

z2 − 2z
dz c.

∫
|z|=2

e2z

(z − 1)2
dz

d.
∫
|z|=4

(
z

z − 1
+

z2

z + 2

)
dz e.

∫
|z|=2

cos z

z5
dz f.

∫
|z|=1/2

1

z sin z
dz

g.
∫
|z|=1

sin z

z4
dz h.

∫
|z|=3/2

1

z(z2 + 1)(z − 2)2
dz i.

∫
|z|=3

dz

z(z2 + 1)(z − 2)2

2. By evaluating
1

2πi

∫
C

dz

(z − a)
(
z − 1

a

) , C : |z| = 1, prove that

∫ 2π

0

dθ

1 + a2 − 2a cos θ
=

2π

1− a2
, if 0 < a < 1.

3. Evaluate the following real integrals by contour integration.

a.
∫ 2π

0

dθ

a+ b cos θ
, a > b > 0 b.

∫ π

0

1 + 2 cos θ

5 + 4 cos θ
dθ

c.
∫ ∞

−∞

dx

(x2 + 1)3
d.
∫ ∞

0

x2dx

(x2 + 1)2
e.
∫ ∞

−∞

dx

(x4 + a4)
, a > 0

d.
∫ ∞

0

cos axdx

(x2 + b2)2
, a, b > 0 e.

∫ ∞

−∞

sinxdx

(x2 + 4x+ 5)
f.
∫ ∞

−∞

x sinxdx

(a2x2 + b2)
, a, b > 0

g.
∫ ∞

0

sinxdx

x(x2 + a2)
, a > 0

4. By integrating
eiz

z − ia
, a > 0 over a suitable contour, show that∫ ∞

−∞

a cosx+ x sinx

x2 + a2
dx = 2π e−a .

14.1.2 Argument Principle

Suppose f is analytic and has a zero of order m at z = a. So, f(z) = (z − a)mg(z), where g is analytic at a
and g(a) ̸= 0. Hence,

f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)
(14.1.9)

and g′/g is analytic near z = a since g(z) ̸= 0. Now suppose, f has a pole of order m at a. Then,
f(z) = (z − a)−mg(z) where g is analytic at a and g(a) ̸= 0. This gives

f ′(z)

f(z)
= − m

z − a
+
g′(z)

g(z)
. (14.1.10)

Again g′/g is analytic near z = a.

Definition 14.1.13. IfG is open and f is a function defined and analytic inG except for poles, then f is called
a meromorphic function on G.
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Theorem 14.1.14. Given a function f , meromorphic in a region G, suppose γ is a simple closed curve in G
and f(z) ̸= 0 on γ and f is analytic on γ. If, N and P denote the number of zeros and poles respectively of
f within γ, multiplicities counted accordingly, then,

1

2πi

∫
γ

f ′(z)

f(z)
dz = N − P.

Proof. Since f is analytic on γ, and f(z) ̸= 0 on γ, the function f ′/f is also analytic on γ. Also, a point
within γ which is neither a pole or zero of f is a regular point of f ′/f . Thus, the only singularities of f ′/f
within γ are the zeros and poles of f within γ. Let a be a zero of f of order m within γ. Then, by equation
(14.1.9)

f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)
.

Hence, a is a simple pole of f ′/f with residue m. Next let, b be a pole of f of order n. Then, by equation
(14.1.10),

f ′(z)

f(z)
= − n

z − b
+
g′(z)

g(z)
.

Hence, b is a simple pole of f ′/f with residue −n. Now, let a1, a2, . . . , ak be the zeros of f with respective
orders p1, p2, . . . , pk within γ and let b1, b2, . . . , bl be the poles of f with respective orders q1, q2, . . . , ql
within γ. Then the only singularities of f ′/f within γ are the points a1, a2, . . . , ak, b1, b2, . . . bl with residues
p1, p2, . . . , pk, −q1,−q2, . . . ,−ql. By residue theorem,

1

2πi

∫
γ

f ′(z)

f(z)
dz = (p1 + p2 + · · ·+ pk)− (q1 + q2 + · · ·+ ql)

= N − P.

Corollary 14.1.15. Let a function f be analytic within and on a simple closed curve γ and f(z) ̸= 0 on γ. If,
N denotes the number of zeros of f within γ, multiplicities being counted, then,

1

2πi

∫
γ

f ′(z)

f(z)
dz = N.

Note 14.1.16. The integral
1

2πi

∫
γ

f ′(z)

f(z)
dz is called the logarithmic residue of f relative to γ.

Theorem 14.1.17. (Argument principle) Let f be analytic within and on a simple closed curve γ except for
at most a finite number of poles within γ and f(z) ̸= 0 on γ. Then

N − P =
1

2π
[Argf ]γ ,

where [Argf ]γ denotes the change of Argf(z) as z moves once round γ in the positive sense. N and P are
respectively the number of zeros and poles of f within γ, counted according to their multiplicities.

Proof. We know that,

N − P =
1

2πi

∫
γ

f ′(z)

f(z)
dz

=
1

2πi

∫
γ

d

dz
Logf(z)dz

=
1

2πi
[Logf(z)]γ . (14.1.11)
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Choosing any point z0 ∈ γ as the initial and terminal point of the path of integration, we make one circuit
round γ in the positive sense. Then Logf(z) varies continuously and in general, its value at z0 after one circuit
differs from its original value at z0. In fact, since Logf(z) = log |f(z)| + iArgf(z), the change in Logf(z)
is entirely due to the change in Argf(z) (since log |f(z)| is single-valued). From equation (14.1.11), we have

N − P =
1

2πi
[log |f(z)|+ iArgf(z)]γ =

1

2π
[Argf ]γ .

Corollary 14.1.18. If f is analytic within and on γ and f(z) ̸= 0 on γ, then the number of zeros of f within
γ is given by

N =
1

2π
[Argf ]γ .

The argument principle establishes a striking relationship between the number of zeros and the number of
poles of f in a domain D and how f maps the boundary δD of the domain, namely, the number of times the
image of δD winds around the origin.

Example 14.1.19. Let f(z) = z2 − 1, on C : |z − 1| = 1. Then

w = f(z) = |z|2e2iθ − 1

The change of argument of w on C is 2π.

14.1.3 Rouche’s Theorem

Theorem 14.1.20. If the functions f and g are analytic within and on a simple closed curve γ and if |g(z)| <
|f(z)| on γ, then f and f + g have the same number of zeros inside γ.

Proof. LetN =number of zeros of f within γ, N ′ =number of zeros of f+g within γ. Since |g(z)| < |f(z)|
on γ, f(z) ̸= 0 on γ. Also, on γ, |f(z) + g(z)| ≥ |f(z)| − |g(z)| > 0. Hence, f(z) + g(z) ̸= 0 on γ. Hence,

N =
1

2π
[Argf ]γ

and

N ′ =
1

2π
[Arg(f + g)]γ

=
1

2π

[
Argf

(
1 +

g

f

)]
γ

=
1

2π

[
Argf + Arg

(
1 +

g

f

)]
γ

=
1

2π
[Argf ]γ +

1

2π

[
Arg

(
1 +

g

f

)]
γ

= N +
1

2π

[
Arg

(
1 +

g

f

)]
γ

. (14.1.12)

Let

F (z) = 1 +
g(z)

f(z)
.
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Then,

|w − 1| = |g(z)|
|f(z)|

< 1, ∀z ∈ γ

where w = F (z). This shows that as z describes the closed contour γ, the variable w describes a closed
curve which lies entirely to the right of the imaginary axis and hence the origin lies outside the curve. Hence

Argw, that is Arg
(
1 +

g

f

)
returns to its original value as z describes γ. Hence,

[
Arg
(
1 +

g

f

)]
γ

= 0. From

equation (14.1.12), we have, N ′ = N and the theorem is proved.

The Fundamental theorem of Algebra can be proved by using the Rouche’s theorem.

Theorem 14.1.21. Every polynomial of degree n has n zeros in the complex plane.

Proof. Let
P (z) = a0 + a1z + . . .+ anz

n, an ̸= 0

be a polynomial of degree n. Let f(z) = anz
n and g(z) = a0 + a1z + . . .+ an−1z

n−1. Then f(z) + g(z) =
P (z). Let γ be the circle |z| = R, R > 1. Now, f has n zeros inside γ, all the zeros being at the origin. On γ,

|f(z)| = |an|Rn

and

|g(z)| ≤ |a0|+ |a1||z|+ . . .+ |an−1||zn−1|
= |a0|+ |a1|R+ . . .+ |an−1|Rn−1

≤ Rn−1 (|a0|+ |a1|+ . . .+ |an−1|) .

Hence, on γ,

|g(z)| < |f(z)| if
|a0|+ |a1|+ . . .+ |an−1|

|an|R
< 1,

that is, if

R >
|a0|+ |a1|+ . . .+ |an−1|

|an|
.

We choose R1 such that

R1 > max

{
1,

|a0|+ |a1|+ . . .+ |an−1|
|an|

}
.

Then the functions f and g are analytic within and on the circle γ1 : |z| = R1 and |g(z)| < |f(z)| for all
z ∈ γ1. Hence, by Rouche’s theorem, f and f + g, that is, P will have the same number of zeros within γ1.
Hence P has n zeros within γ1 and as such, P has n zeros in the entire complex plane.

Example 14.1.22. Suppose we want to determine the number of zeros, including multiplicity, of the polyno-
mial 2z5 − 6z2 + z + 1 in 1 ≤ |z| < 2. Let g(z) = 2z5 − 6z2 + z + 1, f1(z) = −6z2 and f2(z) = 2z5,
then

|f1 − g| ≤ 2 + 1 + 1 = 4 < 6 = |f1|

on |z| = 1 and
|f2 − g| ≤ 24 + 2 + 1 = 27 < 64 = |f2|

on |z| = 2. Hence, by Rouche’s theorem, g has 2 zeros in |z| < 1 and 5 zeros in |z| < 2. Thus, g has 3 zeros
in 1 ≤ |z| < 2.
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Exercise 14.1.23. 1. Use Rouche’s theorem to show that the equation z4 + 5z − 1 = 0 has just one zero
inside |z| = 1.

2. Determine the number of zeroes, including multiplicity, of the following polynomials in |z| < 1.

(a) z6 − 5z4 + z3 − 2z

(b) 2z4 − 2z3 + 2z2 − 2z + 9.

3. Determine the number of zeroes, including multiplicity, of the following polynomials in |z| < 2.

(a) z4 + 3z3 + 6

(b) z4 − 2z3 + 9z2 + z − 1.

4. Suppose c ∈ C is such that |c| > e. Show that the number of solution, including multiplicity, of the
equation ez = czn in |z| < 1 is n.

5. If k > 1, show that the equation zn ek−z = 1 has n roots inside |z| = 1, n being a positive integer.

6. Show that all the roots of the equation z5 + az + 1 = 0 lie within the circle |z| = r if |a| < r4 − 1

r
.

7. Let f be analytic on |z| ≤ 1 and |f(z)| < 1 on |z| = 1. Show that there is just one point α within the
circle |z| = 1 such that f(α) = α.

8. Show that all the roots of z7 − 5z3 + 12 = 0 lie in the annulus bounded by the circles |z| = 1 and
|z| = 2.

9. Find the number of roots of the equation z8 + 6z5 − 3z3 + 1 = 0 in the annulus 1 < |z| < 2.

14.1.4 Maximum Modulus Theorem

In this unit, we will state the maximum modulus theorem which gives us an idea on the size of an analytic
function in some specific domains. Let us first state the following lemma.

Lemma 14.1.24. If ϕ(x) is continuous in [a, b], ϕ(x) ≤ k in [a, b] and
1

b− a

∫ b

a
ϕ(x)dx ≥ k, then ϕ(x) ≡ k

throughout [a, b].

Proof. If possible let ϕ(x) ̸= k throughout the open interval (a, b). Then there exists a point α ∈ (a, b) such
that ϕ(α) < k. Due to continuity of ϕ in (a, b), we can find an interval (α− δ, α+ δ) in which ϕ(x) < k − ϵ
for a chosen ϵ > 0. Now,∫ b

a
ϕ(x)dx =

∫ α−δ

a
ϕ(x)dx+

∫ α+δ

α−δ
ϕ(x)dx+

∫ b

α+δ
ϕ(x)dx

≤ k(α− δ − a) + 2δ(k − ϵ) + k(b− α− δ)

= k(b− a)− 2δϵ.

Hence,
1

b− a

∫ b

a
ϕ(x)dx ≤ k − 2δϵ

b− a

which contradicts the given condition. Hence ϕ(x) = k throughout (a, b). From the continuity of ϕ at a and
b, it follows that ϕ(a) = k = ϕ(b). Hence, ϕ(x) = k in [a, b].
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Let us now state the maximum modulus theorem.

Theorem 14.1.25. If a function f is analytic in a bounded region G and continuous on G (closure of G), and
M = max

z∈∂G
|f(z)|, ∂G being the boundary of G, then |f(z)| < M in G unless f is a constant function.

Proof. Let f be non-constant on G. If possible, let the maximum value of |f(z)| on G be attained at an
interior point α of G. Let γ : |z − α| = r, where r is so small that γ ⊂ G. By Cauchy’s integral formula,

f(α) =
1

2πi

∫
γ

f(z)

z − α
dz. (14.1.13)

Clearly, |f(α)| ̸= 0. For otherwise f will be a constant function since |f(α)| is assumed to be a maximum.
Putting z − α = r eiθ,

f(z)

f(α)
= ρ(θ) eiϕ(θ)

so that ρ and ϕ are continuous functions pf θ, we get from equation (14.1.13),

1 =
1

2πi

∫
γ

f(z)

f(α)

dz

z − α

=
1

2πi

∫ 2π

0

ρ eiϕ .ir eiθ dθ
r eiθ

=
1

2π

∫ 2π

0
ρ eiϕ dθ. (14.1.14)

Hence,

1 =
1

2π

∣∣∣∣∫ 2π

0
ρ eiϕ dθ

∣∣∣∣ ≤ 1

2π

∫ 2π

0
|ρ eiϕ |dθ = 1

2π

∫ 2π

0
|ρ(θ)|dθ.

Also, |ρ(θ)| =
∣∣∣∣ f(z)f(α)

∣∣∣∣ < 1 on G, since |f(α)| is a maximum on G. Hence, by lemma 14.1.24, ρ = ρ(θ) = 1

in 0 ≤ θ ≤ 2π. Now, taking real part of equation (14.1.14) we get

1 =
1

2π

∫ 2π

0
cosϕ(θ)dθ.

Since cosϕ(θ) ≤ 1 in 0 ≤ θ ≤ 2π, we have, by the lemma 14.1.24, cosϕ(θ) = 1 in 0 ≤ θ ≤ 2π. Hence,

sinϕ(θ) = 0. Thus,
f(z)

f(α)
= 1 on γ, that is, f(z) = f(α) on γ and hence by the interior uniqueness theorem,

everywhere on G. This implies that f is a constant function which contradicts our assumption. Hence, the
maximum value of |f | can not be attained at an interior point of G, unless f is a constant function.

Corollary 14.1.26. Suppose that G is a bounded region with compact closure G. . If f is analytic on G and
continuous on G then

sup
z∈G

|f(z)| ≤ sup
z∈G\G

|f(z)|

Note 14.1.27. It is impossible to drop the assumption that G is bounded in the maximum modulus theorem.
For example, let G = {z : Imz > 0} and f(z) = e−iz . Then f is continuous on G = {z : Imz ≥ 0}
and analytic on G. If z ∈ ∂G = {z : Imz = 0}, then |f(z)| = | e−ix | = 1. But for z = x + iy ∈ G,
|f(z)| = ey → ∞ as y → ∞. Thus, maximum modulus theorem is not true for f and G.
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Theorem 14.1.28. (Minimum modulus theorem) Let f be a non-constant analytic function in a bounded
region G and continuous on G. If f(z) ̸= 0 inside ∂G, ∂G being the boundary of G, then |f(z)| must attain
its minimum value on ∂G.

Proof. The theorem is clearly true when f vanishes at a point on ∂G. We therefore assume that f(z) ̸= 0

on ∂G. It follows that
1

f
is also analytic in G and continuous on G since f(z) ̸= 0 on ∂G. By Maximum

modulus theorem,
1

|f |
cannot assume its maximum value inside ∂G and so |f | can not attain its minimum

value inside ∂G. Since |f | has a minimum on G (since f is continuous on a compact set G), this minimum
must be attained on ∂G.

Note 14.1.29. If f is analytic within and on a simple closed curve γ and f(z) = 0 at some point in the interior
of γ, then |f | need not assume its minimum value on γ. For example, let f(z) = z for |z| ≤ 1 and γ : |z| = 1.
Then f(0) = 0. Also, for all z ∈ γ, |f(z)| = |z| = 1. Hence, the minimum value of |f | does not occur on γ.

The next theorem is an important application of the maximum modulus theorem.

Theorem 14.1.30. (Schwarz Lemma) Let D = {z : |z| < 1} and suppose that f is analytic on D with

1. |f(z)| ≤ 1

2. f(0) = 0.

Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z in the disk D. Moreover, if |f ′(0)| = 1 or if |f(z)| = |z| for some
z ̸= 0, then there exists a constant c, |c| = 1, such that f(w) = cw for all w in D.

Proof. Define g : D → C by

g(z) =
f(z)

z
, z ̸= 0

= f ′(z), z = 0

Then, g is analytic in D. Using Maximum Modulus Theorem,

|g(z)| ≤ 1

r

for |z| ≤ r and 0 < r < 1. Letting r approach 1, we get,

|g(z)| ≤ 1

for all z in D. That is,
|f(z)| ≤ |z|

and |f ′(0)| = |g(0)| ≤ 1.
If |f(z)| = |z| for some z ̸= 0, in D, or |f ′(0)| = 1, then |g| assumes its maximum value inside D. Thus,

by Maximum Modulus Theorem, g(z) ≡ c, for some constant c with |c| = 1. Hence, f(z) = cz and hence
the result.

Theorem 14.1.31. (Open Mapping theorem) Let G be a region and suppose that f is a non-constant analytic
function on G. Then for any open set U in G, f(U) is open.
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Proof. Let U ⊂ G be open. To show that f(U) is open we show that for each a ∈ U , there exists a δ > 0
such that the open ball B(f(a); δ) ⊂ f(U). Let ϕ(z) = f(z)− f(a). Then a is a zero of ϕ. Since zeros of an
analytic function are isolated points, there exists an open ball B(a; r) with B(a; r) ⊂ U such that ϕ(z) ̸= 0
in 0 < |z − α| < r. In particular, ϕ(α) ̸= 0 for α ∈ ∂B(a; ρ) where ρ < r.

Let 2δ = min
α∈∂B(a;ρ)

|ϕ(α)|. Then δ > 0. Now, for any w ∈ B(f(a); δ) we have

|f(α)− w| ≥ |f(α)− f(a)| − |f(a)− w|
= |ϕ(α)| − |f(a)− w|
> 2δ − δ > |f(a)− w| ∀α ∈ ∂B(a; ρ).

This implies that
min

α∈∂B(a;ρ)
|f(α)− w| > |f(a)− w|. (14.1.15)

Let F (z) = f(z)−w. Then f has a zero in B(a; ρ). For if F (z) ̸= 0 in B(a; ρ), there exists a neighbourhood

N(a) of a containing B(a; ρ) lying in G such that F (z) ̸= 0 in N(a). Then
1

F (z)
will be analytic in N(a)

and ∣∣∣∣ 1

F (a)

∣∣∣∣ < max
α∈∂B(a;ρ)

∣∣∣∣ 1

F (α)

∣∣∣∣ = 1

minα∈∂B(a;ρ) |F (α)|
,

that is,
min

α∈∂B(a;ρ)
|f(α)− w| < |f(a)− w|

which contradicts equation (14.1.15). Hence, there exists z0 ∈ B(a; ρ) such that f(z0) = w. Since w is an
arbitrary point of B(f(a); δ) it follows that B(f(a); δ) ⊂ f(U) and the theorem is proved.

Exercise 14.1.32. 1. Let D = {z : |z| < 1} and f : D → D be analytic with f(0) = 0. Prove that
|f(z)| ≤ |z| for all z ∈ D.

2. Let f be analytic in a bounded region D and continuous on D. Let u = Ref . Show that u can not attain
its maximum value at an interior point of D.

3. Let f be a non-constant analytic function on a bounded domain D and continuous on D and suppose
that |f(z) ≡constant on ∂D. Prove that f has at least one zero in D.

4. Apply maximum modulus principle to prove the fundamental theorem of Algebra.

5. If f is analytic on the disk |z| ≤ 1, |f(z)| ≤M on |z| = 1 and f(a) = 0 where |a| < 1, show that

|f(z)| ≤M

∣∣∣∣ z − a

1− az

∣∣∣∣ on |z| ≤ 1.
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Sample Questions

1. State and prove the Cauchy’s Residue theorem.

2. State and prove the Open mapping theorem.

3. State and prove the maximum modulus theorem. Hence prove the Fundamental theorem of Algebra.

4. State and prove the Schwarz lemma.

5. Let f(z) =
P (z)

Q(z)
, where (i) P , Q are analytic at α, (ii) P (α) ̸= 0, and (iii) Q has a double zero at α.

Show that

Res(f ;α) =
2

3
.
3P ′(α)Q′′(α)− P (α)Q′′′(α)

(Q′′(α))2
.

6. Let f be analytic within and on a simple closed curve γ except for a finite number of poles within γ and
f(z) ̸= 0 on γ. Also, let ϕ be analytic within and on γ. If α1, α2, . . . , αm be the zeros of f within γ
of respective orders p1, p2, . . . , pm and β1, β2, . . . , βn be the poles of f within γ with respective orders
q1, q2, . . . , qn, show that

1

2πi

∫
γ

f ′(z)

f(z)
ϕ(z)dz =

m∑
k=1

pkϕ(αk)−
n∑
k=1

qkϕ(βk).
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15.1 Introduction

In this chapter the concept of linear operators and their properties would be briefly discussed. Conventionally,
a mapping from one vector space to another vector space is called an operator.

15.2 Linear Operators

Definition 15.2.1. Let X and Y be any two linear spaces over the same scalar field Φ (RorC). A mapping
T : XY is called a linear operator if it preserves both addition and scalar multiplication. i.e., if for all x, y ∈ X
and all α ∈ Φ, we have

1. T (x+ y) = Tx+ Ty (additive property)

2. T (αx) = αTx (homogeneity property).

Obviously, conditions (i) and (ii) are equivalent to the single condition T (αx+ βy) = αTx+ βTy, for all
x, y ∈ X and α, β ∈ Φ.

Definition 15.2.2. The Null space N(T ) of T is the set of all x ∈ X such that T (x) = 0. The Null space of
T is also called the Kernel of T .

Definition 15.2.3. The range space R(T ) is the set

R(T ) = T (x) ∈ Y x ∈ X.

Example 15.2.4. Let X be a vector space.

139
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1. The identity operator I : XX , defined as
I(x) = x

for all x ∈ X . This is a linear operator on X .

2. The zero operator O : X → X defined as

O(x) = x

for all x ∈ X is a linear operator on X .

3. Let X be the space of all polynomial on [a, b]. Then the operator T : X → X defined as

T(x(t)) = x′(t)

for every polynomial x(t) ∈ X , is linear.

4. A linear operator T on C[a, b] into itself can be defined as

T(x(t)) =

∫ t

a
x(ξ)dξ

where t ∈ [a, b].

We can define another linear operator on C[a, b] as

T ′(x(t)) = tx(t).

Some properties of linear operators are presented below.

Theorem 15.2.5. For every linear operators T : X → Y , we have

1. T0 = 0

2. T (−x) = −Tx

3. T (x− y) = Tx− Ty

4. T (
∑n

i=1 αixi) =
∑n

i=1 αiT (xi).

Proof. 1. We have T0 = T (0.0) = 0T0 = 0

2. T (−x) = T ((−1)x) = −1Tx = −Tx

3. T (x− y) = T (x+ (−y)) = Tx+ T (−y) = Tx+ (−Ty) = Tx− Ty.

4. For n = 1, T (
∑n

i=1 αixi) = T (α1x1) = α1Tx1 =
∑n

i=1 αiT (xi) Now for n > 1,

T

(
n∑
i=1

αixi

)
= T (α1x1 + α2x2 + · · ·+ αn−1xn−1 + αnxn)

= T (α1x1 + α2x2 + · · ·+ αn−1xn−1) + αnTxn

= T (α1x1 + α2x2 + · · ·+ αn−2xn−2) + αn−1Txn−1 + αnTxn
...
...

= α1Tx1 + α2Tx2 + · · ·+ αn−1Txn−1 + αnTxn

=
n∑
i=1

αiT (xi).
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Theorem 15.2.6. Let T : X → Y be a linear operator, then

1. The range T (X) of T is a linear subspace of Y .

2. The inverse operator T−1 : T (X) → X exists if and only if Tx = 0 ⇒ x = 0.

3. If T−1 exists then T−1 is a linear operator on T (X).

Proof. 1. Since T0 = 0 ∈ Y , so 0 ∈ T (X).

Let u, v ∈ T (X) and α, β be any two scalars. Then

u = Tx and v = Ty for some x, y ∈ X.

So, T (αx+ βy) = αTx+ βTy = αu+ βv ∈ T (X). Hence, T (X) is a linear subspace of Y .

2. The inverse operator T−1 : T (X) → X exists if and only if T is one – to – one.

Now let T−1 exists. Then T is one – to – one and hence

Tx = 0 ⇒ Tx = T0 ⇒ x = 0.

Conversely, assume that Tx = 0 ⇒ x = 0. If then Ty = Tz for some y, z ∈ X , we have Ty−Tz = 0
i.e., T (y − z) = 0 and hence by hypothesis, y − z = 0 i.e., y = z.

Hence T is one – to – one and, therefore, T−1 exists.

3. Suppose T−1 : T (X) → X exists. We know that T (X) is a linear subspace of Y . So T (X) and X are
linear spaces over the same scalar field.

Let u, v ∈ T (X) and let α, β be any two scalars. Then T−1(u) and T−1(v) are unique vectors of X .
Since T is linear, we have

T
(
αT−1(u) + βT−1(v)

)
= αT

(
T−1(u)

)
+ βT

(
T−1(v)

)
= αu+ βv.

Therefore by definition, T−1(αu+ βv) = αT−1(u) + βT−1(v).

Hence T−1 is a linear operator on T (X).

Theorem 15.2.7. Let T : X → Y be a linear operator. If X has finite dimension n then the linear subspace
T (X) of Y has some finite dimension m ≤ n, equality holding if and only if T−1 exists. If X and Y are of
the same finite dimension and if T−1 exists, then T (X) = Y (i.e., T is onto Y ).

Proof. Since T : X → Y be a linear operator, we know that T (X) is a linear subspace of Y . NowX has finite
dimension n. Let y1, y2, . . . , yn+1 be any (n + 1) vectors in T (X). Then there are vectors x1, x2, . . . , xn+1

in X such that Tx1 = y1, Tx2 = y2, . . . , Txn+1 = yn+1.
Since dimX = n, so the set of vectors {x1, x2, . . . , xn+1} is linearly independent in X . Then there are

scalars α1, α2, . . . , αn+1 not all zero such that

α1x1 + α2x2 + · · ·+ αn+1xn+1 = 0.

Then
T (α1x1 + α2x2 + · · ·+ αn+1xn+1) = T0 = 0

⇒ α1Tx1 + α2Tx2 + · · ·+ αn+1Txn+1 = 0

⇒ α1y1 + α2y2 + · · ·+ αn+1yn+1 = 0, where α1, α2, . . . , αn+1 not all zero.
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So any (n+ 1) vectors y1, y2, . . . , yn+1 in T (X) are linearly dependent. Therefore, the maximum number of
linearly independent vectors in T (X) cannot exceed n. Hence T (X) has some finite dimension m ≤ n.

Next first suppose that m = n.
If m = n = 0, then X = {0} and T (X) = {0}. So in that case T is one - to - one and hence T−1 exists.

Assume that m = n ≥ 1. Then T (X) has a basis of n-vectors, {u1, u2, . . . , un}, say. Then there are vectors
e1, e2, . . . , en in X such that

u1 = Te1, u2 = Te2, . . . , un = Ten

Let α1, α2, . . . , αn be scalars such that α1e1 + α2e2 + . . .+ αnen = 0. Then

T (α1e1 + α2e2 + . . .+ αnen) = T0 = 0

⇒ α1Te1 + α2Te2 + · · ·+ αnTen = 0

⇒ α1u1 + α2u2 + · · ·+ αnun = 0.

Since the basis {u1, u2, . . . , un} is linearly independent, we must have α1 = α2 = . . . = αn = 0. Hence the
set of vectors {e1, e2, . . . , en} in X is linearly independent. Since dimX = n, so e1, e2, . . . , en is a basis of
X . Therefore, each x ∈ X can be expressed uniquely as a linear combination x = β1e1 + β2e2 + . . .+ βnen,
say.

Then Tx = 0
⇒ T (β1e1 + β2e2 + . . .+ βnen) = 0
⇒ β1Te1 + β2Te2 + . . .+ βnTen = 0
⇒ β1u1 + β2u2 + · · ·+ βnun = 0
⇒ β1 = β2 = . . . = βn = 0

and so x = 0. Thus Tx = 0 ⇒ x = 0. Hence T−1 exists.
Conversely, assume that T−1 : T (X) → X exists. Then we know that T−1 is a linear operator. So by the

first part of the proof, we have
dimT−1(T (X)) ≤ dimT (X) = m

i.e., dimX ≤ m, i.e., n ≤ m.

Since m ≤ n, it follows that m = n. Finally, if dimX = dimY = n and if T−1 exists, then by the above
dimT (X) = m = n. So dimT (X) = dimY . But we know that if T (X) is a proper subspace of Y , then
dimT (X) < dimY . Hence we must have T (X) = Y , i.e., T is onto or surjective.

Exercise 15.2.8. Prove that N(T ) is a linear subspace of X .

Lemma 15.2.9. Let T : X → Y and S : Y → Z be bijective linear operators, where X,Y, Z are vector
spaces. Then the inverse (ST )−1 : Z → X of the product of ST exists, and

(ST )−1 = T−1S−1.

Proof. The operator ST : X → Z is bijective, so that (ST )−1 exists. We thus have

ST (ST )−1 = IZ

where IZ is the identity operator on Z. Applying S−1 and using S(−1)S = IY (identity operator on Y ), we
obtain

S−1ST (ST )−1 = T (ST )−1 = S−1IZ = S−1.
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Applying T−1 and using T−1T = IX , we obtain

T−1T (ST )−1 = T−1S−1

i.e., IX(ST )
−1 = (ST )−1 = T−1S−1.

Hence the result.

Exercise 15.2.10. 1. If the product (the composite) of two linear operators exists, show that the product
operator is also linear.

2. Let T : X → Y be a linear operator whose inverse exists. If {x1, x2, . . . , xn} is linearly independent
in X then show that the set {T (x1), T (x2), . . . , T (xn)} is linearly independent in Y .

3. Let T : C[0, 1] → C[0, 1], where C[0, 1] is a Banach space under sup norm, such that Tx = y where

y(t) =

∫ t

a
x(ξ)dξ; x ∈ C[0, 1] and 0 ≤ t ≤ 1.

Finde the range of T , and obtain T−1 : T (C[0, 1]) → C[0, 1]. Examine if T−1 is linear.



Unit 16

Course Structure

• Introduction

• Objectives

• Bounded Linear operators

• Continuity

16.1 Introduction

In this section the concept of bounded linear operators on normed linear spaces are introduced. The properties
of those linear operators are also discussed.

Objectives

After reading this unit, the readers will be able to

• define bounded linear operators

• learns about their various characterizations

• learn various examples of bounded linear operators

• learn about boundedness in finite dimensional normed linear spaces

• learn the relationship between continuity and boundedness

16.2 Linear Operators on Normed Linear Spaces

Definition 16.2.1. Let X,Y be any two normed linear spaces over the same scalar field Φ (R or C). A linear
operator T : X → Y is said to be bounded if there is a number c > 0 such that

||Tx|| ≤ c||x|| for all x ∈ X.

144
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Theorem 16.2.2. Let T : X → Y be a linear operator where X,Y be any two normed linear spaces over the
same scalar field Φ (R or C). Then the following conditions are equivalent:

1. T is continuous at some point of X

2. T is continuous on X

3. T is a bounded linear operator

4. The image T (S) of the unit sphere S = {x ∈ X : ||x|| = 1} is bounded

5. The image T (E) of every bounded subset E ⊂ X is bounded in Y .

Proof.1 ⇒ 2 Suppose that T is continuous at some point x0 ∈ X . Then for any ϵ > 0, there is a δ > 0 such
that

||Tx− Tx0|| < ϵ whenever ||x− x0|| < δ. (16.2.1)

Then for any two points x1, x2 ∈ X with ||x1 − x2|| < δ we have ||(x1 − x2 + x0)− x0|| < δ; and so
by (16.2.1)

||T (x1 − x2 + x0)− Tx0|| < ϵ

i.e., ||Tx1 − Tx2 + Tx0Tx0|| < ϵ

i.e., ||Tx1 − Tx2|| < ϵ.

Hence T is not only continuous but also uniformly continuous on X .

Thus, 1 implies 2.

2 ⇒ 3 By 2 T is continuous on 0 ∈ X . So for ϵ = 1, there is a δ > 0 such that

||Tx|| = ||Tx− T0|| < ϵ = 1 whenever ||x− 0|| < δ.

Now if x ∈ X and x ̸= 0, then
δ

2||x||
.x ∈ X and

∣∣∣∣| δ2x.||x||
∣∣∣∣ | = δ

2||x||
||x|| = δ

2
< δ. So by 2,

∣∣∣∣|T ( δ

2||x||
.x

)∣∣∣∣ | < 1

i.e.,
∣∣∣∣| δ

2||x||
.Tx

∣∣∣∣ | < 1

i.e.,
δ

2||x||
.||Tx|| < 1

i.e., ||Tx|| < 2

δ
||x||.

Hence for all x ∈ X (with x = 0) we have ||Tx|| ≤ 2

δ
||x||. Therefore, by definition, T is a bounded

linear operator.

3 ⇒ 4 Do yourself.

4 ⇒ 5 Do yourself.
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5 ⇒ 1 The set E = {x ∈ X : ||x|| < 1} ⊂ X is bounded. So by 5, T (E) is bounded in Y . So there is a
number M > 0 such that ||Tx|| ≤M for all x ∈ E, i.e., for ||x|| < 1.

Now given ϵ > 0, let δ =
ϵ

2M
. Then for all x ∈ X with ||x − 0|| < δ, we have

∣∣∣∣|1δ x
∣∣∣∣ | = 1

δ
||x|| < 1

and hence by the above theorem, ∣∣∣∣|T (1

δ
x

)∣∣∣∣ | ≤M

or,
1

δ
||Tx|| ≤M

or, ||Tx|| ≤Mδ =
ϵ

2
< ϵ

or, ||Tx− T0|| < ϵ.

Hence T is continuous at 0 ∈ X .
This completes the proof of the theorem.

Example 16.2.3. 1. The identity operator I : X → X on a normed linear space X = {0} is bounded and
has norm ||I|| = 1.

2. The zero operator 0 : X → Y is bounded and has norm ||0|| = 0.

3. LetX be the normed linear space of all polynomials on J = [0, 1] with norm ||x|| = max |x(t)|, t ∈ J .
Let us define a linear operator T on X as

T (x(t)) = x′(t).

Do it yourself.

Example 16.2.4. An additive operator T : X → Y , where X,Y are any two normed linear spaces over the
same scalar field is continuous if and only if it is bounded.

First suppose that T is continuous. By continuity of T at 0 ∈ X , for ϵ = 1, there is a δ > 0 such that

||Tx− T0|| < ϵ = 1, whenever ||x− 0|| < δ.

Now, T0 = T (0 + 0) = T0 + T0, so T0 = 0. For any x with x ̸= 0, we chose a rational number
m

n
(m, n

are positive integers) such that
δ

2||x||
<
m

n
<

δ

||x||
.

Then
∣∣∣|m
n
x
∣∣∣ | = m

n
||x|| < δ and so by the above

∣∣∣|T (m
n
x
)∣∣∣ | < ϵ = 1. Since T is additive, we have

T (mx) = T (x+ x+ . . .+ x−m times)

= mTx = mT

(
n.

1

n
x

)
= mnT

(
1

n
x

)
= nT

(m
n
x
)

i.e.,
m

n
Tx = T

(m
n
x
)
.

Therefore, ∣∣∣|T (m
n
x
)∣∣∣ | = ∣∣∣|m

n
T (x)

∣∣∣ | = m

n
||Tx||.
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Therefore,
m

n
||Tx|| < 1 i.e., ||Tx|| < m

n
<

2

δ
||x||.

Therefore,

||Tx|| < 2

δ
||x|| for all x ∈ X (including x = 0).

Thus T is a bounded linear operator.
Conversely, assume that the operator T is bounded. Then there is a number c > 0 such that ||Tx|| ≤ c||x||

for all x ∈ X . Then

||Tx− Ty|| = ||T (x− y + y)− Ty|| = ||T (x− y) + Ty + Ty|| = ||T (x− y)|| ≤ c||x− y||.

This shows that T is continuous.

Theorem 16.2.5. Theorem 16.2.5. Let T : X → Y be a linear operator where X,Y are any two normed
linear spaces over the same scalar field. Then T−1 : T (X) → X exists and is continuous if and only if there
is a constant c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ X .

Proof. First suppose that T−1 : T (X) → X exists and is continuous on T (X). We know that T−1 is a linear
operator on the normed linear space T (X) of Y (by Theorem 1.1.2). Since further here T−1 is continuous,
so there is a number d > 0 such that

∥∥T−1y
∥∥ ≤ d | y∥ for all y ∈ T (X). Now for each x ∈ X we have

Tx ∈ T (X) and so∥∥T−1(Tx)
∥∥ ≤ d | Tx∥, i.e., ∥x∥ ≤ d∥Tx∥, i.e., ∥Tx∥ ≥ c∥x∥, where c =

1

d
> 0.

Conversely, assume that there is a constant c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ X . Then for any
x ∈ X,Tx = 0 implies c||x∥ ≤ ∥Tx∥ = ∥0∥ = 0

⇒ ∥x∥ = 0
⇒ x = 0.

Therefore, T is one - to - one and hence T−1 : T (X) → X exists, and we know that T−1 is a linear operator.
Now for all y ∈ T (X), we have ∥∥T (T−1y

)∥∥ ≥ c
∥∥T−1y

∥∥
i.e., ∥y∥ ≥ c

∥∥T−1y
∥∥

i.e.,
∥∥T−1y

∥∥ ≤ 1

c
∥y∥.

Thus T−1 is a bounded linear operator on T (X). Hence T−1 is continuous.

Theorem 16.2.6. Let X and Y are any two normed linear spaces over the same scalar field. If X has finite
dimension then every linear operator T : X → Y is continuous (equivalently bounded).

Proof. Proof. If dimX = 0, then X = {0}. So the only linear operator T : X = {0} → Y is given by
T0 = 0, which is trivially continuous.

Let now dimX = k ≥ 1. Then X has a basis of k vectors, {e1, e2, . . . , ek}, say. Then each x ∈ X can be
represented uniquely as a linear combination

x = α1e1 + α2e2 + . . .+ αkek.

Tx = T (α1e1 + α2e2 + . . .+ αkek) = α1Te1 + α2Te2 + . . .+ αkTek
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So ∥Tx∥ = ∥α1Te1 + α2Te2 + . . .+ αkTek∥

≤ |α1| · ∥Te1∥+ |α2| · ∥Te2||+ . . .+ | αk
≤M (|α1|+ |α2|+ . . .+ |αk|) .
M = max {∥Te1∥ , ∥Te2∥ , . . . , ∥Tek∥} .

a constant λ > 0 such that λ (|α1|+ |α2|+ . . .+ |αk|) ≤ ∥α1e1 + α2e2 + . . .+ αkek∥ for every set of
scalars {α1, α2, . . . , αk}. So in this case we get ∥Tx∥ ≤M · 1λ ∥α1e1 + α2e2 + . . .+ αkek∥ = M

λ ∥x∥. Thus
∥Tx∥ ≤ M

λ ∥x∥ for all x ∈ X . Hence T is a bounded linear operator and hence continuous.

Lemma 16.2.7. Let X and Y are any two normed linear spaces over the same scalar field Φ ( R or C). Let
B(X,Y ) denotes the set of all bounded linear operators T : X → Y . Then B(X,Y ) is a linear space over Φ
under addition and scalar multiplication defined point wise.

Proof. Let Ox = 0 ∈ Y for all x ∈ X . Then O ∈ B(X,Y ). i.e., O is a continuous linear operator from
X → Y Let now T1, T2 ∈ B(X,Y ) and α ∈ Φ. We define T1 + T2 : X → Y and αT1 : X → Y by
the rule (T1 + T2) (x) = T1x + T2x and (αT1) (x) = αT1x for all x ∈ X . Then (T1 + T2) (αx + βy) =
T1(αx+ βy) + T2(αx+ βy) = αT1x+ βT1y + αT2x+ βT2y

= α (T1x+ T2x) + β (T1y + T2y)

= α (T1 + T2) (x) + β (T1 + T2) (y).

Hence T1 + T2 is a linear operator. Also since T1 and T2 are bounded linear operators, so there are constants
c1, c2 > 0, such that

||T1x|| ≤ c1||x|| and ||T2x|| ≤ c2||x|| for all x ∈ X.

So,
||(T1 + T2)(x)|| = ||T1x+ T2x|| ≤ ||T1x||+ ||T2x|| ≤ (c1 + c2)||x||.

Thus T1 + T2 is abounded linear operator. Thus T1 + T2 ∈ B(X,Y ).
Again,

(αT1)(βx+ γy) = αT1(βx+ γy)

= α(βT1x+ γT1y)

= β(αT1x) + γ(αT1y)

= β(αT1)(x) + γ(αT1)(y).

Thus, αT1 is a linear operator.
Also, for all x ∈ X , we have

||(αT1)(x)|| = ||αT1x|| = |α|.||T1(x)|| ≤ |α|.c1||x||.

Hence αT1 is a bounded linear operator on X into Y . So, αT1 ∈ B(X,Y ).
It is now clear that B(X,Y ) is a linear space over Φ under these operations of addition and scalar multipli-

cation.

Theorem 16.2.8. Let X and Y are any two normed linear spaces over the same scalar field Φ ( R or C). Then
B(X,Y ) is a normed linear space over Φ under the norm defined for all T ∈ B(X,Y ) by

||T || = sup
||x||≤1; x∈X

||Tx|| and ||Tx|| ≤ ||T ||||x|| for all x ∈ X.
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Proof. We know that B(X,Y ) is a linear space over Φ under addition and scalar multiplication defined point
wise.

Now let T ∈ B(X,Y ). Since T is a bounded linear operator on X , so there is a real number c > 0 such
that ||Tx|| ≤ c||x|| for all x ∈ X .

In particular, therefore, ||Tx|| ≤ c.1 for all x ∈ X with ||x|| ≤ 1. Hence it follows that

0 ≤ ||T || = sup{||Tx|| : x ∈ X, ||x|| ≤ 1} ≤ c < +∞.

Also we have
||T0|| = ||0|| = 0 = ||T ||.0 = ||T ||.||0||,

and for all x ∈ X , x ̸= 0, we have
∣∣∣∣∣∣∣∣ 1

||x||
.x

∣∣∣∣∣∣∣∣ = 1 and so by definition,

∣∣∣∣∣∣∣∣T ( 1

||x||
.x

)∣∣∣∣∣∣∣∣ ≤ ||T ||

i.e.,
1

||x||
||Tx|| ≤ ||T ||

i.e., ||Tx|| ≤ ||T ||||x||.

Since this is true even if x = 0, we have ||Tx|| ≤ ||T ||||x|| for all x ∈ X .
Now for the zero operator 0 ∈ B(X,Y ) be such that ||0|| = 0, since 0x = 0 for all x ∈ X .
Conversely, if ||T || = 0, then by the above ||Tx|| ≤ ||T ||||x|| = 0.||x|| = 0 for all x ∈ X . So then

||Tx|| = 0 for all x ∈ X . Therefore, T is the zero operator, 0.
Next for every α ∈ Φ, we have

||αT || = sup
||x||≤1;x∈X

||(αT )(x)|| = sup
||x||≤1;x∈X

||αTx|| = sup
||x||≤1;x∈X

|α|||Tx|| = |α|. sup
||x||≤1;x∈X

||Tx|| = |α|||T ||.

Finally, for T1, T2 ∈ B(X,Y ) and for all x ∈ X with ∥x∥ ≤ 1, we have

∥(T1 + T2) (x)∥ = ∥T1x+ T2x∥ ≤ ∥T1x∥+ ∥T2x∥ ≤ ∥T1∥ ∥x∥+ ∥T2∥ ∥x∥ ≤ (∥T1∥+ ∥T2∥) ∥x∥
≤∥T1∥+ ∥T2∥ (∵ ∥x∥ ≤ 1).

Hence taking supremum value for such x it follows from definition that ∥T1 + T2∥ ≤ ∥T1∥+ ∥T2∥. Thus we
conclude that ∥T∥ defines a norm on B(X,Y ). So B(X,Y ) is a normed linear space under this norm.

Theorem 16.2.9. If Y is a Banach Space, then so is also B(X,Y ).

Proof. We know that B(X,Y ) is a linear space over the same scalar field as that of X and Y , under norm
defined for all T ∈ B(X,Y ) by

∥T∥ = sup
∥x∥≤1;x∈X

∥Tx∥.

Now let {Tn} be any Cauchy Sequence in B(X,Y ). Then for each x ∈ X , we have

∥Tmx− Tnx∥ = ∥(Tm − Tn) (x)∥ ≤ ∥Tm − Tn∥ ∥x∥ → 0 as m,n→ ∞.

Therefore, {Tn(x)}∞n=1 is a Cauchy Sequence in the Banach Space Y . Hence the sequence converges to a
unique element in Y , which we denote by Tx. Thus

lim
n→∞

Tnx = Tx for all x ∈ X.
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Thus we get a uniquely defined mapping T : X → Y, x→ Tx. Now we have T (αx+ βy) = lim
n→∞

Tn(αx+

βy)
= lim

n→∞
(αTnx+ βTny)

= αTx+ βTy.

Thus T is a linear operator. Further, since {Tn} is a Cauchy Sequence in B(X,Y ), so it is bounded. Thus
there is a real number M > 0 such that ∥Tn∥ ≤ M for n = 1, 2, . . . Then for each x ∈ X and for each
n = 1, 2, . . ., we have

∥Tnx∥ ≤ ∥Tn∥ .∥x∥ ≤M∥x∥. (16.2.2)

Since Tnx → Tx in Y and the norm function is continuous (Theorem ), so ∥Tnx∥ → ∥Tx∥. Hence letting
n → ∞ in (16.2.2), we get ∥Tx∥ ≤ M∥x∥ for all x ∈ X . Thus T is a bounded linear operator on X to Y .
Thus T ∈ B(X,Y ).

Finally, since {Tn} is a Cauchy Sequence, for every ϵ > 0 there is a positive integer N such that ∥Tm −
Tn∥ < ϵ for m,n ≥ N .

Thus, for all x ∈ X with ∥x∥ ≤ 1, we have ||(Tm − Tn)(x)|| ≤ ||Tm − Tn||||x|| < ϵ.1 for all m,n ≥ N .
Since lim

m→∞
(Tm − Tn)x = lim

m→∞
Tmx− Tnx = Tx− Tnx = (T − Tn)x, so by the continuity of the norm in

Y , it follows that lim
m→∞

∥Tmx− Tnx∥ = ∥(T − Tn)x∥. Hence it follows that ∥(T −Tn)x∥ ≤ ϵ for all n ≥ N

and for all x ∈ X with ∥x∥ ≤ 1. So, by definition, ∥T − Tn∥ ≤ ϵ for all n ≥ N . Thus, Tn → T in B(X,Y ).
Hence the normed linear space B(X,Y ) is complete, i.e., B(X,Y ) is a Banach Space.

Theorem 16.2.10. For each T ∈ B(X,Y ) where X ̸= {0}, we have

∥T∥ = sup
∥x∥≤1

∥Tx∥ = sup
∥x∥=1

∥Tx∥ = sup
x ̸=0

∥Tx∥
∥x∥

= sup
0<∥x∥≤1

∥Tx∥.

Proof. We write
∥T∥ = sup

∥x∥≤1
∥Tx∥

∥T∥1 = sup
∥x∥=1

∥Tx∥

∥T∥2 = sup
x ̸=0

∥Tx∥
∥x∥

∥T∥3 = sup
0<∥x∥≤1

∥Tx∥.

By definition ∥T∥ = sup∥x∥≤1 ∥Tx∥. Since hereX ̸= {0} there is x ∈ X, x ̸= 0. If ∥x∥ ≤ 1 and x ̸= 0, then∥∥∥∥ 1

∥x∥
· x
∥∥∥∥ = 1. So

∥∥∥∥T ( x

∥x∥

)∥∥∥∥ ≤ ∥T∥1 i.e.,
1

||x||
∥Tx∥ ≤ ∥T∥1, i.e., ∥Tx∥ ≤ ∥T∥1∥x∥ ≤ ∥T∥1.1 = ∥T∥1.

If x = 0 then ∥Tx∥ = ∥0∥ = 0 ≤ ∥T∥1. Thus ∥Tx∥ ≤ ∥T∥1 for all x with ∥x∥ ≤ 1. Therefore ∥T∥ ≤ ∥T∥1.

But obviously ∥T∥1 ≤ ∥T∥. Hence ∥T∥ = ∥T∥1. Again for any x ̸= 0, we have
∥∥∥∥ 1

∥x∥
· x
∥∥∥∥ = 1. And so∥∥∥∥T ( x

∥x∥

)∥∥∥∥ ≤ ∥T∥1, i.e.,
1

∥x∥
∥Tx∥ ≤ ∥T∥1.

Therefore, ∥T∥2 ≤ ∥T∥1. But obviously, ∥T∥1 ≤ ∥T∥2. Hence, ∥T∥2 = ∥T∥1.
We know that ∥Tx∥ = 0 if x = 0, but ∥Tx∥ > 0 if x ̸= 0. Hence sup

0≤∥x∥≤1
∥Tx∥ = sup

0<∥x∥≤1
∥Tx∥, i.e.,

∥T∥ = ∥T∥3. Thus we have ∥T∥ = ∥T∥1 = ∥T∥2 = ∥T∥3.

Note 16.2.11. ∥T∥ = inf{M ≥ 0 : ∥Tx∥ ≤M.∥x∥, for all x ∈ X}. Check yourself
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Theorem 16.2.12. Let T1, T2 be any two bounded linear operators on a normed linear spaceX into itself, i.e.,
T1, T2 ∈ B(X,X) and the product of composition T1T2 : X → X be defined by (T1T2) (x) = T1 (T2(x)).
Then T1T2 is a bounded linear operator on X into X and further ∥T1T2∥ ≤ ∥T1∥ ∥T2∥.

Proof. For all x, y ∈ X and all scalars α, β we have

(T1T2) (αx+ βy) = T1 (T2(αx+ βy))

= T1 (αT2x+ βT2y)

= αT1 (T2x) + βT1 (T2y)

= α (T1T2) (x) + β (T1T2) y.

Therefore T1T2 is a linear operator on X to X .
Next for all x ∈ X , we have

∥(T1T2) (x)∥ = ∥T1 (T2(x))∥ ≤ ∥T1∥ ∥T2(x)∥ ≤ ∥T1∥ ∥T2∥ ∥x∥.

But ∥T∥ = inf{M ≥ 0 : ∥Tx∥ ≤M . ∥x∥, for all x ∈ X}. Hence it follows that

∥T1T2∥ ≤ ∥T1∥ ∥T2∥ .

Example 16.2.13. We consider an example to show that in a normed linear space T1T2 ̸= T2T1. Do it
yourself.

Theorem 16.2.14. Let T ∈ B(X,X) and ∥T∥ < 1, where X is a Banach Space. Let I denotes the identity
mapping on X . Then prove that the range of I − T is X, (I − T )−1 exists and it belongs to B(X,X) with

(I − T )−1 = I + T + T 2 + T 3 + . . .. Also show that
∥∥(I − T )−1

∥∥ ≤ 1

1− ∥T∥
.

Proof. Since X is a Banach space, so B(X,X) is also a Banach space.
Now {Tn}∞n=1 is a sequence in the Banach spaceB(X,X) with ∥Tn∥ ≤ ∥T∥n (by ...) Since 0 ≤ ∥T∥ < 1,

so
∞∑
n=1

∥Tn∥ ≤
∞∑
n=1

||T ||n =
||T ||

1− ||T ||
< +∞. Hence,

∞∑
n=1

Tn converges in B(X,X) (by ...)

We put T0 = I +

∞∑
n=1

Tn = I + T + T 2 + · · · Then T0 ∈ B(X,X). Also we have

TT0 = T
(
I + T + T 2 + · · ·

)
= TI + T 2 + T 3 + · · · = T + T 2 + T 3 + · · · = T0 − I

and
T0T =

(
I + T + T 2 + · · ·

)
T = IT + T 2 + T 3 + · · · = T + T 2 + T 3 + · · · = T0 − I

Therefore
(I − T )T0 = IT0 − TT0 = T0 − (T0 − I) = I

and
T0(I − T ) = T0I − T0T = T0 − (T0 − I) = I

Hence it follows that (I − T )−1 exists and is given by

(I − T )−1 = I + T + T 2 + T 3 + . . .
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We also note that for each x ∈ X we have

((I − T )T0) (x) = (I − T ) (T0x)

i. e., x = (I − T ) (T0x) for all x ∈ X

Thus the range of (I − T ) is X . Finally,∥∥(I − T )−1
∥∥ =

∥∥I + T + T 2 + T 3 + . . .
∥∥

≤ ∥I∥+ ∥T∥+
∥∥T 2

∥∥+ · · · ≤ 1 + ∥T∥+
∥∥T 2

∥∥+ · · · = 1

1− ∥T∥
.

Definition 16.2.15. Let T : X → Y be an operator and let B ⊂ X. Then the restriction of T to B written as

T|B : B → Y

is defined as T|B (x) = T(x) for x ∈ B. An extension of T to Z ⊃ X is an operator

T̃ : Z → Y

such that T̃ | x = T, i.e., T̃(x) = T(x) for all x ∈ X

If X is a proper subset of Z, then T can have many extensions. But we are more interested to study
those operators which preserve certain basic properties, for example, linearity or boundedness. The following
theorem is an important tool to extend an operator T to the closure of X such that the extended operator is
again bounded and linear, and even has the same norm.

Theorem 16.2.16. Let T : X → Y be a bounded linear operator, where X lies in a normed space Z and Y is
a Banach space. Then T has an extension

T̃ : X → Y

where is a bounded linear operator of norm ∥T̃∥ = ∥T∥.

Proof. We consider any x ∈ X . Then there is a sequence {xn} in X such that xn → x. Since T is linear and
bounded, we have

||T (xn)− T (xm) || = ||T (xn − xm) || ≤ ||T ||||xn − xm||.
Since {xn} is convergent, so {T (xn)} is Cauchy. Since Y is complete, so {T (xn)} converges to some y ∈ Y ,
say. We define T̃ as

T̃ x = y.

We show that this definition is independent of the particular choice of a sequence in X converging to x.
Suppose that xn → x and zn → x. Then vm → x where, {vm} is the sequence {x1, z1, x2, z2, . . .}. Hence
{T (vm)} converges and the two subsequences {T (xn)} and {T (zn)} must have the same limit. This proves
that T̃ is uniquely defined at every point x ∈ X .

Clearly T̃ is linear and T̃ (x) = T (x) for every x ∈ X , so that T̃ is an extension of T . We now use

||T (xn) || ≤ ||T ||∥xn∥

and let n→ ∞. Then T (xn) → y = T̃ (x). Since norm is a continuous function, we thus obtain

||T̃ (x)|| ≤ ||T ||∥x∥.

Hence T̃ is bounded and ||T̃ || ≤ ||T ||. Obviously ||T̃ || ≥ ||T || because the norm, being defined by supremum,
cannot decrease in an extension. Combining, we have

||T̃ || = ||T ||.

Hence proved.
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Exercise 16.2.17. 1. Let T : X → Y be a linear operator, where X and Y are normed spaces. Show that
T is bounded if and only if T maps bounded sets in X into bounded sets in Y

2. If T = 0 is a bounded linear operator, show that for any x ∈ X such that ||x|| < 1, ||T (x)|| < ∥T∥.

3. Show that the null space of a bounded linear operator is closed.

4. Let M be a closed linear subspace of a normed linear space X and X/M be the quotient space. Let T
be a mapping T : X → X/M given by Tx = x +M for all x ∈ X . Show that T is a bounded linear
operator with ∥T∥ ≤ 1.
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Course Structure

• Introduction

• Objectives

• Linear functionals

• Hahn-Banach theorem, simple applications.

• Normed conjugate space and separability of the space

• Uniform boundedness principle, simple application.

17.1 Introduction

Let X be any linear space over the scalar field Φ (R or C). A linear operator f : X → Φ i.e., a linear operator
on X with values in the associated scalar field Φ of X is called a linear functional. We know that Φ is a
Banach space over itself under the absolute value norm.

Keeping this in mind all the results proved for general linear operators hold true for all linear functionals.
We note that for f : X → Φ and x ∈ X , ∥f(x)∥ = |f(x)|.

Let X be a linear space over the scalar field Φ (R or C). Then the space B(X,Φ) of all bounded linear
functionals on X is called the conjugate space of X or the dual space of X; and is denoted by X∗.

Since Φ is a Banach space under the absolute value norm, so by a known result X∗ = B(X,Φ) is also a
Banach space.

17.2 Hahn-Banach Theorem

The Hahn-Banach theorem is an extension theorem for linear functionals. This theorem guarantees that a
normed linear space is richly supplied with bounded linear functionals and makes possible an adequate theory
of dual spaces, which is an essential part of the general theory of normed linear spaces. The theorem was
given H. Hahn (1927), rediscovered in its present more general form by S. Banach (1929) and generalized to
complex vector spaces by H. F. Bohnenblust and A. Sobczyk (1938). Before starting with the theorem, let us
first see a few preliminary results which are required to prove it.

154
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Theorem 17.2.1. LetM ̸= ∅ be a partially ordered set. Suppose that every chain C ⊂M has an upper bound.
Then, M has at least one maximal element.

In the Hahn-Banach theorem, the object to be extended is a linear functional f which is defined on a
subspace Z of a vector space X and has a certain boundedness property which will be formulated in terms
of a sublinear functional. By definition, this is a real-valued functional p on a vector space X which is
subadditive, i.e.,

p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ X,

and positive-homogeneous, i.e,

p(αx) = αp(x), ∀α ≥ 0 in R and x ∈ X.

Theorem 17.2.2. (Hanh-Banach Theorem) Let X be a real vector space and p a sub linear functional on X .
Furthermore, let fbe a linear functional which is defined on a subspace Z of X and satisfies

f(x) ≤ p(x) ∀x ∈ Z.

Then f has a linear extension f̃ from Z to X satisfying

f̃(x) ≤ p(x) ∀x ∈ X,

i.e., f̃ is a linear functional on X , satisfies the above theorem and

f̃(x) = f(x), ∀x ∈ Z.

Proof. Let E be the set of all linear extensions g of f satisfying

g(x) ≤ p(x)

on their respective domains. Clearly, E ̸= ∅ since f ∈ E. On E, we can define a partial ordering by
g ≤ h⇒ h is an extension of g, i.e, by definition, D(h) ⊃ D(g), where, D(g) and D(h) denote the domains
of g and h respectively, and

h(x) = g(x) for all x ∈ D(g).

For any chain C ⊂ E, we define ĝ as

ĝ(x) = g(x) if x ∈ D(g)

for g ∈ C, ĝ is a linear functional, the domain being

D(ĝ) =
⋃
g∈C

D(g),

which is a vector space since C is a chain. The definition of ĝ is unambiguous. Since for x ∈ D (g1)∩D (g2)
with g1, g2 ∈ C, we have g1(x) = g2(x) since C is a chain, so that g1 ≤ g2 or g2 ≤ g1.

Clearly, g ≤ ĝ for all g ∈ C. Hence ĝ is an upper bound of C. Since C ⊂ E was arbitrary, Zom’s lemma
thus implies that E has a maximal element f̃ . By the definition of E, this is a linear extension of f which
satisfies

f̃(x) ≤ p(x), x ∈ D(f̃).
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This representation is unique. In fact, y + αy1 = ỹ + βy1 with ỹ ∈ D(f̃) implies y − f̃ = (β − α)y1, where,
y − ỹ ∈ D(f̃) whereas, y1/ ∈ D(f̃), so that, the only solution is y − ỹ = 0 and β − α = 0. A functional g1
on Y1 is defined by

g1(y + αy1) = f̃(y) + αc (17.2.1)

where c is any real constant. g1 is linear. Moreover, for α = 0 we have, g1(y) = f̃(y). Hence g1 is a proper
extension of f̃ , that is, an extension such thatD(f̃) is a proper subset ofD(g1). So, we can prove that, g1 ∈ E
by showing that

g1(x) ≤ p(x), x ∈ D(g1), (17.2.2)

this will contradict the maximality of f̃ , so that D(f̃) ̸= X is false and so, D(f̃) = X .
We will now show that g1, with a suitable c, satisfies equation (17.2.2). Let us consider y, z ∈ D(f̃). By

the properties of f̃ and p, we get

f̃(y)− f̃(z) = f̃(y − z)

≤ p(y − z)

= p (y + y1 − y1 − z)

≤ p (y + y1) + p (−y1 − z) .

Rearranging, we get
−p (−y1 − z)− f̃(z) ≤ p (y + y1)− f̃(y)

where y1 is fixed. Since y does not appear on the left and z not on the right, the inequality continues to hold
if we take the supremum over z ∈ D(f̃) on the left (call it m0 ) and the infimum over y ∈ D(f̃) on the right,
and call it m1. Then, m0 ≤ m1 and for a c with m0 ≤ c ≤ m1 we have, from the above equation

−p(−y1 − z)− f̃(z) ≤ c, ∀z ∈ D(f̃) (17.2.3)

and
c < p (y + y1)− f̃(y), ∀y ∈ D(f̃). (17.2.4)

For negative α in equation (17.2.1), we use equation (17.2.3) with α−1y in place of z, and get

−p
(
−y1 −

1

α
y

)
− f̃

(
1

α
y

)
≤ c, ∀y ∈ D(f̃).

Multiplying by −α > 0 gives

αp

(
−y1 −

1

α
y

)
− f̃(y) ≤ −αc, ∀y ∈ D(f̃).

From this and (17.2.1), using y + αy1 = x, we obtain

g1(x) = f̃(y) + αc

≤ −αp
(
−y1 −

1

α
y

)
= p(αy1 + y)

= p(x).

For α = 0, we have x ∈ D(f̃) and we have nothing to prove. For α > 0 we use equation (17.2.4) with y
replaced by α−1y to get

c ≤ p

(
y1 +

1

α
y

)
− f̃

(
1

α

)
.
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Multiplying by α > 0 gives

αc ≤ αp

(
y1 +

1

α
y

)
− αf̃

(
1

α

)
= p(x)− f̃(y).

From this and equation (17.2.1), we get

g1(x) = f̃(y) + αc ≤ p(x).

Hence the theorem.

This was Hanh-Banach theorem in a real vector space. We will now state the theorem for any NLS.

17.2.1 Hahn Banach Theorem

Let X0 be a linear subspace of a normed linear space X over the same scalar field Φ(R or C) and let f0 :
X0 → Φ be a bounded linear functional onX0. Then f0 onX0 can be extended to a bounded linear functional
f : X → Φ on X such that ∥f∥ = ∥f0∥ and f (x0) = f0 (x0) for all x0 ∈ X0.

Theorem 17.2.3. Let x0 be a nonzero vector in a normed linear space X . Then there exists f ∈ X∗ such that
∥f∥ = 1 and f (x0) = ∥x0∥.

Proof. Let X0 be the linear subspace of X generated by the singleton {x0}. Then each x ∈ X0 has a unique
representation x = αx0 for a suitable scalar α. We define a function f0 on X0 by f0(x) = α||x0||, where
x = αx0. If x1 = α1x0, x2 = α2x0 ∈ X0, then for any two scalars β1, β2 we have

f0 (β1x1 + β2x2) = f0 (β1α1x0 + β2α2x0)

= f0 (β1α1 + β2α2) x0

= (β1α1 + β2α2) ∥x0∥
= β1α1 ∥x0∥+ β2α2 ∥x0∥
= β1f0 (x1) + β2f0 (x2) .

Thus f0 is a linear functional on X0. Now for all x = αx0 ∈ X0, we have

∥f0(x)|| = |f0(x)| = |α|∥ x0|| = ||αx0|| = 1||x||.

Hence f0 is a bounded linear functional. Also

∥f0∥ = sup
∥x∥=1; x∈X0

|f0(x)| = sup
∥αx0∥=1

|α|∥x0∥ = sup
∥αx0∥=1

∥αx0∥ = 1.

Finally, f0 (x0) = f0 (1.x0) = 1.||x0∥ = ∥x0||. Hence by Hahn Banach Theorem, f0 on X0 can be extended
to a bounded linear functional f ∈ X∗ such that ∥f∥ = ∥f0∥ = 1 and f(x0) = f0(x0) = ∥x0∥.

This completes the proof.

Exercise 17.2.4. Prove that

1. If x0 ∈ X is such that f (x0) = 0 for all f ∈ X∗ then x0 = 0.

2. If x, y ∈ X be such that x ̸= y then there is an f ∈ X∗ such that f(x) ̸= f(y).

3. If x, y ∈ X be such that f(x) = f(y) for all f ∈ X∗ then x = y.
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Theorem 17.2.5. For every non zero vector x in a normed linear space X ,

∥x∥ = sup
f∈X∗;f ̸=0

|f(x)|
∥f∥

.

Proof. Since x ̸= 0, there is f1 ∈ X∗ such that ∥f1∥ = 1 and f1(x) = ∥x∥ > 0. Therefore,

sup
f∈X∗;f ̸=0

|f(x)|
∥f∥

≥ |f1(x)|
||f1||

=
||x||
1

= ∥x∥.

On the other hand, we have

∥f(x)∥ = |f(x)| ≤ ∥f∥ · ∥x∥ for every f ∈ X∗.

sup
f∈X∗;f ̸=0

|f(x)|
∥f∥

≤ ∥x∥.

Combining both the cases we have the required result.

Theorem 17.2.6. Let M be a proper closed subspace of a normed linear space X and let x0 ∈ X \M . If
δ = inf

x∈M
∥x0 − x∥, then there exists f ∈ X∗ such that ∥f∥ = 1, f(x0) = δ and f(x) = 0 for all x ∈M .

Proof. Since M is closed in X and x0 ∈ X \M , then δ = inf
x∈M

∥x0 − x∥ = dist(x0,M) > 0. Let Y denote

the linear subspace of X generated by M ∪ {x0}. Since M is a subspace of X and x0 /∈ M , so each y ∈ Y
has a unique representation y = x+ αx0, where x ∈M and α is a scalar.

We define the scalar valued function f0 on Y by setting f0(y) = αδ, where y = x+αx0. For any two points
y1 = x1 + α1x0 and y2 = x2 + α2x0 of Y and for any two scalars β1 and β2, we have f0 (β1y1 + β2y2) =
f0 (x+ (β1α1 + β2α2)x0), where x = β1x1 + β2x2 ∈ M . Thus f0 (β1y1 + β2y2) = (β1α1 + β2α2) δ =
β1α1δ + β2α2δ = β1f0 (y1) + β2f0 (y2). So, f0 is a linear functional on Y .

Consider now any y = x+ αx0 ∈ Y . If α ̸= 0, then
1

a
y =

1

a
x+ x0 = x0 −

(
− 1

α
x

)
. Since − 1

α
x ∈M ,

we have ∥∥∥∥ 1αy
∥∥∥∥ =

∥∥∥∥x0 − (− 1

α
x

)∥∥∥∥ ≥ δ.

So, ∥y∥ ≥ |α|δ = |αδ|, which is also true for α = 0. Thus |f0(y)| = |αδ| ≤ 1||y|| for all y ∈ Y . Hence
f0 is a bounded linear functional on Y with ||f0|| ≤ 1. Also, by definition of δ, there is a sequence {xn} in
M such that ∥x0 − xn∥ → δ. Let us write yn = xn − x0 = xn + (−1)x0. Then yn ∈ Y and by definition
f0 (yn) = (−1)δ for all n. So,

∥f0∥ = sup
y∈Y
y ̸=0

|f0(y)|
∥y∥

≥ |f0 (yn)|
∥yn∥

for all n.

Since we cannot have yn = 0 as x0 /∈ M . Thus ∥f0∥ ≥ |f0 (yn)|
||yn∥

=
| − δ|

||x0 − xn||
→ δ

δ
= 1. So, ∥f0∥ ≥ 1

provides ∥f0∥ = 1.
Hence by Hahn-Banach theorem, f0 can be extended to an f ∈ X∗ such that ∥f∥ = ∥f0∥ = 1 and

f(y) = f0(y) for all y ∈ Y .
Now for x ∈ M the representation is x = x + 0.x0 ∈ Y . So, f(x) = f0(x) = 0.δ = 0, for x ∈ M . Also

since x0 = 0 + 1.x0, 0 ∈M , so
f(x0) = f0(x0) = 1.δ = δ.

This completes the proof of the theorem.
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Theorem 17.2.7. If the dual space X∗ of a normed linear space X is separable, then X is also separable.

Proof. We assume X ̸= {0}, because otherwise there is nothing to prove. Then X ̸= {0} and so the unit
sphere S = {f ∈ X∗ : ∥f∥ = 1} in X∗ is non-empty. Since X∗ is separable and every non-empty subset of
a separable metric space is separable, so there is a countable subset {fn} ⊂ S which is dense in S.

Now, since fn ∈ S, so ∥fn∥ = sup
∥x∥=1

|fn(x)| = 1. Then for each n there is a point xn ∈ X such that

∥xn|| = 1 and |fn (xn)| >
1

2
.

Let Y denote the linear sub space of X generated by the set of vectors V = {x1, x2, . . .}. We assert that
Y = X . If not, then Y is a proper closed subspace of X . So by the previous theorem, there is an f ∈ X∗

such that ∥f∥ = 1 and f(x) = 0 for all x ∈ Y . Then f ∈ S and f (xn) = 0 for all n.

Now, since {fn} is dense in S, and f ∈ S, we must have ∥fn − f∥ < 1

4
, for at least one n. Then we have

1

2
< |fn (xn)| = |(fn − f) (xn) + f (xn)| = |(fn − f) (xn)| ≤ ||fn − f∥ · ||xn|| <

1

4
.1.

This is a contradiction, which proves that Y = X .
Now, the scalar field Φ(R or C) of X is separable, so there is a countable dense subset Ψ of Φ. Let Y0

denotes the set of all finite linear combinations of the elements of V with coefficients from Ψ.
Since both V and Ψ are countable so Y0 is also countable. Clearly, then Y0 is a countable dense subset of

Y . i.e., Y ⊂ Y 0. Hence X = Y ⊂ Y 0 = Y 0. Hence Y0 is a countable dense subset of X . Thus the space X
is separable.

Theorem 17.2.8. Banach - Steinhaus Theorem (or Uniform Boundedness Principle). Let {Tλ}λ∈Λ be an
arbitrary family of bounded linear operators Tλ : X → Y , whereX is a Banach space and Y is a normed linear
space over the same scalar field. If for each x ∈ X the set {Tλ(x)}λ∈Λ is bounded in Y , then {||Tλ||}λ∈Λ is
bounded in R.

Note 17.2.9. The conclusion of the theorem is that

M = sup
λ∈Λ

∥Tλ∥ < +∞

This means that ∥Tλ(x)∥ ≤ ∥Tλ∥ .∥x∥ ≤ M.∥x∥ for all x ∈ X and for all λ ∈ Λ. This is the meaning of
uniform boundedness of the family {Tλ}λ∈Λ.

Proof. For each positive integer n, we define

Xn = {x ∈ X : ||Tλ(x)|| ≤ n for all λ ∈ Λ} .

Then
∞⋃
n=1

Xn ⊂ X . On the other hand given any x ∈ X , since the set {Tλ(x)} is bounded, so there is a

positive integer n = n(x) such that ||Tλ(x)|| ≤ n for all λ ∈ Λ; and so then x ∈ Xn. Thus

X =

∞⋃
n=1

Xn. (17.2.5)

Now, since the Banach space X is a non-empty complete metric space, so by Baire category theorem, it
follows from (17.2.5) that some Xk is dense in some open ball B in X .
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Fix any y ∈ B. Since Xk is dense in the open ball B, so there is a sequence {xn}∞n=1 in Xk such that
xn → y. By definition of the set Xk, we have

||Tλ (xn) ∥ ≤ k for all λ ∈ Λ and n = 1, 2, . . . (17.2.6)

Since the operators Tλ are continuous and since the norm function is continuous, so considering n → ∞ in
(17.2.6), we get

∥Tλ(y)∥ ≤ k for all λ ∈ Λ and for all y ∈ B. (17.2.7)

Now, let y0 be the centre and r > 0 be the radius of the open ball B. Fix any x ∈ X and x ̸= 0.
Put y1 =

r

2||x||
x+ y0. Then

∥y1 − y0∥ =
r

2||x||
x =

r

2

∥x∥
∥x∥

=
r

2
< r.

So, y1 ∈ B. Since Tλ is linear, we have

∥Tλ(x)∥ =
2∥x∥
r

∥∥∥∥Tλ( r

2||x||
x

)∥∥∥∥
=

2∥x∥
r

∥Tλ(y1 − y0)∥

≤ 2∥x∥
r

(∥Tλ(y1)∥+ ∥Tλ(y0)∥

≤ 2∥x∥
r

(k + k) =
4k

r
∥x∥.

Since ∥Tλ(0)∥ = ∥0∥ = 0, it follows that ∥Tλ(x)∥ ≤ 4k

r
∥x∥ for all x ∈ X and for all λ ∈ Λ. This completes

the proof of the theorem.

Lemma 17.2.10. Let X be a normed linear space and x0 ∈ X . Define Fx0 on X∗ by Fx0(f) = f(x0) for all
f ∈ X∗. Then Fx0 is a bounded linear functional on X∗, i.e., Fx0 ∈ (X∗)∗ = X∗∗. Also ∥Fx0∥ = ∥x0∥.

Proof. By definition, for all f ∈ X∗, we have Fx0(f) = f (x0). So, Fx0 is a scalar valued function on X∗.
Now, for f, g ∈ X∗ and for any two scalars α, β we have

Fx0(αf + βg) = (αf + βg)x0

= (αf) (x0) + (βg) (x0)

= αf (x0) + βg (x0)

= αFx0(f) + βFx0(g).

Thus Fx0 is a linear functional on X∗. Further we have

|Fx0(f)| = |f (x0)| ≤ ||f || · ||x0|| = ||x0|| · ||f ||, for all f ∈ X∗.

So, Fx0 is a bounded linear functional on X∗ with ||Fx0 || ≤ ||x0||. If x0 = 0 then ||x0|| = 0, and so
0 ≤ ||Fx0 || ≤ 0. Hence ||Fx0 || = 0 = ||x0||. If x0 ̸= 0 then by a known theorem we can find a bounded linear
functional f ∈ X∗ such that ∥f∥ = 1 and f (x0) = ∥x0∥. Then

|f (x0)| = |Fx0(f)| ≤ ||Fx0 || · ||f ||. i.e., ||x0∥ ≤ ||Fx0 || · 1 = ||Fx0 ||.

Since also ∥Fx0∥ ≤ ||x0||, we get ||Fx0 || = ||x0||. This completes the proof of the theorem.
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Theorem 17.2.11. Let E be a subset of a normed linear space X such that for every f ∈ X∗ the set of scalars
f(E) is bounded. Then E is bounded in X .

Proof. We know that X∗ is a Banach space. Now, for each x ∈ E, let Fx denote the scalar valued function
defined on X∗ by

Fx(f) = f(x), f ∈ X∗.

We know that Fx is a bounded linear functional with ||Fx|| = ||x||. Now, by hypothesis, for each f ∈ X∗, the
set

{Fx(f)}x∈E = {f(x)}x∈E = f(E)

is bounded. Therefore, by the uniform boundedness principle, the set of norms

{∥Fx∥}x∈E = {∥x∥}x∈E = f(E)

is bounded. Hence the set E is bounded in X .

Exercise 17.2.12. 1. Show that a norm on a vector space X is a sub linear functional on X .

2. Show that a sublinear functional p satisfies p(0) = 0 and p(−x) ≥ −p(x).

3. If p is a sub linear functional on a vector space X , show that M = {x| p(x) ≤ γ, γ > 0 fixed} is a
convex set.

4. If p and q are sublinear functionals on a vector space X and a and b are positive constants, then show
that ap+ bq is sublinear in X .

5. Find all the nowhere (nw) dense sets in a discrete metric space.

6. Show that a subset M of a metric space X is nw dense X if and only if X \M is dense in X .

7. Let X be a Banach space and Y a normed space and Tn are bounded linear operators from X to Y .
Also, if {Tn(x)} is Cauchy in Y for every x ∈ X , then show that {||Tn||} is bounded.
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Course Structure

• Introduction

• Objectives

• Inner product space.

• Some preliminary results

• Bessel’s inequality and its generalisation

18.1 Introduction

In this unit we shall learn about inner product spaces or pre Hilbert spaces and several properties of inner
products.

Objectives

After reading this unit, you will be able to

• define an inner product space

• learn certain examples of inner product spaces

• learn certain preliminary definitions and inequalities concerning inner product spaces

• apply them in various appropriate situations

• deduce important formulae and generalisations

• learn Bessel’s inequality and its generalisations

162
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18.2 Inner Product Spaces

Definition 18.2.1. Let X be a vector space over the scalar field Φ (R or C). A mapping (, ) : X ×X → Φ
which assigns to each ordered pair of elements x, y ∈ X , a unique scalar (x, y) ∈ Φ is called an inner product
or scalar product on Xif the following properties hold for all x, y, z ∈ X and α ∈ Φ:

1. (x+ y, z) = (x, z) + (y, z)

2. (αx, y) = α(x, y)

3. (y, x) = (x, y) the bar denotes complex conjugate.

4. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0.

The vector space X equipped with the inner product defined on it is called an inner product space or a pre-
Hilbert space.

Lemma 18.2.2. An inner product space X has the following properties for all x, y, z ∈ X and α, β ∈ Φ:

1. (0, x) = (x, 0) = 0

2. (αx+ βy, z) = α(x, z) + β(y, z)

3. (x, αy) = α(x, y)

4. (x, αy + βz) = α(x, y) + β(x, z)

Proof. 1. We have
(0, x) = (0 + 0, x) = (0, x) + (0, x) = 0.

So, (0, x) = 0. Further (x, 0) = (0, x) = 0 = 0.

2. (αx+ βy, z) = (αx, z) + (βy, z) = α(x, z) + β(y, z).

3. (x, αy) = (αy, x) = α(y, x) = α(x, y).

4. (x, αy + βz) = (αy + βz, x) = α(y, x) + β(z, x) = α(x, y) + β(x, z).

Theorem 18.2.3. (Cauchy-Schwarz’s Inequality) For any two vectors x, y in an inner product space X we
have

|(x, y)| ≤
√
(x, x).

√
(y, y).

Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, then x and y are linearly dependent and we have

(x, y) = (x, 0) = 0, (y, y) = (0, 0) = 0.

So, if y = 0, |(x, y)| = 0 =
√

(x, x).
√
(y, y). Now, if y ̸= 0, but x and y are linearly dependent, then we

must have x = cy for some scalar c.
So, (x, y) = (cy, y) = c(y, y) and (x, x) = (cy, cy) = cc̄(y, y). Therefore |(x, y)| = |c|(y, y) and√

(x, x) ·
√
(y, y) = |c|

√
(y, y) ·

√
(y, y) = |c|(y, y).

So, |(x, y)| =
√
(x, x) ·

√
(y, y).
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Now, let y ̸= 0, and x and y are linearly independent. Then x− (x, y)

(y, y)
y ̸= 0, and so

0 <

(
x− (x, y)

(y, y)
y, x− (x, y)

(y, y)
y

)
= (x, x)− (x, y)

(y, y)
(x, y)− (x, y)

(y, y)
(y, x) +

(x, y)

(y, y)
· (x, y)
(y, y)

(y, y)

= (x, x)− (x, y)

(y, y)
(x, y) = (x, x)− |(x, y)|2

(y, y)
.

i.e., |(x, y)|2 < (x, x).(y, y).

Therefore |(x, y)| <
√
(x, x) ·

√
(y, y).

Thus the require inequality is proved.

Theorem 18.2.4. An inner product space X is a normed linear space under the norm defined by

||x|| = +
√
(x, x) for all x ∈ X .

Proof. By definition of inner product, we have
0 ≤ (x, x) < +∞ for all x ∈ X and (x, x) = 0 if and only if x = 0.
∴ 0 ≤ ||x|| < +∞ for all x ∈ X and ||x|| = 0 if and only if x = 0.

Also, for any scalar α, we have

||αx|| =
√
(αx, αx) =

√
αᾱ(x, x) =

√
|α|2 · ∥x∥2 = |α| · ||x||.

Finally, for x, y ∈ X we have

∥x+ y∥ =
√
(x+ y, x+ y) =

√
(x, x+ y) + (y, x+ y)

=
√

(x, x) + (x, y) + (y, x) + (y, y)

=

√
∥x∥2 + (x, y) + (y, x) + ∥y∥2.

Now, (x, y) + (x, y) = 2Rl(x, y) ≤ 2|(x, y)| ≤ 2
√
(x, x) ·

√
(y, y) = 2∥x∥ · ∥y∥. Therefore we get

∥x+ y∥ ≤
√

∥x∥2 + 2∥x∥ · ∥y∥+ ∥y∥2 = ∥x∥+ ∥y∥.

Hence, ∥ · ∥ a norm on X . Hence X is a normed linear space under this norm.

Note 18.2.5. The metric induced by the inner product is given by

d(x, y) = ∥x− y∥ =
√

(x− y, x− y).

Example 18.2.6. 1. The space Rn is an inner product with the inner product defined as

(x, y) = x1y1 + x2y2 + . . .+ xnyn

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two elements of Rn.

2. The unitary space Cn is an inner product space where the inner product is defined as

(x, y) = x1y1 + x2y2 + . . .+ xnyn

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two elements of Cn.
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3. The l2 space forms an inner product space with the inner product defined as

(x, y) =
∞∑
i=1

xiyi.

The convergence of the series follows from the Cauchy-Schwarz inequality.

Theorem 18.2.7. Polarization Identity For all x, y in a real inner product space X we have

(x, y) =
1

4

[
∥x+ y∥2 − ∥x− y∥2

]
.

For all x, y in a complex inner product space X we have

Rl(x, y) =
1

4

[
∥x+ y∥2 − ∥x− y∥2

]
Im(x, y) =

1

4

[
∥x+ iy∥2 − ∥x− iy∥2

]
.

Proof. In any inner product space, we have

∥x+ y∥2 − ∥x− y∥2 = (x+ y, x+ y)− (x− y, x− y)

= (x, x) + (x, y) + (y, x) + (y, y)− (x, x) + (x, y) + (y, x)− (y, y)

= = 2[(x, y) + (x, y)] = 4Rl(x, y). (18.2.1)

Now, if X is a real inner product space, then Rl(x, y) = (x, y), and so by (18.2.1)

∥x+ y∥2 − ∥x− y∥2 = 4(x, y),

which proves the first result.
If X is a complex inner product space, then changing y to iy in (18.2.1), we get

∥x+ iy∥2 − ∥x− iy∥2 = 4Rl(x, iy) = 2[(x, iy) + (x, iy)] = 2[i(x, y) + i(x, y)]

= 2[−i(x, y) + i(x, y)] = 2i[−(x, y) + (x, y)] = 2i(−2i)Im(x, y) = 4Im(x, y).

This together with (18.2.1) proves the second part.

Theorem 18.2.8. (Parallelogram Law) For all x, y in an inner product space X we have

||x+ y||2 + ||x− y||2 = 2
[
||x||2 + ||y||2

]
.

Proof. Do it yourself.

Note 18.2.9. A normed linear space in which the parallelogram law holds is necessarily an inner product
space, i.e., the norm is induced by some inner product.

Theorem 18.2.10. The inner product in an inner product space X is continuous on X ×X .

Proof. Do it yourself.
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18.3 Orthogonality

Let X be an inner product space.

1. Two vectors x, y in X are said to be orthogonal, denoted by x ⊥ y, if (x, y) = 0, equivalently,
(y, x) = 0, since (y, x) = (x, y).

2. A vector x in X is said to be orthogonal to a subset M ⊂ X , denoted by x ⊥ M , if x ⊥ y for all
y ∈M .

3. A subset M ⊂ X is said to be orthogonal to a subset N ⊂ X , denoted by M ⊥ N , if x ⊥ y for all
x ∈M and y ∈ N .

4. A subset M ⊂ X is said to be an orthogonal set if x ⊥ y for all x, y ∈M with x ̸= y.

5. If M ⊂ X is an orthogonal set of vectors such that ∥x∥ = 1 for all x ∈ M , then M is called orthonor-
mal.

6. vi) A sequence {en}∞n=1 in X is said to be orthogonal if ei ⊥ ej for i ̸= j. If further ∥en∥ = 1, then the
sequence {en}∞n=1 is called orthonormal.

Theorem 18.3.1. (Pythagoras Theorem.) If x and y are orthogonal vectors in an inner product space, then

||x+ y||2 = ||x||2 + ||y||2.

Proof. Do it yourself.

Theorem 18.3.2. Every orthogonal set of non-zero vectors in an inner product space is linearly independent.

Proof. Do it yourself.

Theorem 18.3.3. Let M be an orthonormal set of vectors in an inner product space X . Then

||x+ y|| = ||x− y|| =
√
2

For all x, y ∈M with x ̸= y. If X is separable then M is countable.

Proof. Do the first part yourself.
Now, let us assume that the space X is separable. Since every subspace of a separable metric space is

separable, soM is separable. ThenM has a countable dense subset E, say. Then for each x ∈M , there exists
y ∈ E such that ||x− y|| <

√
2.

Since, x, y ∈ M , the preceding result implies x = y. Thus x = y ∈ E for all x ∈ M . Hence M = E, so
that M is countable.

Theorem 18.3.4. If (x, u) = (x, v) for all x in an inner product space, then u = v.

Proof. Do it yourself.

Theorem 18.3.5. Let {e1, e2, . . . en} be an orthonormal set in an inner product space X . Then

k∑
i=1

|(x, ej)|2 ≤ ∥x∥2

for all x ∈ X .
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If {en} is an orthonormal sequence in X then

∞∑
n=1

|(x, en)|2 ≤ ∥x∥|2

for all x ∈ X .

Note 18.3.6. The scalars (x, en) ’s are called the Fourier expansion of x with respect to {e1, e2, . . . . . .}.

Proof. We have

0 ≤

x−
k∑
j=1

(x, ej) ej , x−
k∑
j=1

(x, ej) ej


= (x, x)−

k∑
j=1

(x, ej) (x, ej)−
k∑
j=1

(x, ej) (ej , x) +
k∑
i=1

k∑
j=1

(x, ei) (x, ej) (ei, ej)

= ∥x∥2 −
k∑
j=1

|x, ej |2 −
k∑
j=1

(x, ej) (x, ej) +
k∑
j=1

(x, ej) (x, ej) · 1

[Since (ei, ej) = 0 for i ̸= j and ∥ei∥ = 1]. Thus
k∑
j=1

|(x, ej)|2 ≤ ∥x∥2. Now, if {en} is an orthonormal

sequence in X then by the above

∞∑
j=1

|(x, ej)|2 = lim
k→∞

k∑
j=1

|(x, ej)|2 ≤ ∥ x|2 .

Theorem 18.3.7. (Generalized Bessel’s Inequality.) Let {e1, e2, . . . en} be any orthonormal set in an inner
product space X . Then for all x, y ∈ X we have∑

n

∣∣∣(x, en)(y, en)∣∣∣ ≤ ∥x∥ · ∥y∥.

Proof. Do it yourself.

Exercise 18.3.8. 1. Show that every inner product space is a NLS.

2. If an inner product space X is real, show that the condition ∥x∥ = ∥y∥ implies that (x+ y, x− y) = 0.

3. Show that in an inner product space X , x ⊥ y if and only if ∥x+ αy∥ ≥ ∥x∥ for all scalars α.

4. that in an inner product space X , x ⊥ y if and only if ∥x+ αy∥ = ∥x− αy∥ for all scalars α.
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Course Structure

• Introduction

• Objectives

• Hilbert’s space

• Orthogonal complement

• Projection theorem

19.1 Introduction

In this unit, we will study the Hilbert spaces, which is nothing but the analogous of Banach spaces in an inner
product space. We will study related concepts.

Objectives

After reading this unit, you will be able to

• define Hilbert spaces

• give examples of Hilbert spaces

• apply the related concepts in various cases

• define orthogonal complement

• learn the projection theorem

168
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19.2 Hilbert Spaces

Definition 19.2.1. A Hilbert space is an inner product space H which is a Banach space under the norm
induced by the inner product, i.e., which is complete with respect to the metric

d(x, y) = ||x− y|| =
√

(x− y, x− y).

Example 19.2.2. Let Φ = R or C. The Euclidean space Φk is a Hilbert space under the inner product of
x = (ξ1, ξ2, . . . , ξk) and y = (η1, η2, . . . , ηk) defined by

(x, y) = ξ1η1 + ξ2η2 + . . .+ ξkηk.

It is easy to verify that this is indeed an inner product on Φk. The norm induced by this inner product is given

by ∥x∥ =
√
(x, x) =

√
ξ1ξ1 + ξ2ξ2 + . . .+ ξkξk =

√
|ξ1|2 + |ξ2|2 + . . .+ |ξk|2 which defines a Euclidean

norm.
We know that Φk is a Banach space under this norm. Hence Φk is a Hilbert space.

Example 19.2.3. The sequence space ℓ2 is a is a separable Hilbert space of infinite dimension under the inner
product of x = {ξj} and y = {ηj} ∈ ℓ2 defined by

(x, y) =
∞∑
j=1

ξjηj .

We first observe that for x = {ξj} and y = {ηj} ∈ ℓ2, by definition,
∞∑
j=1

|ξj |2 < +∞ and
∞∑
j=1

|ηj |2 < +∞.

Therefore, by Holder’s inequality,

∞∑
j=1

ξj η̄j ≤

 ∞∑
j=1

|ξj |2
1/2 ∞∑

j=1

|ηj |2
1/2

< +∞.

Thus the inner product (x, y) =
∞∑
j=1

ξjηj is a well defined scalar. It is easy to verify that the above definition

defines an inner product on ℓ2. The norm induced by this inner product is given by

∥x∥ =
√
(x, x) =

√√√√ ∞∑
j=1

ξjξj =

√√√√ ∞∑
j=1

|ξj |2.

But we know that ℓ2 is a Banach space under this norm Hence ℓ2 is a Hilbert space. Also, we know that ℓ2 is
separable and infinite dimensional.

Example 19.2.4. Not every Banach space is a Hilbert space.

1. For p ̸= 2, ℓp is a Banach space but not a Hilbert space.

We know that ℓp is a Banach space under the norm defined by ||x|| =
(∑∞

j=1

∣∣x(j)∣∣p)1/p for all

x =
{
x(j)
}
∈ ℓp

Now, let x = (1, 1, 0, 0, . . .) and y = (1,−1, 0, 0, . . .). Then ||x|| = 21/p and ||y|| = 21/p.

Also, ||x + y|| = 2 and ||x − y|| = 2. So, ∥x + y∥2 + ∥x − y∥2 = 22 + 22 = 8. Whereas,
2
(
∥x∥2 + ∥y∥2

)
= 2

(
22/p + 22/p

)
= 4 · 22/p ̸= 8 for p ̸= 2. Thus the parallelogram law fails in

ℓp for p ̸= 2. Hence the space ℓp is not a Hilbert space for p ̸= 2.
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2. The Banach space C[a, b] is not a Hilbert space.

We know that C[a, b] is a Banach space under the norm defined by ∥x∥ = sup
a≤t≤b

|x(t)|. Let us take

x(t) = 1 and y(t) =
t− a

b− a
∈ C[a, b]. Then ∥x∥ = 1 and ∥y∥ = 1. Also

||x+ y|| = sup
a≤t≤b

∣∣∣∣1 + t− a

b− a

∣∣∣∣ = 2 and ||x− y|| = sup
a≤t≤b

∣∣∣∣1− t− a

b− a

∣∣∣∣ = 1.

So, ∥x+ y∥2 + ∥x− y∥2 = 22 +12 = 5. Whereas, 2
(
||x||2 + ||y∥2

)
= 2

(
12 + 12

)
= 4 ̸= 5. Thus the

parallelogram law fails in C[a, b]. Hence the space C[a, b] is not a Hilbert space.

Theorem 19.2.5. Let M be a non empty closed and convex subset of a Hilbert space H . Then for each
x0 ∈ H there is a unique y0 ∈ M such that ||x0 − y0|| = dist (x0,M). In particular, M contains a unique
vector of smallest norm.

Proof. Let δ = dist (x0,M) = inf
y∈M

||x0 − y|| ≥ 0. If u, v ∈ M , then
1

2
(u+ v) ∈M , since M is convex.

So, by the parallelogram law, we have

∥u− v∥2 = ∥(u− x0)− (v − x0)∥2

= 2
(
∥u− x0∥2 − ∥v − x0∥2

)
− ∥(u− x0) + (v − x0)∥2

= 2
(
∥u− x0∥2 − ∥v − x0∥2

)
− 4||1

2
(u+ v)− x0∥ |2

≤ 2
(
∥u− x0∥2 − ∥v − x0∥2

)
− 4δ2 (19.2.1)

Now, there is a sequence {yn} in M such that ∥x0 − yn∥ → δ. Then by (19.2.1), we have

∥ym − yn∥2 ≤ 2
(
∥ym − x0∥2 − ∥yn − x0∥2

)
− 4δ2 → 2

(
δ2 + δ2

)
− 4δ2 = 0

So, {yn} is a Cauchy sequence inM ⊂ H . Since, the Hilbert spaceH is complete, so, there is a point y0 ∈ H
such that yn → y0. Since M is closed, y0 ∈M .

Also, since yn − x0 → y0 − x0, ∥x0 − yn∥ → ∥x0 − y0∥. Therefore, ∥x0 − y0∥ = δ = dist(x0,M). To
prove the uniqueness of y0, assume that

∥x0 − y∥ = δ for some y ∈M.

Then by (19.2.1)

0 ≤ ∥y − y0∥2 ≤ 2
(
∥y − x0∥2 − ∥y0 − x0∥2

)
− 4δ2 = 2(δ2 + δ2)− 4δ2 = 0.

So, ∥y − y0∥ = 0, and hence y = y0.
Finally, taking x0 = 0, we see that y0 ∈M is the unique point such that

∥x0 − y0∥ = ∥0− y0∥ = ∥y0∥ = dist(0,M)

⇒ ∥y0∥ = inf
y∈M

∥0− y0∥ = inf
y∈M

∥y0∥.

So, y0 ∈M has the smallest norm for all y ∈M . This completes the proof of the theorem.

Theorem 19.2.6. Let M be a closed linear sub space of a Hilbert space H . Then for each x0 ∈ H there is a
unique y0 ∈M such that ∥x0 − y0∥ = inf

y∈M
∥x0 − y∥ = dist (x0,M) and (x0 − y0) ⊥M .
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Proof. The linear sub space M of the Hilbert space H is non-empty and convex. Since further M is closed,
then by the previous theorem for each x0 ∈ H there is a unique y0 ∈M such that ∥x0− y0∥ = dist (x0,M) =
inf
y∈M

||x0 − y|| = δ(say) ≥ 0. We now show that x0 − y0 is orthogonal to M , i.e., (x0 − y0, y) = 0 for all

y ∈ M . If y = 0, then (x0 − y0, y) = (x0 − y0, 0) = 0. Now, suppose, y ̸= 0, then (y, y) > 0. Since
y0, y ∈M and M is a linear sub space of H . For any scalar α, we have y0 + αy ∈M . Therefore,

δ2 ≤ ∥x0 − (y0 + αy)∥2 = ((x0 − y0)− αy, (x0 − y0)− αy)

= (x0 − y0, x0 − y0)− ᾱ (x0 − y0, y)− α (y, x0 − y0) + αᾱ(y, y)

= δ2 + ᾱ(y, y)

(
α− (x0 − y0, y)

(y, y)

)
− α(x0 − y0, y).

Now, taking α =
(x0 − y0, y)

(y, y)
, we get

δ2 ≤ δ2 + 0− (x0 − y0, y)

(y, y)
(x0 − y0, y), i.e., 0 ≤ |(x0 − y0, y)|2 ≤ 0

Thus (x0 − y0, y) = 0. This completes the proof of the theorem.

19.2.1 Orthogonal Complements and Direct Sums

Definition 19.2.7. A linear spaceX is said to be the direct sum of two subsets Y andZ, written asX = Y ⊕Z,
if each x ∈ X has a unique representation x = y + z with y ∈ Y and z ∈ Z.

Definition 19.2.8. The orthogonal complement of a subset Y of an inner product space X is defined as

Y ⊥ = {x ∈ X : x ⊥ Y }.

Exercise 19.2.9. Show that Y ⊥ is a closed linear subspace of X even if Y is not.

Note 19.2.10. Since (0, Y ) = 0, for all y ∈ Y , so 0 ∈ Y ⊥. Now, if x, y ∈ Y ⊥ and α, β are any two scalars,
then for all z ∈ Y , we have

(αx+ βy, z) = α(x, z) + β(y, z) = α.0 + β.0 = 0.

So, αx+ βy ∈ Y ⊥. Thus Y ⊥ is a linear subspace of X even if Y is not.

Note 19.2.11. If {xn} is a sequence in Y ⊥ and if xn → x ∈ X . Then by the continuity of the inner product
we have (xn, y) → (x, y) for all y ∈ Y . So for y ∈ Y, (x, y) = lim

n→∞
(xn, y) = lim

n→∞
0 = 0. Therefore,

x ∈ Y ⊥ and so Y ⊥ is closed.

Theorem 19.2.12. (Projection Theorem). For any closed linear subspace M of a Hilbert space H , we have
H =M ⊕M⊥.

Proof. Since M is a closed linear sub space of the vector space H , then by the previous theorem, for each
x ∈ H there is a unique y ∈M such that (x− y) ⊥M .

Let us put z = x − y. Then x = y + z, where y ∈ M and z ∈ M⊥. To prove the uniqueness of this
representation of the elements x ∈ H assume that x = y1 + z1, where y1 ∈M and z1 ∈M⊥. Then

y + z = y1 + z1, i.e., y − y1 = z1 − z.

Since bothM andM⊥ are linear subspaces ofH , so y−y1 ∈M and z1−z ∈M⊥, Hence (y − y1, z1 − z) =
0, i,e., (y − y1, y − y1) = 0. So, by definition of inner product, y − y1 = 0 and hence z1 − z = 0. Thus
y1 = y and z1 = z. Hence the representation of x as above is unique



172 UNIT 19.

Note 19.2.13. In the above representation x = y + z, the unique vector y ∈ M is called the orthogonal
projection of the vector x ∈ H on the closed subspace M .

Theorem 19.2.14. A linear subspace M of a Hilbert space H is closed in H if and only if M =M⊥⊥.

Proof. We know that M⊥ =
(
M⊥

)⊥
is a closed linear sub space of H . Hence if M = M⊥⊥ then M is

closed.
Conversely, let M be closed in H . If x ∈ M , then by definition of M⊥, we have x ⊥M⊥, and so,

x ∈ M⊥⊥. Thus, M ⊂ M⊥⊥. Next, let y ∈ M⊥⊥. Since M is a closed linear subspace of H , so by
projection theorem we can write

y = u+ v, where u ∈M ⊂M⊥⊥ and v ∈M⊥.

Since y, u ∈ M⊥⊥, so y − u ∈ M⊥⊥. Thus v ∈ M⊥ and also v ∈ M⊥⊥. So (v, v) = 0 and hence v = 0.
So, y = u ∈M . Therefore, M⊥⊥ ⊂M which together with M ⊂M⊥⊥ provides M =M⊥⊥.

This completes the proof of the theorem.

Exercise 19.2.15. 1. Show that y ⊥ xn and xn → x together imply x ⊥ y.

2. Show that for a sequence {xn} in an inner product space the conditions ||xn∥ → ∥x∥ and ⟨xn, x⟩ →
⟨x, x⟩ imply xn → x

3. Show that for any set M = ∅, the set M⊥ is a vector space.

4. Consider a subset M of R2. Find M⊥ if M is

(a) {x} where x = (ξ1, ξ2) = 0,

(b) a linearly independent set {x1, x2} ⊂ R2.

5. Let A and B ⊃ A be non-empty subsets of an inner product space X . Then show that

(a) A ⊂ A⊥,

(b) B⊥ ⊂ A⊥

(c) A⊥⊥⊥ = A⊥.

6. Let M = ∅ is any subset of a Hilbert space H, show that M⊥⊥ is the smallest closed subspace of H
which contains M .

7. Let {xn} be a sequence in a Hilbert spaceH and x ∈ H is such that lim
n→∞

||xn|| = ||x||, and lim
n→∞

|| (xn, x) ∥
= ||(x, x)∥, show that lim

n→∞
xn = x.



Unit 20

Course Structure

• Introduction

• Objectives

• Riesz Representation theorem

• Convergence of series corresponding to orthogonal sequence

• Fourier coefficient

20.1 Introduction

Orthogonality of elements as defined in the preceding units plays a basic role in inner product and Hilbert
spaces. Of particular interest are sets whose elements are orthogonal in pairs. In this unit, we will mainly
focus on the concepts of orthonormal sets and sequences and their explicit applications.

Objectives

After reading this unit, you will be able to

• learn the Riesz Representation theorem

• apply the Riesz Representation theorem

• learn the concepts of orthogonal sets and sequences

• learn their properties

• give examples of each

• learn about the series related to the orthonormal sequences and sets

• apply them in different circumstances
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20.2 Riesz Representation Theorem

Theorem 20.2.1. (Riesz Representation Theorem) For each bounded linear functional f on a Hilbert space
H there is a unique vector z ∈ H such that f(x) = (x, z) for all x ∈ H; and further ∥f∥ = ∥z∥.

Proof. Existence of z.
If f = 0, then f(x) = 0 = (x, 0) for all x ∈ H . So, z = 0 is the solution in this case. Now, assume f ̸= 0.

Then the null space of f , N (f) = {x ∈ H : f(x) = 0} is a proper closed linear subspace of the Hilbert space
H . By the projection theorem, we have H = N (f) ⊕ N (f)⊥. Since N (f) ̸= H , we have N (f)⊥ ̸= {0}.
We select z0 ∈ N(f)⊥, z0 ̸= 0, so that (z0, z0) > 0. Since f is linear, so for all x ∈ H , we have

f (f(x)z0 − f (z0)x) = f(x)f (z0)− f (z0) f(x) = 0.

Therefore,

f(x)z0 − f (z0)x ∈ N (f).

Since, z0 ∈ N (f)⊥, so,

0 = (f(x)z0 − f (z0)x, z0) = f(x) (z0, z0)− f (z0) (x, z0) .

So, f(x) =
f (z0) (x, z0)

(z0, z0)
= (x, z), where z =

f (z0)

(z0, z0)
z0. Hence z =

f (z0)

(z0, z0)
z0 is the required in this case.

z is unique and ∥f∥ = ∥z∥
Suppose that f(x) = (x, z1) for all x ∈ H . Then f(x) = (x, z) = (x, z1). Hence z1 = z. This proves the

uniqueness. Next, by Cauchy Schwarz’s inequality, for all x ∈ H , we have

|f(x)| = |(x, z)| ≤ ||x||||z|| = ||z||||x||.

So, ∥f∥ ≤ ∥z∥. On the other hand, we have

||z||2 = (z, z) = f(z) ≤ ||f ||||z||.

So, if ||z|| ̸= 0, then ||z|| ≤ ||f ||. If ||z|| = 0, then ||f || ≤ ||z|| provides that ||f || = 0 = ||z||. Hence, in all
cases ||f || = ||z||.

Exercise 20.2.2. LetX be an inner product space and let y ∈ X be fixed. Define f(x) = (x, y) for all x ∈ X .
Show that f is a bounded linear functional on X with ∥f∥ = ∥y∥.

20.2.1 Convergence of series corresponding to orthogonal sequence

Theorem 20.2.3. Let {en} be an orthonormal sequence in a Hilbert space H and let {αn} be any sequence

of scalars. Then the series
∞∑
n=1

αnen converges in H if and only if the series
∞∑
n=1

|αn|2 converges in R.

Also, if
∞∑
n=1

αnen = x ∈ H , then (x, en) = αn for all n and ∥x∥2 =
∞∑
n=1

|αn|2.
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Proof. Let sn =

j∑
n=1

αjej and σn =

j∑
n=1

|αj |2. Since {en} is an orthonormal sequence, obviously, {αnen} is

an orthogonal sequence. Hence for all m > n, we have by Pythagoras theorem,

∥sm − sn∥2 = ∥αn+1en+1 + αn+2en+2 + · · ·+ αmem∥2

= ∥αn+1en+1∥2 + ∥αn+2en+2∥2 + · · ·+ ∥αmem∥2

= |αn+1|2 12 + |αn+2|2 12 + · · ·+ |αm|2 12

= |αn+1|2 + |αn+2|2 + · · ·+ |αm|2 = σm − σn.

Hence it follows that {sn} is a Cauchy sequence in H if and only if {σn} is a Cauchy sequence in R. Since

both H and R are complete, it follows that the series
∞∑
n=1

αnen converges in H if and only if the series

∞∑
n=1

|αn|2 converges in R.

Now, suppose that the series
∞∑
n=1

αnen converges to some x ∈ H . Then sn → x. Given any n for all

m > n, we have

(sm, en) = (α1e1 + α2e2 + · · ·+ αmem, en)

= α1 (e1, en) + α2 (e2, en) + · · ·+ αm (em, en)

= αn.1 = αn.

Since inner product is continuous, so taking m → ∞, we get (x, en) = αn for all n. Moreover, for all n as
above, we have

∥sn∥2 = ||α1e1 + α2e2 + · · ·+ αnen∥2

= |α1|2 + |α2|2 + · · ·+ |αn|2 .

Now, considering n→ ∞, we get

||x||2 =
∞∑
n=1

|αn|2 .

This completes the proof.

Theorem 20.2.4. Let {en} be an orthonormal sequence in a Hilbert space H Then for each x ∈ H , the series
∞∑
n=1

(x, en)en is convergent in H and further

(
x−

∞∑
n=1

(x, en)en

)
⊥ ek for k = 1, 2, . . ..

Proof. Since {en} is an orthonormal sequence in the Hilbert space H , by Bessel’s inequality, we have

∞∑
n=1

|(x, en)|2 ≤ ∥x∥2 <∞.

Thus the series
∞∑
n=1

|(x, en)|2 is convergent in R and hence by the previous theorem, the series
∞∑
n=1

(x, en) en

is convergent in H . Now, let xm = x−
m∑
j=1

(x, ej) ej . Then xm → x−
∞∑
n=1

(x, en) en as m → ∞. Now,
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given any positive integer k, for all m > k, we have

(xm, ek) = (x, ek)−
m∑
j=1

(x, ej) (ej , ek) = (x, ek)− (x, ek) = 0.

Since inner product is continuous, considering m→ ∞, we have(
x−

∞∑
n=1

(x, en) en, ek

)
= 0.

Hence,

(
x−

∞∑
n=1

(x, en) en

)
⊥ ek for k = 1, 2, . . .

Definition 20.2.5. An orthonormal sequence {en} in an inner product space X is said to be complete if the
set {e1, e2, e3, . . .} is not a proper subset of any orthonormal set in X .

Theorem 20.2.6. Let {en} be an orthonormal sequence in a Hilbert space H . Then the following conditions
are equivalent:

1. The orthonormal sequence {en} is complete.

2. If x ∈ H is such that x ⊥ {en}, then x = 0.

3. Each x ∈ H has a Fourier expansion x =
∞∑
n=1

(x, en) en.

4. Each x ∈ H satisfies the Perseval identity ∥x∥2 =
∞∑
n=1

|(x, en)|2.

Proof.1 ⇒ 2: If x ∈ H is such that x ⊥ {en}.

If possible, let x ̸= 0. Then e =
1

∥x∥
x ∈ H and ∥e∥ = 1. Further (e, en) =

(
1

∥x∥
x, en

)
=

1

∥x∥
· 0 = 0

for all n. Also e ̸= en for any n, for if e = en, (e, en) = (en, en) = ∥en∥2 = 1 ̸= 0. Therefore,
{e, e1, e2, e3, . . .} is an orthonormal set of which {e1, e2, e3, . . .} is a proper subset. This contradicts 1.
Hence we must have x = 0. Thus 1 ⇒ 2.

2 ⇒ 3: Since {en} be an orthonormal sequence in a Hilbert space H , then by the previous theorem, for each

x ∈ H , the series
∞∑
n=1

(x, en) en is convergent in H and further

(
x−

∞∑
n=1

(x, en) en

)
⊥ ek for k =

1, 2, . . . Then by 2, we have x−
∞∑
n=1

(x, en) en = 0, i.e., x =
∞∑
n=1

(x, en) en. Thus 2 ⇒ 3.

3 ⇒ 4: By 3, for each x ∈ H , we have Fourier expansion x =

∞∑
n=1

(x, en) en. Hence by a known result,

∥x∥2 =
∞∑
n=1

| (x, en) |2.

Thus 3 ⇒ 4.
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4 ⇒ 1: By 4, we have

1 = ∥e∥2 =
∞∑
n=1

| (e, en) |2.

So, we must have (e, en) ̸= 0 for at least one n. This means that {e, e1, e2, e3, . . .} is not an or-
thonormal set. So, by definition, {e1, e2, e3, . . .} is a complete orthonormal set, i.e., {en} is a complete
orthonormal sequence. Thus 4 ⇒ 1.

This completes the proof of the theorem.

Exercise 20.2.7. 1. Let {e1, e2, e3, . . . , en} be an orthonormal set in a Hilbert spaceH where n is fixed. If

x ∈ H is a fixed member, show that for some scalars α1, α2, α3, . . . , αn, the value of

∥∥∥∥∥x−
∞∑
n=1

αnen

∥∥∥∥∥
is minimum when αi = (x, ei) , i = 1, 2, . . . , n.

2. Let {en} be an orthonormal sequence in an inner product space X . If x ∈ H is such that x =
∞∑
n=1

(x, en) en, then show that (x, y) =
∞∑
n=1

(x, en) (y, en).

3. In the Hilbert space l2, show that {en} is a complete orthonormal sequence if

e1 = (1, 0, 0, 0, . . . , 0)

e2 = (0, 1, 0, 0, . . . , 0)

e3 = (0, 0, 1, 0, . . . , 0)

...
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Unit 1

Course Structure

• Lagrangian Formulation : Generalised coordinates, Holonomic and nonholonomic systems, Sclero-
nomic and rheonomic systems, D’Alembert’s principle, Lagrange’s equations, Generalised potential.

1.1 Introduction

Lagrangian mechanics is a reformulation of classical mechanics, introduced by the Italian-French mathemati-
cian and astronomer Joseph-Louis Lagrange. In Lagrangian mechanics, the trajectory of a system of particles
is derived by solving Lagrange equation which treat constraints explicitly as extra equations or directly by
judicious choice of generalised coordinates. In this case, a mathematical function called the Lagrangian is a
function of the generalised coordinates, their first derivatives, and time, and contains the information about the
dynamics of the system. Although Lagrangian formulation reduce to Newton’s laws, they are characterized
not only by the relative ease with which many problems can be formulated and solved but by their relation-
ship in both theory and application to such advanced fields as quantum mechanics, statistical mechanics and
electrodynamics.

1.2 Basic Concepts

In this section, some basic concepts regarding the motion of particles are given below.

1.2.1 Coordinate Systems

The fundamental concept involved in the motion of a particle (or system ) is the position coordinate and how
it is changing with time. The position of a particle is represented by choosing a coordinate system. In the
Cartesian or rectangular coordinate system, the position vector r⃗ of a particle is defined in terms x, y and
z coordinates. In a two dimensional motion, rectangular coordinates (x, y) or polar coordinates (r, θ) can
represent the position of the particle [Fig. 1.2.1]. They are related as

x = r cos θ and y = r sin θ; r =
√
x2 + y2 and θ = tan−1 y

x
.

1



2 UNIT 1.

Figure 1.2.1: Rectangular and polar coordinates

In three dimensions, the cylindrical coordinates (ρ, θ, z) and the spherical coordinates (r, θ, ϕ) of the position
of a particle are related to the Cartesian coordinates (x, y, z) as follows:

For cylindrical and Cartesian coordinates [Fig. 1.2.2]:

x = ρ cos θ, y = ρ sin θ, z = z; ρ =
√
x2 + y2, A = tan−1 y

x
= sin−1 y

ρ

For spherical and cartesian coordinates [Fig. 1.2.2]:

Figure 1.2.2: Cartesian and spherical coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ;

r =
(
x2 + y2 + z2

)1/2
, θ = tan−1

√
x2 + y2

z
, ϕ = tan−1 y

x
We may represent, for example, the relationships for spherical and cartesian coordinates as follows :

x = x(r, θ, ϕ), y = y(r, θ, ϕ), z = z(r, θ)

or, r⃗ = r⃗(r, θ, ϕ)

If we include the time variable also, then
r⃗ = r⃗(r, θ, ϕ, t),

In general , we may represent the coordinates by q1, q2, q3, having the relationships with the cartesian coordi-
nates as

x = x (q1, q2, q3, t) , y = y (q1, q2, q3, t) , z = z (q1, q2, q3, t)

or, r⃗ = r⃗ (q1, q2, q3, t)
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In fact, these are the transformation equations from a general system to the cartesian coordinate system.

1.2.2 Degrees of Freedom - Configuration Space

The minimum number of independent variables or coordinates required to specify the position of a dynamical
system, consisting of one or more particles, is called the number of degrees of freedom of the system. For
example, the motion of a particle, moving freely in space, can be described by a set of three coordinates e.g.s
(x, y, z) and hence the number of degrees of freedom, possessed by the particle, is three. A system of two
particles, moving freely in space, requires two sets of three coordinates [e.g., (x1, y1, z1) and (x2, y2, z2)] i.e.,
six coordinates to specify its position. Thus the system has six degrees of freedom. If a system consists of
N particles, moving freely in space, we need 3N independent coordinates to descrie its position. Hence the
number of degrees of freedom of the system is 3N .

The configuration of the system of N particles, moving freely in space, may be represented by the position
of a single point in 3N dimensional space, which is called configuration space of the system. The configura-
tion space for a system of one freely moving particle is 3 -dimensional and for a system of two freely moving
particles, it is six dimensional. In the later case, the configuration of the system of the two particles can be
represented by the position of a single point with six coordinates in six dimensional space. This system has
six degrees of freedom and its configuration space is six dimensional.

The number of coordinates, needed to specify a dynamical system, becomes smaller, when the constraints
(which we describe below) are present in the system. Hence the degrees of freedom of a dynamical system
is defined as the minimum number of independent coordinates (or variables) required to specify the system
compatible with the constraints. If there are n independent variables, say q1, q2, . . . , qn and n constants
C1 · C2, . . . , Cn such that

n∑
i=1

Cidqi = 0 (1.2.1)

at any position of the system, then we must have

C1 = C2 = · · · = Cn = 0.

1.2.3 Constraints

Often the motion of a particle or system of particles is restricted by one or more conditions. The limitations
on the motion of a system are called constraints and the motion is said to be constrained motion.

Holonomic constraints

Suppose the constraints are present in the system of N particles. If the constraints are expressed in the form
of equations of the form

f (r⃗1, r⃗2, . . . , t) = 0 (1.2.2)

then they are called holonomic constraints. Let there bem number of such equations to describe the constraints
in theN particle system. Now, we may use these equations to eliminatem of the 3N coordinates and we need
only n independent coordinates to describe the motion, given by

n = 3N −m

The system is said to have n or 3N −m degrees of freedom. The elimination of the dependent coordinates
can be expressed by introducing n = 3N − m independent variables q1, q2, . . . , qn. These are referred as
generalized coordinates.
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Nonholonomic constraints

The constraints which are not expressible in the form of Eq. (1.2.2) are called nonholonomic. For example,
the motion of a particle, placed on the surface of a sphere of radius a, will be described by

|r⃗| ≥ a or r − a ≥ 0

in a gravitational field, where r⃗ is the position vector of the particle relative to the centre of the sphere. The
particle will first slide down the surface and then fall off. The gas molecules in a container are constrained to
move inside it and the related constraint is another example of nonholonomic constraints. If the gas container
is in spherical shape with radius a and r⃗ is the position vector of a molecule, then the condition of constraint
for the motion of molecules can be expressed as

|r⃗| ≤ a or r − a ≤ 0.

It is to be mentioned that in holonomic constraints, each coordinate can vary independently of the other. In
a nonholonomic system, all the coordinates cannot vary independently and hence the number of degrees of
freedom of the system is less than the minimum number of coordinates need to specify the configuration of
the system. We shall in general consider the holonomic systems.

Constraints are further described as (i) rheonomous and (ii) scleronomous. In the former, the equations of
constraint contain the time as an explicit variable, while in the later they are not explicitly dependent on time.
Constraints may also be classified as (i) conservative and (ii) dissipative. In case of conservative constraints,
total mechanical energy of the system is conserved during the constrained motion and the constraint forces do
not do any work. In dissipative constraints, the constraint forces do work and the total mechanical energy is
not conserved. Time-dependent or rheonomic constraints are generally dissipative.

1.3 Generalized Coordinates

The name generalized coordiniates is given to a set of independent coordinates sufficient in number to describe
completely the state of configuration of a dynamical system. These coordinates are denoted as

q1, q2, q3, . . . , qk, . . . qn (1.3.1)

where n is the total number of generalized coordinates. In fact, these are the minimum number of coordi-
nates, needed to describe the motion of the system. For example, for a particle constrained to move on the
circumference of a circle only one generalized coordinate q1 = θ is sufficient and two generalized coordinates
q1 = θ, and q2 = ϕ for a particle moving on the surface of a sphere. The generalized coordinates for a system
of N particles, constrained by m equations, are n = 3N − m. It is not necessary that these coordinates
should be rectangular, spherical or cylindrical. In fact, the quantities like length, (length) 2, angle, energy or a
dimensionless quantity may be used as generalized coordinates but they should completely describe the state
of the system. Further these n generalized coordinates are not restricted by any constraint.

For a system of N particles, if (xi, yi, zi) are the cartesian coordinates of the i-th particle, then these
coordinates in terms of the generalized coordinates qk can be expressed as

xi = xi (q1, q2, . . . , qk, . . . , qn, t)

yi = yi (q1, q2, . . . , qk, . . . , qn, t)

zi = zi (q1, q2, . . . , qk, . . . , qn, t)

(1.3.2)
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or, in general the position vector r⃗i (xi, yi, zi) of the i-th particle is

r⃗i = r⃗i (q1, q2, . . . , qk, . . . , qn, t) (1.3.3)

Eqs. (1.3.2) or (1.3.3) give the transformation equations. It may be mentioned that the generalized coordinates
may be the cartesian coordinates.

One should note that the system is said to be rheonomic, when there is an explicit time dependence in some
or all of the functions defined by Eq. (1.3.2) or (1.3.3). If there is not the explicit time dependence, the system
is called scleronomic and t is not written in the functional dependence, i.e.,

r⃗i = r⃗i (q1, q2, . . . , qk, . . . , qn) (1.3.4)

1.4 Principle of virtual work

In order to investigate the properties of a system, we can imagine arbitrary instantaneous change in the position
vectors of the particles of the system e.g., virtual displacements. An infinitesimal virtual displacement of i-th
particle of a system of N particles is denoted by δri. This is the displacement of position coordinates only
and does not involve variation of time, i.e.,

δr⃗i = δr⃗i (q1, q2, . . . , qn)

Suppose the system is in equilibrium, then the total force on any particle is zero i.e.,

F⃗i = 0, i = 1, 2, . . . , N

The virtual work of the force F⃗i in the virtual displacement δr⃗i will also be zero, i.e.,

δWi = F⃗i · δr⃗i = 0

Similarly, the sum of virtual work for all the particles must vanish, i.e.,

δW =

N∑
i=1

F⃗i · δr⃗i = 0 (1.4.1)

This result represents the principle of virtual work which states that the work done is zero in the case of an
arbitrary virtual displacement of a system from a position of equilibrium .

The total force F⃗i on the i-th particle can be expressed as

F⃗i = F⃗ ai + f⃗i.

where F⃗ ai is the applied force and f⃗i is the force of constraint. Hence, Eq. (1.4.1) assumes the form

N∑
i=1

F⃗ ai · δr⃗i +
N∑
i=1

f⃗i · δr⃗i = 0

We restrict ourselves to the systems where the virtual work of the forces of constraints is zero, e.g., in case of
a rigid body. Then

N∑
i=1

F⃗ ai · δr⃗i = 0

i.e., for equilibrium of a system, the virtual work of applied forces is zero. We see that the principle of virtual
work deals with the statics of a system of particles. However, we want a principle to deal with the general
motion of the system and such a principle was developed by D’Alembert.
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1.5 D’Alembert’s Principle

According to Newton’s second law of motion, the force acting on the i-th particle is given by

F⃗i =
dp⃗i
dt

= ˙⃗pi

This can be written as
F⃗i − ˙⃗pi = 0, i = 1, 2, . . . , N

These equations mean that any particle in the system is in equilibrium under a force, which is equal to the
actual force F⃗i plus a reversed effective force ˙⃗pi. Therefore, for virtual displacements δr⃗i,

N∑
i=1

(
F⃗ i − ˙⃗pi

)
· δr⃗i = 0

But F⃗i = F⃗ ai + f⃗i, then
N∑
i=1

(
F⃗
a

i − ˙⃗pi

)
· δr⃗i +

N∑
i=1

f⃗i · δr⃗i = 0

Again, we restrict ourselves to the systems for which the virtual work of the constraints is zero, i.e.,
∑
i

f⃗i ·

δr⃗i = 0. Then
N∑
i=1

(
F⃗ ai − ˙⃗pi

)
· δr⃗i = 0 (1.5.1)

This is known as D’Alembert’s principle. Since the forces of constraints do not appear in the equation and
hence now we can drop the superscript. Therefore, the D’Alembert’s principle may be written as

N∑
i=1

(
F⃗ i − ˙⃗pi

)
· δr⃗i = 0 (1.5.2)

1.6 Lagrange’s equations from D’Alembert’s Principle

Consider a system of N particles. The transformation equations for the position vectors of the particles

r⃗i = r⃗i (q1, q2, . . . , qk, . . . , qn, t) (1.6.1)

where t is the time and qk(k = 1, 2, . . . , n) are the generalized coordinates. Differentiating Eq. (1.6.1) with
respect to t, we obtain the velocity of the i-th particle, i.e.,

dr⃗i
dt

=
∂r⃗i
∂q1

dq1
dt

+
∂r⃗i
∂q2

dq2
dt

+ · · ·+ ∂r⃗i
∂qk

dqk
dt

+ · · ·+ ∂r⃗i
∂qn

dqn
dt

+
∂r⃗i
∂t

or, v⃗i = ˙⃗ri =

n∑
k=1

∂r⃗i
∂qk

q̇k +
∂r⃗i
∂t

(1.6.2)

where q̇k are the generalized velocities. The virtual displacement is given by

δr⃗i =
∂r⃗i
∂q1

δq1 +
∂r⃗i
∂q2

δq2 + · · ·+ ∂r⃗i
∂qk

δqk + · · ·+ ∂r⃗i
∂qn

δqn

or, δr⃗i =
n∑
k=1

∂r⃗i
∂qk

δqk (1.6.3)
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since by definition the virtual displacements do not depend on time. According to D’Alembert’s principle,

N∑
i=1

(
F⃗i − ˙⃗pi

)
· δr⃗i = 0 (1.6.4)

Here
N∑
i=1

F⃗i · δr⃗i =
N∑
i=1

F⃗i ·
n∑
k=1

∂r⃗i
∂qk

δqk =
n∑
k=1

N∑
i=1

[
F⃗i ·

∂r⃗i
∂qk

]
δqk =

n∑
k=1

Gkδqk (1.6.5)

where

Gk =

N∑
i=1

F⃗i ·
∂r⃗i
∂qk

=

N∑
i=1

[
Fxi

∂xi
∂qk

+ Fyi
∂yi
∂qk

+ Fzi
∂zi
∂qk

]
(1.6.6)

are called the components of generalized force associated with the generalized coordinates qk. This may be
mentioned that as the dimensions of the generalized coordinates need not be those of length, similarly the gen-
eralized force components Gk may have dimensions different than those of force. However, the dimensions
of Gkδqk are those of work. For example, if δqk has the dimensions of length, Gk will have the dimensions
of force; if δqk has the dimensions of angle (θ), Gk will have the dimensions of torque (τ).

Further
N∑
i=1

˙⃗pi · δr⃗i =
N∑
i=1

mi
¨⃗ri ·

n∑
k=1

∂r⃗i
∂qk

δqk =
n∑
k=1

[
N∑
i=1

mi
¨⃗ri ·

∂r⃗i
∂qk

]
δqk (1.6.7)

Now
N∑
i=1

mi
¨⃗ri ·

∂r⃗i
∂qk

=

N∑
i=1

[
d

dt

(
mi

˙⃗ri ·
∂r⃗i
∂qk

)
−mi

˙⃗ri ·
d

dt

(
∂r⃗i
∂qk

)]
(1.6.8)

It is easy to prove that
d

dt

(
∂r⃗i
∂qk

)
=

∂

∂qk

(
dr⃗i
dt

)
=
∂v⃗i
∂qk

(1.6.9)

and
∂r⃗i
∂qk

=
∂v⃗i
∂q̇k

(1.6.10)

Therefore, Eq. (1.6.8) becomes

N∑
i=1

mi
¨⃗ri ·

∂r⃗i
∂qk

=
N∑
i=1

[
d

dt

[
miv⃗i ·

∂v⃗i
∂q̇k

]
−miv⃗i ·

∂v⃗i
∂qk

]
(1.6.11)

Substituting in (1.6.7), we get

N∑
i=1

˙⃗pi · δr⃗i =

n∑
k=1

N∑
i=1

[
d

dt

(
miv⃗i ·

∂v⃗i
∂q̇k

)
−miv⃗i ·

∂v⃗i
∂qk

]
δqk

=

n∑
k=1

[
d

dt

{
∂

∂q̇k

(
N∑
i=1

1

2
mi (v⃗i · v⃗i)

)}
− ∂

∂qk

{
N∑
i=1

1

2
mi (v⃗i · v⃗i)

}]
δqk

=

n∑
k=1

[
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

]
δqk (1.6.12)
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where
∑
i

1

2
mi (v⃗i · v⃗i) =

∑
i

1

2
miv

2
i = T is the kinetic energy of the system.

Substituting for
∑
i
F⃗i · δr⃗i from (1.6.5) and

∑
i

˙⃗pi · δr⃗i from (1.6.12) in Eq. (1.6.4), the D’Alembert’s

principle becomes
n∑
k=1

[{
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

}
−Gk

]
δqk = 0 (1.6.13)

As the constraints are holonomic, it means that any virtual displacement δqk is independent of δqj . Therefore,
the coefficient in the square bracket for each δqk must be zero, i.e.,

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
−Gk = 0 or

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= Gk (1.6.14)

This represents the general form of Lagrange’s equations.

For a conservative system, the force is derivable from a scalar potential V :

F⃗i = −∇iV = −î ∂V
∂xi

− ĵ
∂V

∂yi
− k̂

∂V

∂zi
(1.6.15)

Hence from Eq. (1.6.6), the generalized force components are

Gk = −
N∑
i=1

[
∂V

∂xi

∂xi
∂qk

+
∂V

∂yi

∂yi
∂qk

+
∂V

∂zi

∂zi
∂qk

]
(1.6.16)

Clearly the right hand side of the above equation is the partial derivative of −V with respect to qk, i.e.,

Gk = − ∂V

∂qk
(1.6.17)

Thus Eq. (1.6.14) assumes the form

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= − ∂V

∂qk
(1.6.18)

or,
d

dt

(
∂T

∂q̇k

)
− ∂(T − V )

∂qk
= 0 (1.6.19)

Since the scalar potential V is the function of generalized coordinates qk only not depending on generalized
velocities, we can write Eq. (1.6.19) as

d

dt

[
∂(T − V )

∂q̇k

]
− ∂(T − V )

∂qk
= 0 (1.6.20)

We define a new function given by L = T − V which is called the Lagrangian of the system. Thus, Eq.
(1.6.20) takes the form

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 (1.6.21)

for k = 1, 2, . . . , n.

These equations are inown as Lagrange’s equations for conservative system. They are n in number and
there is one equation for each generalized coordinate. In order to solve these equations, we must know the
Lagrangian function L = T − V in the appropriate generalized coordinates.
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1.7 Procedure for formation of Lagrange’s equations

The Lagrangian function L of a system is given by

L = T − V (1.7.1)

In order to form L, kinetic energy T and potential energy V are to be written in generalized coordinates. This
is then substituted in the Lagrangian equations

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 (1.7.2)

to obtain the equations of motion of the system. This involves first to find the partial derivatives of L, i.e:,
∂L/∂qk and ∂L/∂q̇k and then to put their values in Eq. (1.7.2).

Kinetic Energy in Generalized Coordinates: The transformation equations (1.6.1) and (1.6.2) are used
to transform T from cartesian coordinates to generalized coordinates. Therefore

T =
∑
i

1

2
miv

2
i =

∑
i

1

2
mi

˙⃗r2i =
∑
i

1

2

(
n∑
k=1

∂r⃗i
∂qk

q̇k +
∂r⃗i
∂t

)2

or, T =M0 +
∑
k

Mkq̇k +
1

2

∑
k,l

Mklq̇kq̇l (1.7.3)

where M0 =
∑
k

1

2
mi

(
∂r⃗i
∂t

)2

, Mk =
∑
i

mi
∂r⃗i
∂t

· ∂r⃗i
∂qk

and Mkl =
∑
i

mi
∂r⃗i
∂qk

· ∂r⃗i
∂ql

Thus we see from (1.7.3) that in the expression for kinetic energy, first term is independent of generalized
velocities, while second and third terms are linear and quadratic in generalized velocities respectively.

For scleronomic systems, the transformation equations do not contain time explicitly, so that

v⃗i = ˙⃗ri =
∑
k

∂r⃗i
∂qk

q̇k

Therefore,

T =
∑
i

1

2
mv2i =

1

2

∑
k,l

Mklq̇kq̇l (1.7.4)

In such a case, the expression for T is a homogeneous quadratic form in generalized velocities.

Example 1.7.1. Obtain the equation of motion of a simple pendulum by using Lagrangian method and hence
deduce the formula for its time period for small amplitude oscillations.

Solution: Let θ be the angular displacement of the simple pendulum from the equilibrium position. If l be
the effective length of the pendulum and m be the mass of the bob, then the displacement along arc OA = s
is given by

s = lθ

[
because θ =

Arc
Radius

=
s

l

]
Kinetic energy T =

1

2
mv2 =

1

2
ml2θ̇2

[
∵ v =

ds

dt
=
d(lθ)

dt
=
l dθ

dt
= θ̇

]



10 UNIT 1.

Figure 1.7.1: Simple pendulum

If the potential energy of the system, when the bob is at O, is zero, then the potential energy, when the bob
is at A, is given by

V = mg (OB) = mg (OC −BC) = mg(l − l cos θ) = mgl(1− cos θ)

Hence
L = T − V, or L =

1

2
ml2θ̇2 −mgl(1− cos θ)

Now,
∂L

∂θ
= −mgl sin θ and

∂L

∂θ̇
= ml2θ̇

Substituting these values in the Lagrange’s equation (here there is only one generalized coordinate q1 = θ)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

we get
d

dt

[
ml2θ̇

]
+mgl sin θ = 0 ⇒ ml2θ̈ +mgl sin θ = 0 ⇒ θ̈ +

g

l
sin θ = 0

This represents the equation of motion of a simple pendulum. For small amplitude oscillations, sin θ ∼= θ, and
therefore the equation of motion of a simple pendulum is

θ̈ +
g

l
θ = 0

This represents a simple harmonic motion of period, given by

T = 2π

√
l

g

Example 1.7.2. Use Lagrange’s equations to find the equation of motion of a compound pendulum in a verti-
cal plane about a fixed horizontal axis. Hence find the period of small amplitude oscillations of the compound
pendulum.

Solution. Let the compound pendulum be suspended from S with C as centre of mass. It is oscillating in
the vertical plane which is the plane of the paper.
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Moment of inertia of the pendulum about the axis of rotation through S is given by

I = Ic +Ml2 =M(K2 + l2)

where M is the mass of the pendulum, Ic = MK2 (K = radius of gyration) about a parallel axis through C
and l the distance between centre of suspension and centre of mass. If θ is the instantaneous angle which SC

Figure 1.7.2: Compound pendulum

makes with the vertical axis through O, then the kinetic energy of the oscillating system is

T =
1

2
Iθ̇2 =

1

2
M
(
K2 + l2

)
θ̇2

Potential energy with respect to horizontal plane through S is V = −Mgl cos θ and Lagrangian L = T−V =
1

2
M
(
K2 + l2

)
θ̇2 +Mgl cos θ.

Now,
∂L

∂θ
= −Mgl sin θ and ∂L

∂θ̇
=M

(
K2 + l2

)
θ̇

Lagrange’s equation in θ coordinate is

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

Therefore,
1

2
M
(
K2 + l2

)
θ̈ +Mgl sin θ = 0 ⇒ θ̈ +

gl

K2 + l2
sin θ = 0

This is the equation of motion of the compound pendulum. If θ is small, sin θ ∼= θ

θ̈ +
gl

K2 + l2
θ = 0

This equation represents a simple harmonic motion whose period is given by

T = 2π

√
K2 + l2

lg
= 2π

√
K2

l
+ l.
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1.8 Lagrange’s equations in presence of non-conservative forces

When the forces acting on the system consist of non-conservative forces (f⃗i) in addition to the conservative
forces (F⃗i), then the components of generalized force can be written as [using Eq. (1.6.6)]

Gk =
N∑
i=1

[
F⃗i + f⃗i

]
· ∂r⃗i
∂qk

=
∑
i

F⃗i ·
∂r⃗i
∂qk

+
∑
i

f⃗i ·
∂r⃗i
∂qk

⇒ Gk = − ∂V

∂qk
+G′

k (1.8.1)

whereG′
k =

∑
f⃗i·
∂r⃗i
∂qk

are the components of generalized non-potential force resulting from non-conservative

forces and
∑

f⃗i ·
∂r⃗i
∂qk

= − ∂V

∂qk
for conservative part [Eq. (1.6.17)].

Here V is the scalar potential for conservative forces. In such a case, Eq. (1.6.21) assumes the form

d

dt

(
∂L

∂q̇k

)
−
(
∂L

∂qk

)
= G′

k (1.8.2)

where L = T −V . Eqs. (1.8.2) represent the Lagrange’s equations in the presence of non-conservative forces.

1.9 Generalized Potential

In general, the Lagrange’s equations can be written as

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= Gk (1.9.1)

For a conservative system, Gk = − ∂V

∂qk
and then the Lagrange’s equations in the usual form are

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 with L = T − V (1.9.2)

However, Lagrange’s equations can be put in the form (1.9.2), provided the generalized forces are obtained
from a function U (qk, q̇k), given by

Gk = − ∂U

∂qk
+
d

dt

(
∂U

∂q̇k

)
(1.9.3)

In such a case,
L = T − U (1.9.4)

where U (qk, q̇k) is called velocity dependent potential or generalized potential. This type of case occurs in
case of a charge moving in an electromagnetic field.

Exercise 1.9.1. 1. What are generalized coordinates? Describe the advantage of their use in the solutions
of mechanical problems.

2. What are constraints? Classify the constraints with some examples.

3. What is D’Alembert’s principle? Derive Lagrange’s equations of motion from it for conservative sys-
tem. How will the result be modified for non-conservative system?
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4. Use D’Alembert’s principle to determine the equation of motion of a simple pendulum.

5. Prove that a system describe the motion of harmonic oscillator whose Lagrangian is given by

L =
1

2
q̇2 + qq̇ − 1

2
q2.

6. The Lagrangian of a system is given by L =
1

2
ml2(θ̇ + sin θϕ̇2) − mgl cos θ, where m, l and g are

constants. Prove that the quantity ϕ̇ sin2 θ is conserved.

7. The Lagrangian of a particle of mass m moving in one dimensional is given by L =
1

2
mẋ2 − bx,

where b is a positive constant. Show that the coordinate of the particle x(t) at time t is given by

− b

2m
t2 + c1t+ c2, where c1 and c2 are constants.

8. Prove that the dynamics of a particle is governed by the LagrangianL =
1

2
mẋ2−1

2
kx2−kxẋt describes

a free particle.

9. Consider a particle of mass m attached to two identical springs each of length l and spring constant k.
The equilibrium configuration is the one where the springs are unstretched. There are no other external
forces on the system. If the particle is given a small displacement along the X-axis, then show that the
equation of motion for small oscillations is governed by the equation

mẍ+
kx3

l2
= 0.

10. The parabolic coordinate (ξ, η) are related to the Cartesian coordinates (x, y) by x = ξη and y =
1

2
(ξ2 − η2). Show that the Lagrangian of a two-dimensional simple harmonic oscillator of mass m and

angular frequency ω is
1

2
m(ξ2 + η2)

[(
ξ̇2 + η̇2

)
− 1

4
ω2
(
ξ2 − η2

)]
.
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Unit 2

Course Structure

• Moving Coordinate System : Coordinate systems with relative translational motions.

• Rotating coordinate systems, The Coriolis force.

• Motion on the earth. Effect of Coriolis force on a freely falling particle.

2.1 Introduction

We have seen earlier that Newton’s laws of motion are valid in inertial frame of reference and these inertial
frames are unaccelerated. The accelerated frames are called as non-inertial frames because in such a frame, a
force-free particle will seem to have an acceleration. If we do not consider the acceleration of the frame but
apply Newton’s laws to the motion of the force free-particle, then it will appear that a force is acting on it.
This means that in the accelerated frames, Newton’s law of inertia is not valid. Thus a non-inertial frame of
reference is defined as a frame of reference in which Newton’s first law does not hold true. An observer of a
rotating frame will also see a force on a force-free particle and hence all rotating frames are also non-inertial.

2.2 Fictitious or Pseudo Force

Suppose that S is an inertial frame and another frame S′ is moving with an acceleration a relative to S. The
acceleration of a particle P , on which no external force is acting, will be zero in the frame S; but in frame
S′ the observer will find that an acceleration −a0 is acting on it. Thus, in frame S′ the observed force on the
particle is −ma⃗0, where m is the mass of the particle. Such a force, which does not really act on the particle
but appears due to the acceleration of the frame, is called a fictitious or pseudo force. Hence fictitious force
on the particle P is

F⃗0 = −ma⃗0 (2.2.1)

Here, the accelerated frame S′ is non-inertial. Now, if a force F⃗i is applied on the particle and a⃗i is the
observed acceleration in the inertial frame (S), then according to Newton’s law

F⃗i = m a⃗i (2.2.2)

15
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Figure 2.2.1: Non-inertial (accelerated) frames

Suppose frame S′ coincides at t = 0 with the initial frame S. Then at any time t, the position vectors of a
particle r⃗i and r⃗n in the inertial and non-inertial frames respectively are connected as

r⃗i = r⃗n +
1

2
a⃗0t

2

where a0 is the acceleration of the frame S′ with respect to S. Double differentiation with respect to time t
gives

d2r⃗i
dt2

=
d2r⃗n
dt2

+ a⃗0 (2.2.3)

As
d2r⃗i
dt2

= a⃗i is the acceleration in the inertial frame, and
d2r⃗n
dt2

= a⃗n, the acceleration observed in the
non-inertial frame, we can write Eq. (2.2.3) as

a⃗i = a⃗n + a⃗0 ⇒ a⃗i − a⃗0 = a⃗n ⇒ ma⃗i −ma⃗0 = ma⃗n (2.2.4)

If we define the force on the particle in the accelerated system according to Newton’s second law, i.e., ma⃗n =
F⃗n, then using Eqs. (2.2.1) and (2.2.2), we get

F⃗n = F⃗i + F⃗0 (2.2.5)

where F⃗i (= ma⃗i) is the real force acting on the particle and F⃗0 (= −ma⃗0) is the fictitious force. Thus, the
observer in the accelerated frame will measure the resultant (total) force which is the sum of real and fictitious
forces on the particle i.e.,

Total force = True force + Fictitious force

2.3 Centrifugal Force

Let us consider a mass m, moving on the circumference of a circle of radius r⃗ with an angular velocity ω⃗. For
example, consider a stone attached at the end of a string. In an inertial frame, the centripetal force acting on
the mass m is given by

F⃗i = −mω2r⃗ (2.3.1)

where r⃗ is directed outward from the centre O. In case of rotating string with stone, this centripetal force is
provided by the tension T⃗ of the string. So that

F⃗i = T⃗ = −mω2r⃗ (2.3.2)
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Figure 2.3.1: Centrifugal Force

Now suppose that a frame is rotating with an angular velocity ω relative to the inertial frame so that in the
rotating frame the mass m is at rest. In this non-inertial (rotating) frame, the observed acceleration (⃗an) of the
mass m is zero, i.e., a⃗n = 0 and consequently the total force

(
F⃗n

)
is given by

F⃗n = ma⃗n = 0. (2.3.3)

Now
F⃗i + F⃗0 = F⃗n i.e., −mω2r⃗ + F⃗0 = 0 (2.3.4)

Thus
F⃗0 = mω2r⃗ (2.3.5)

This fictitious force
(
F⃗0

)
is directed away from the centre (along r⃗) and is called the centrifugal force.

2.4 Uniformly Rotating Frames

We know that the earth itself rotates about its axis in 24 hours. Therefore, any frame fixed with the earth will
also rotate with it and so it will be a non-inertial frame.

Suppose that a frame S′ (Xr, Yr, Zr) is rotating with an angular velocity ω relative to an inertial frame
S(Xi, Yi, Zi). For simplicity, we assume that both of the frames have common origin O and common Z-axis.
In case of the earth, the common origin O may be considered as the centre of the earth, Z-axes as coinciding
with its rotational axis and the frame S′ as rotating with earth relative to the non-rotating frame S.

The position vector of a particle P in both frames will be the same, i.e., R⃗i = R⃗r = R⃗, because the origins
are coincident. Now, if the particle P is stationary in the frame S, the observer: in the rotating frame S′ will
see that the particle is moving oppositely with linear velocity −ω ×R. Thus, if the velocity of the particle in

the frame S is

(
dR⃗

dt

)
i

, then its velocity

(
dR⃗

dt

)
r

in the rotating frame will be given by

(
dR⃗

dt

)
r

=

(
dR⃗

dt

)
i

− ω⃗ × R⃗⇒

(
dR⃗

dt

)
i

=

(
dR⃗

dt

)
r

+ ω⃗ × R⃗ (2.4.1)
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Figure 2.4.1: Uniformly rotating frame

In fact this equation holds for all vectors and relates the time derivatives of a vector in the frames S and S′.
Therefore, relation (2.4.1) may be written in the form of operator equation:(

d

dt

)
i

=

(
d

dt

)
r

+ ω⃗ × (2.4.2)

Writing dR⃗/dt = v for the velocity of the particle, we have

v⃗i = v⃗r + ω⃗ × R⃗ (2.4.3)

Now, if we operate Eq. (2.4.2) on velocity vector vi, we have(
dv⃗i
dt

)
i

=

(
dv⃗i
dt

)
r

+ ω⃗ × v⃗i

Substituting the value of v⃗i in the right hand side of this relation from Eq. (2.4.3), we obtain(
dv⃗i
dt

)
i

=

[
d

dt

(
v⃗r + ω⃗ × R⃗

)]
r

+ ω⃗ ×
(
v⃗r + ω⃗ × R⃗

)
=

(
dv⃗r
dt

)
r

+
dω⃗

dt
× R⃗+ ω⃗ ×

(
dR⃗

dt

)
r

+ ω × v⃗r + ω⃗ × (ω⃗ × R⃗)

If we write the acceleration
dv⃗

dt
= a⃗ and

(
dR⃗

dt

)
r

= v⃗r, then

a⃗i = a⃗r + 2ω⃗ × v⃗r + ω⃗ × (ω⃗ × R⃗) +
dω⃗

dt
× R⃗

or, a⃗r = a⃗i − 2ω⃗ × v⃗r − ω⃗ × (ω⃗ × R⃗)− ⃗̇ω × R⃗ (2.4.4)

which relates the acceleration, (⃗ar) in the rotating frame to that (⃗ai) in the non-rotating (inertial) frame. If m
is the mass of the particle, then force in the rotating frame is

ma⃗r = ma⃗i − 2mω⃗ × v⃗r −mω⃗ × (ω⃗ × R⃗)−m(⃗̇ω × R⃗)
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But ma⃗r = F⃗i + F⃗0, therefore fictitious force F⃗0 is given by

F⃗0 = −2m(ω⃗ × v⃗r)− ω⃗ × (ω⃗ × R⃗)−m(⃗̇ω × R⃗)

where −2m(ω⃗ × v⃗r) is the Coriolis force, −mω⃗ × (ω⃗ × R⃗) the centrifugal force and −m(⃗̇ω × R⃗) the Euler
force. These forces appear to exist only in the rotating frame of reference.

For earth, ω⃗ is constant, hence Euler force is zero, i.e.,

F⃗0 = −2mω⃗ × v⃗r −mω⃗ × (ω⃗ × R⃗)

This means that in case of a frame rotating with the earth, only Coriolis force [−2m(ω⃗ × v⃗r)] and centrifugal
force [−mω⃗ × (ω⃗ × R⃗)] are the fictitious forces, acting on a moving particle. These forces are not due to
any specific action applied to the particle. If the particle is at rest (i.e., v⃗r = 0⃗) in the rotating frame, then
centrifugal force is only the fictitious force acting on the particle. On the other hand, if the particle is moving
with velocity v⃗r ̸= 0⃗ in the rotating frame, then in addition to centrifugal force, Coriolis force acts on the
particle.

2.5 Motion Relative to the Earth

In the rotating frame with the earth, the acceleration of a particle is obtained from Eq. (2.4.4) with ω̇ = 0 i.e.;

a⃗r = a⃗i − ω⃗ × (ω⃗ × R⃗)− 2ω⃗ × v⃗r (2.5.1)

where a⃗i is the acceleration in the non-rotating or inertial frame, −ω⃗× (ω⃗× R⃗) is the centrifugal acceleration
and −2ω⃗ × v⃗r is the Coriolis acceleration.
An interesting application of Eq. (2.5.1) is the study of the motion of a body relative to a frame ( S′) rotating

Figure 2.5.1: Motion relative to the earth

with the earth. The angular velocity of the earth is ω⃗ along its axis of rotation. Now consider a particle P close
to the earth’s surface [Fig. 2.5.1]. If we call g⃗0 as the acceleration due to gravity with respect to an inertial
or non-rotating frame, then a⃗i = g⃗0 and hence the acceleration as measured by an observer rotating with the
earth is [from Eq. (2.5.1)]

a⃗r = g⃗0 − ω⃗ × (ω⃗ × R⃗)− 2ω⃗ × v⃗r (2.5.2)
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Hence the acceleration of a body relative to the rotating earth depends on its velocity relative to the earth and
on the position vector R⃗ of the body.

Now we shall discuss the effect of centrifugal and Coriolis accelerations separately.

1. Effect of centrifugal force: If the particle P is at rest on the earth’s surface, then Coriolis term is zero
and the acceleration a⃗r measured relative to the earth is called effective acceleration due to gravity g⃗.
Thus

g⃗ = g⃗0 − ω⃗ × (ω⃗ × R⃗) (2.5.3)

Obviously the centrifugal acceleration −ω⃗ × (ω⃗ × R⃗) acts in the outward direction along BP and its
magnitude is ω2R cosϕ, where ϕ is the latitude at P .

Assuming earth to be spherical, we may consider g0 to be pointing towards the centre of the earth along
the radial direction. Due to the second term in (2.5.3), the direction of g⃗, called the vertical, deviates
slightly from the radial direction and is determined by a plumb line. For practical purposes, the vertical
may be assumed to coincide with the radial direction. The magnitude of g⃗ is slightly less than the value
of g⃗0 and can be expressed as

g⃗ = g⃗0 − ω2R cos2 ϕ (2.5.4)

The second term in Eq. (2.5.4) is very small (about 0.3% ) compared to g0 and accounts for most of the
observed variations of acceleration due to gravity with latitude at earth’s surface.

2. Effect of Coriolis force: Coriolis force (−2mω⃗ × v⃗r) is a fictitious force which acts on a particle only
if it is in motion with respect to the rotating frame. Hence, in the rotating frame if a particle moves with
velocity v⃗r, then it always experiences a force (−2mω⃗ × v⃗r) perpendicular to its path opposite to the
direction of vector product ω⃗ × v⃗r. The effect of Coriolis force is not considerable at small (particle)
speeds. Let us discuss the effect of Coriolis force, when the particle is moving in a horizontal plane or
falling freely on the earth.

(i) Particle moving in a horizontal plane: The Coriolis force causes a moving particle in a hori-
zontal plane in the northern hemisphere to deflect towards the right of its path. In the southern
hemisphere, the deflection is towards the left of the path. Let a particle of mass m be projected
with velocity v in a horizontal plane at a point P on earth’s surface with latitude ϕ. Consider a
frame XY Z fixed on the earth at P so that X-axis is vertical and Y Z is horizontal plane [Fig.
2.5.2]. Now, v⃗ = vy ĵ+vzk̂ and ω⃗ = ω sinϕî+ ω⃗ cosϕk̂. The Coriolis force acting on the particle

Figure 2.5.2: Particle moving in a horizontal plane
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is

F⃗ = −2m(ω⃗ × v⃗)

= −2m(ω sinϕî+ ω cosϕk̂)×
(
vy ĵ + vzk̂

)
= 2mωvy cosϕî− 2mωvz sinϕĵ + 2mωvy sinϕk̂ (2.5.5)

If F⃗H and F⃗V are the horizontal and vertical components of the Coriolis force, then

F⃗H = 2mωvz sinϕĵ − 2mωvy sinϕk̂

Its magnitude FH = 2mωv sinϕAlso F⃗V = 2mωvy cosϕî. Its magnitude FV = 2mωvy cosϕ.
Obviously the horizontal component of the Coriolis force tends to deviate the path of the particle
towards the right in the northern hemisphere. For example, if the particle is projected towards
north, due to the Coriolis force it is deflected towards east.

The magnitude of horizontal Coriolis force is 2mωv sinϕ and is zero at ϕ = 0, i.e., at equator.
The effect of Coriolis force is appreciable due to its horizontal component because in the vertical
direction, its effect is masked by the large gravitational force.

(ii) Free Fall of a Body on Earth’s Surface: One of the important effect of Coriolis force is that
a freely falling body deviates from its true vertical path. This deviation is always towards east
direction in either of the hemisphere of the earth. Due to to the horizontal component of earth’s
angular velocity, Coriolis force stars to act on freely falling boy in the horizontal direction and
deviates it from the true vertical direction. We deduce below an expression fr this deviation.

Let us consider the free fall of a body from a height h on the surface of the earth at a latitude ϕ.
The earth is rotating about its axis with an angular velocity ω⃗. At the point P of the earth, take
X-axis vertically, Y -axis along east and Z-axis along north [Fig. 2.6.1]. If î, ĵ, k̂, are unit vectors

Figure 2.5.3: Free Fall of a Body on Earth’s Surface

along these axes, then the angular velocity ω⃗ can be represented as

ω⃗ = ω cos
[π
2
− ϕ

]
î+ ω cosϕk̂ = ω(sinϕî+ cosϕk̂) (2.5.6)
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As the effective value of the acceleration due to gravity g⃗ is the combined effect of the centripetal
acceleration and acceleration in the inertial frame, then substituting a⃗i − ω⃗ × (ω⃗ × R⃗) = −îg in
the equation a⃗i = a⃗r + 2ω⃗ × v⃗r + ω⃗ × (ω⃗ × R⃗), we get

−îg = a⃗r + 2ω⃗ × v⃗r (2.5.7)

Here the velocity of the body v⃗r is almost along X-axis with negligible Y and Z components and
hence we can have

v⃗r = î
dx

dt
(2.5.8)

Writing a⃗r in component form, we get from Eq. (2.5.7)

−îg = î
d2x

dt2
+ ĵ

d2y

dt2
+ k̂

d2z

dt2
+ 2ω(sinϕî+ cosϕk̂)× î

dx

dt

⇒ −îg = î
d2x

dt2
+ ĵ

[
d2y

dt2
+ 2ω

dx

dt
cosϕ

]
+ k̂

d2z

dt2

Now, comparing coefficients of î, ĵ and k̂ of both sides of the above equation, we get the three
component equations as

d2x

dt2
= −g (2.5.9)

d2y

dt2
= −2ω

dx

dt
cosϕ (2.5.10)

d2z

dt2
= 0 (2.5.11)

Integrating Eq. (2.5.9), we get
dx

dt
= −gt+ C

But initially at t = 0,
dx

dt
= 0, therefore C = 0. Thus

dx

dt
= −gt. (2.5.12)

Integrating it further, we get

x = −1

2
gt2 + C ′

Initially at t = 0, the distance of the stone from the earth x = h. This gives h = C ′, and hence

x = −1

2
gt2 + h

Finally, when at t = T , the stone touches the ground x = 0. Therefore

h− 1

2
gT 2 = 0 ⇒ T =

√
2h/g (2.5.13)

Now,
d2y

dt2
= −2ω

dx

dt
cosϕ or

d2y

dt2
= 2ωgt cosϕ
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Integrating it, we get

dy

dt
= ωgt2 cosϕ and hence y =

ωgt3

3
cosϕ (2.5.14)

The constants of integration in (2.5.14) have been taken zero, because initially the stone has no
displacement and velocity in the Y -direction is zero. Finally, at t = T , the maximum horizontal
displacement will be given by

Y =
ωgT 3

3
cosϕ (2.5.15)

Substituting the value of T from Eq. (2.5.13), we get

Y =
ωg

3

[
2h

g

]3/2
cosϕ or Y =

[
8

9g

]1/2
h3/2ω cosϕ (2.5.16)

Thus a freely falling body at latitude ϕ is displaced horizontally due east by Coriolis force by an
amount given by Eq. (2.5.16). At the equator (ϕ = 0) the easterly deflection is obtained to be

Y =

[
8

9g

]1/2
h3/2ω.

2.6 Some other effects of Coriolis force

1. Formation of cyclones: When a low pressure zone is created at a place on earth, the wind will flow ra-
dially from high pressure regions to the central low pressure region. However the Coriolis force deviates
the air molecules toward the right of their path in the northern hemisphere, resulting in anticlockwise
motion of the air particles and formation of the cyclone. The cyclone also moves along with the centre
of low pressure region. In the southern hemisphere, the formation of cyclone is clockwise.

Figure 2.6.1: Formation of cyclones at Northern hemisphere (left side figure) and Southern hemisphere (right side
figure)

2. In the northern hemisphere, flowing water in a river is acted by Coriolis force towards right of its path so
that the right bank of the river is eroded more in comparison to its left bank. In the southern hemisphere,
the effect is more on the left bank.

3. Rotation of plane of oscillation of Foucault’s pendulum: Foucault’s pendulum is similar to a simple
pendulum, with a heavy bob and long strong suspension wire. If the pendulum is oscillated, Coriolis
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force acts toward the right of its path which results in the rotation of the plane of oscillation slowly in
the clockwise direction in the northern hemisphere. This experimental fact demonstrates that the earth
rotates about its axis.

Exercise 2.6.1. 1. What are non-inertial frames and fictitious forces? Is the centrifugal force fictitious
one?

2. Obtain equation of motion for a particle is rotating coordinate system.

3. What are Coriolis force? Show that the total Coriolis force acting on a body of mass m in a rotating
frame is −2mω⃗ × v⃗, where ω⃗ is the angular velocity of rotating frame and v⃗ is the velocity of the body
in rotating frame.

4. A reference frame A rotates with respect to another reference frame B with uniform angular velocity
ω⃗. If the position, velocity and acceleration of a particle in frame A are represented by R⃗, v⃗a and f⃗a
respectively, show that the acceleration of that particle in frame B is given by

f⃗b = f⃗a + 2ω⃗ × v⃗a + ω⃗ × (ω⃗ × R⃗).

Interpret this equation with reference to the motion of bodies on earth’s surface.

5. A stone is allowed to fall under gravity from the top of a h meter high tower at the equator. Show that
the horizontal displacement of the stone due to the earth’s rotation is given by

y =

(
8

9g

)1/2

h3/2ω.

6. A body is thrown vertically upward with a velocity u. Prove that it will fall back on a point displaced to

the way by a distance equal to
4

3

(
8h3

g

)1/2

ω cosϕ, where ϕ is the latitude and h = u2/2g.
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Course Structure

• Euler’s theorem. Euler’s equations of motion for a rigid body. Euler’s angles.

3.1 Generalized coordinates of a rigid body

A rigid body is defined as a system of particles in which the distance between any two particles remains fixed
throughout the motion. Thus a system of N particles is said to be a rigid body if it is subjected to holonomic
constraints of the form

rij = Cij (3.1.1)

where rij is the distance between i-th and j-th particles and Cij is the constant. In a rigid body motion, the
deformations, occurring in actual bodies, are neglected and a rigid body maintains its shape during its motion.

We cannot obtain the actual number of degrees of freedom just by subtracting the number of constraint

equations from 3N because there are
1

2
N(N − 1) possible constraint equations of the form (3.1.1). Obvi-

ously for large value of N , these constraint equations are more in number than 3N . In fact, the equations
represented by (3.1.1) are not all independent.

We can show in the following two ways that the number of degrees of freedom for the general motion of a
rigid body is six, i.e., six independent coordinates are needed to specify the motion.

Let us consider three non-collinear particles P1, P2 and P3 in a rigid body (Fig. 3.1.1). As each particle
has three degrees of freedom, nine degrees of freedom in total is required. From (3.1.1), the three equations
of constraints, expressed in terms of coordinates of the points relative to an arbitrary origin fixed in the body,
are

r12 =
{
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]1/2

= C12 (constant length)

r23 =
{
(x2 − x3)

2 + (y2 − y3)
2 + (z2 − z3)

2
]1/2

= C23 (3.1.2)

r13 =
[
(x1 − x3)

2 + (y1 − y3)
2 + (z1 − z3)

2
]1/2

= C13

25
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Figure 3.1.1: Degrees of freedom for the motion of a rigid boy - 3 reference points P1, P2, P3 of the rigid body with
three equations of rigid constraints allow the body to have six degrees of freedom

Hence the number of degrees of fredom of this three particle system is reduced to 9− 3 = 6. The position of
any other particle in the body, say Pi, needs three coordinates and obviously there are three equations of con-
straints, because the distances of Pi from P1, P2 and P3 are fixed. Hence any other particle will not add any
new degree of freedom to six degrees of freedom of the three-particle system. Thus the motion of a rigid body
be specified by six degrees of freedom. In other words, we need six independent or generalized coordinates
to specify the motion of a rigid body.

To look the situation in other way, the position of the particle P1 needs three coordinates. Relative to P1,
the position of P2 can be specified by only two coordinates because of one constraint equation r12 = C12. The
third particle P3 relative to P1 and P2 has only one degree of freedom because of two constraints r13 = C13

and r23 = C23. Thus the three particles (non-collinear) of the rigid body have 3 + 2 + 1 = 6 degrees of
freedom. It is to be noted that (3.1.1) particle P2 relative to P1 is constrained to move on the surface of a
sphere and its position can be specified by two angles, and (3.1.2) particle P3 relative to P1 and P2 can only
rotate about the axis joining P1 and P2 which can be specified by third angle. Intuitively, one can think that
rigid body should possess three translational and three rotational degrees of freedom. Therefore, in order to
describe the motion of a rigid body, we usually choose three of these coordinates to be the coordinates of a
point in the-body (generally the centre of mass) and the remaining three to be the three angles (usually three
Eulerian angles) which describe the rotation of the body about the point.

In addition to the constraints of rigidity, if the body has additional constraints, this will further reduce the
number of degrees of freedom and hence the number of independent generalized coordinates.

3.1.1 Body and space reference system

We may describe the motion of a rigid body by using two coordinate systems

1. Body coordinate system: A coordinate system, fixed in the rigid boy, is called a body coordinate
system and its axes are called body set of axes.

2. Space coordinate system: The axes of such a coordinate system are fixed in the space set of axes.
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3.2 Euler’s equations of motion for a rigid body

3.2.1 Newtonian method

If a rigid body is rotating under the action of a torque τ with one point fixed, then the torque is expressed as

τ =

[
dJ

dt

]
s

(3.2.1)

where J is the angular momentum and its time derivative refers to the space set of axes, represented by the
subscript s, because the equation holds in an inertial frame.

The body coordinate system is rotating with an instantaneous angular velocity ω. The time derivatives of
angular momentum J in the body coordinate and space coordinate systems are related as[

dJ

dt

]
s

=

[
dJ

dt

]
b

+ ω × J (3.2.2)

Thus

τ⃗ =
dJ⃗

dt
+ ω⃗ × J⃗ (3.2.3)

where we have dropped the body subscript because we shall represent the physical quantities of right hand
side in the body coordinate system.

We choose principal axes for body set of axes. If I1, I2 and I3 are the principal moments of inertia, then

J⃗ = I1ω1î+ I2ω2ĵ + I3ω3k̂ (3.2.4)

where ω⃗ = ω1î+ ω2ĵ + ω3k̂ is the angular velocity with components ω1, ω2 and ω3 along the principal axes.

As the principal moments of inertia and body base vectors î, ĵ and k̂ are constants in time with respect to
the body coordinate system, we find that in the body coordinate system, using (3.2.4) the time derivative of J⃗
is

dJ⃗

dt
= I1ω̇1î+ I2ω̇2ĵ + I3ω̇3k̂ (3.2.5)

Substituting in (3.2.3), we obtain

τ⃗ = I1ω̇1î+ I2ω̇2ĵ + I3ω̇3k̂ +
(
ω1î+ ω2ĵ + ω3k̂

)
×
(
I1ω1î+ I2ω2ĵ + I3ω3k̂

)
(3.2.6)

Writing τ⃗ = τ1î+ τ2ĵ + τ3k̂, we can obtain the x, y, z components of the torque τ⃗ as

τ1 = I1ω̇1 + (I3 − I2)ω2ω3 (3.2.7)

τ2 = I2ω̇2 + (I1 − I3)ω3ω1 (3.2.8)

τ3 = I3ω̇3 + (I2 − I1)ω1ω2 (3.2.9)

Eqs. (3.2.7), (3.2.8), (3.2.9) are known as Euler’s equations for the motion of a rigid body with one point
fixed under the action of a torque. These equations can also be derived from Lagrange’s equations, when the
generalized forces Gk are the torques and Euler’s angles (ϕ, θ, ψ) are the generalized coordinates.
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3.2.2 Lagrange’s method

When a rigid body is rotating with one point fixed, Euler’s angles completely describe the orientation of the
rigid body. In case of the rotating rigid body, we take the Euler’s angles ϕ, θ, ψ as the generalized coordinates
and components of the applied torque as the generalized forces corresponding to these angles. For conservative
system, Lagrangian for the system is

L = T (ϕ̇, θ̇, ψ̇, ϕ, θ, ψ)− V (ϕ, θ, ψ) (3.2.10)

where T is the rotational kinetic energy and is given by

T =
1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
(3.2.11)

where the body axes are taken as principal axes. In view of Euler’s geometrical equations, the angular velocity
components ω1, ω2 and ω3 along the principal axes can be written as

ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ

ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ

ω3 = ϕ̇ cos θ + ψ̇

(3.2.12)

The Lagrange’s equation for ψ coordinate is

d

dt

[
∂L

∂ψ̇

]
− ∂L

∂ψ
= 0

But for L = T − V , given by (3.2.10),

d

dt

[
∂T

∂ψ̇

]
− ∂T

∂ψ
= −∂V

∂ψ
(3.2.13)

because ∂V/∂ψ̇ = 0. However, the angle ψ is the angle of rotation about the principal Z-axis and is one of
the generalized coordinates in the present problem. The generalized force [Gψ = −∂V/∂ψ] corresponding to
the generalized coordinate ψ is obviously the Z-component of the impressed torque i.e.,

τ3 = Gψ = −∂V
∂ψ

(3.2.14)

Thus Eq. (3.2.13) assumes the form

τ3 =
d

dt

[
∂T

∂ψ̇

]
− ∂T

∂ψ

or τ3 =
d

dt

[∑
i

∂T

∂ωi

∂ωi

∂ψ̇

]
− ∂

∂ψ

[∑
i

∂T

∂ωi

∂ωi
∂ψ

]
(3.2.15)

But from (3.2.11), we get

T =
1

2

∑
i

Iiω
2
i

Therefore,
∂T

∂ωi
= Iiωi. From (3.2.12), we obtain

∂ω1

∂ψ̇
=
∂ω2

∂ψ̇
= 0 and

∂ω3

∂ψ̇
= 1
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So that ∑
i

∂T

∂ωi

∂ωi

∂ψ̇
= I3ω3 (3.2.16)

Also from (3.2.12), we get

∂ω1

∂ψ
= −ϕ̇ sin θ cosψ − θ̇ sinψ = ω2,

∂ω2

∂ψ
= −ϕ̇ sin θ sinψ − θ̇ cosψ = −ω1,

∂ω3

∂ψ
= 0

Hence

∑
i

∂T

∂ωi

∂ωi
∂ψ

=
∂T

∂ω1

∂ω1

∂ψ
+
∂T

∂ω2

∂ω2

∂ψ
+
∂T

∂ω3

∂ω3

∂ψ

= I1ω1ω2 + I2ω2 (−ω1) = − (I2 − I1)ω1ω2 (3.2.17)

Substituting the values from (3.2.7), (3.2.8), (3.2.9) and (3.2.17) in (3.2.15), we get

τ3 =
d

dt
(I3ω3) + (I2 − I1)ω1ω2

or, τ3 = I3ω̇3 + (I2 − I1)ω1ω2 (3.2.18)

which is the third Euler’s equation obtained earlier. One may obtain the other two Euler’s equations by simply
cyclic permutation. Note that these two equations do not correspond to θ and ϕ coordinates.

In case a rigid body is rotating about a fixed axis, say principal Z-axis, then

ω1 = ω2 = 0 and ω3 = ω

Therefore, from Eqs. (3.2.18) we have the equations of motion as

τ1 = τ2 = 0

and

τ3 = I3ω̇ or τ = Iω̇ (3.2.19)

where we have put τ3 = τ and I3 = I corresponding to Z-axis.

Instantaneous angular momentum about Z-axis is

J3 = I3ω3 or J = Iω (3.2.20)

and instantaneous rotational kinetic energy is

T =
1

2
ω⃗ · J⃗ =

1

2
Iω2 (3.2.21)
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3.3 Torque free motion of a rigid body

Equations of motion: When a rigid body is not subjected to any net torque, the Euler’s equations of motion
of the body with one point fixed reduce to

I1ω̇1 = (I2 − I3)ω2ω3 (3.3.1)

I2ω̇2 = (I3 − I1)ω3ω1 (3.3.2)

I3ω̇3 = (I1 − I2)ω1ω2 (3.3.3)

In case the body is not subjected to any net forces or torques, its centre of mass is either at rest or moves with
uniform velocity. Obviously we may discuss the rotational motion of the rigid body in a reference system in
which the centre of mass is stationary and choose the centre of mass as fixed point and origin for the principal
axes in the body. In such a case, we obtain from (3.3.1), (3.3.2) and (3.3.3) two integrals of motion, describing
the kinetic energy and angular momentum as constant in time.

If we multiply Eqs. (3.3.1), (3.3.2) and (3.3.3) by ω1, ω2, ω3 respectively and then add, we obtain

I1ω1ω̇1 + I2ω2ω̇2 + I3ω3ω̇3 = (I2 − I3 + I3 − I1 + I1 − I2)ω1ω2ω3 = 0

⇒ d

dt

(
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3

)
= 0

⇒ 1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 =

1

2
ω⃗ · J⃗ = constant (3.3.4)

which is the principle of conservation of total rotational kinetic energy in absence of external torque. As

τ =
dJ⃗

dt
= 0J⃗ = I1ω1î+ I2ω2ĵ + I3ω3k̂ = constant

describes another constant of motion, representing the principle of conservation of angular momentum.

3.4 Euler’s Angles

We are interested in knowing three independent parameters to specify the orientation of body set of axes rel-
ative to the space set of axes. For this purpose, we use three, angles. These angles may be chosen in various
ways, but the most commonly used set of three angles are the Euler’s angles, represented by ϕ, θ and ψ.

We can reach an arbitrary orientation of the body set of axes X ′Y ′Z ′ from space set of axes (XY Z) by
making three successive rotations performed in a specific order.

1. First rotation (ϕ): First the space set of axes is rotated through an angle ϕ counter-clockwise about
the Z-axis so that Y Z plane takes the new position Y1Z1 and this new plane Y1Z1 contains the Z ′-axis
of the body coordinate system.

Now the new position of the coordinate system is X1Y1Z1 (with Z = Z1 ). [Fig. 3.4.1]. If î′, ĵ′, k̂′ are
the unit vectors along X,Y, Z axes and î1, ĵ1, k̂1 along X1, Y1, Z1 axes respectively, then the transfor-
mation to this new set of axes from space set of axes is represented by the equations

î1 = cosϕî+ sinϕĵ

ĵ1 = − sinϕî+ cosϕĵ (3.4.1)

k̂1 = k̂
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Figure 3.4.1: Euler’s angles - First rotation ϕ, defining precession angle

or,

 î1ĵ1
k̂1

 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 îĵ
k̂

 (3.4.2)

Thus XY Z axes are transformed to X1Y1Z1 by the matrix of transformation cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (3.4.3)

The angle ϕ is called the precession angle.

2. Second rotation (θ): Next intermediate axes X1Y1Z1 are rotated about X1 axis counter-clockwise
through an angle θ to the position X2. Y2Z2 so that Y1, Z1 axes acquire the positions Y2, Z2 with
Z2 = Z ′ [Fig. 3.4.2]. This also results the plane X2.Y2 in plane X ′Y ′. If î2, ĵ2, k̂2 are unit vectors
along X2, Y2, Z2 axes respectively, then

î2 = î1

ĵ2 = cos θĵ1 + sin θk̂1

k̂2 = − sin θĵ1 + cos θk̂1

or  î2ĵ2
k̂2

 =

1 1 0
0 cos θ sin θ
0 − sin θ cos θ

 î1ĵ1
k̂1

 (3.4.4)

In this case the matrix of transformation is

C =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (3.4.5)

The angle θ is called the nutation angle. Then X2 = X1 axis is at the intersection of the XY and X2Y2
planes and is called the line of nodes.

3. Third rotation (ψ): Finally the third rotation is performed about Z2 = Z ′ axis through an angle ψ
counter-clockwise so that X2, Y2 axes coincide X3 = X ′, Y3 = Y ′ [Fig 3.4.3].
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Figure 3.4.2: Euler’s angles - Second rotation θ, defining nutation angle

Thus these three rotations ϕ, θ and ψ bring the space set of axes to coincide with body set of axes. The
ϕ, θ and ψ are the Euler’s angles and completely specify the orientation of the X ′Y ′Z ′ system relative
to the XY Z system. These ϕ, θ and ψ angles can be taken as three generalized coordinates. Now

î3 = î′ = î2 cosψ + ĵ2 sinψ

ĵ3 = ĵ′ = −î2 sinψ + ĵ2 cosψ

k̂3 = k̂′ = k̂2

or

 î′ĵ′
k̂′

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 î2ĵ2
k̂2

 (3.4.6)

So that the transformation matrix is

B =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (3.4.7)

The angle ψ is called the body angle.

In this way we have reached at the body set of axes after three successive rotations of space set of axes.
We may write the complete matrix of transformations A as î′ĵ′

k̂′

 = A

 îĵ
k̂

 or

x′y′
z′

 = A

xy
z

 (3.4.8)

But using Eqs. (3.4.2), (3.4.3), (3.4.4), (3.4.5), (3.4.6) and (3.4.7) î′ĵ′
k̂′

 =

 î3ĵ3
k̂3

 = B

 î2ĵ2
k̂2

 = BC

 î1ĵ1
k̂1

 = BCD

 îĵ
k̂

 (3.4.9)
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Figure 3.4.3: Euler’s angles - Third rotation Ψ, defining
body angle

Figure 3.4.4: The three Eulerian angle ϕ, θ and Ψ in
different planes

From (3.4.8) and (3.4.9) we see that the complete matrix of transformation from space set of axes to
body set of axes is

A = BCD (3.4.10)

The inverse transformation from body set of axes to space set of axes will be given byxy
z

 = A−1

x′y′
z′


Now

A = BCD =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 cosϕ sinϕ 0
− cos θ sinϕ cos θ cosϕ sin θ
sin θ sinϕ − sin θ cosϕ cos θ


The inverse transformation matrix from body set of axes to space set of axes is given by A−1 = AT
because A represents a proper orthogonal matrix. Thus

A−1 =



cosψ cosϕ − sinψ cosϕ sin θ sinϕ
− cos θ sinϕ sinψ − cosψ cos θ sinϕ

cosψ sinϕ − sinψ sinϕ − sin θ cosϕ
+sinψ cos θ cosϕ +cosψ cos θ cosϕ

sinψ sin θ cosψ sin θ cos θ


(3.4.11)

Exercise 3.4.1. 1. How will you assign the generalized coordinates for the motion of a rigid body? For a
rigid body consisting of N particles, how many generalized coordinates will have to be specified?

2. Define Euler’s angle for the orientation of a rigid body.
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3. Define Euler’s angle and obtain an expression for the complete transformation matrix.

4. Derive Euler’s equations of motion for a rigid body.

5. If T be the kinetic energy, G⃗ be the external torque about the instantaneous axis of rotation and ω⃗ the
angular velocity, then prove that

dT

dt
= G⃗ · ω⃗

6. From Euler’s equations of motion for a rigid body, having no external torque about a fixed point, prove
that

T =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 = constant, and J⃗ = I1ω1î+ I2ω2ĵ + I3ω3k̂ = constant



Unit 4

Course Structure

• Variational Principle

• Calculus of variations and its applications in shortest distance

• Minimum surface of revolution

• Brachistochrone problem.

• Geodesics

4.1 Introduction

The Euler-Lagrangian approach to classical mechanics stems from a deep philosophical belief that the laws
of nature are based on a principle of economy.That is, the physical universe follows paths through space and
time that are based on extrema principles. The standard Lagrangian L is defined as the difference between
the kinetic and potential energy, that is L − U . The laws of classical mechanics can be expressed in terms
of Hamilton’s variational principle which states that the motion of the system between the initial time t1 and
final time t2 follows a path that minimizes the scalar action integral S defined as the time integral of the
Lagrangian.

S =

∫ t2

t1

L dt

4.2 The Calculus of Variations and Euler-Lagrange Equation

Let us have a function f (y, y′, x) defined on a curve given by

y = y(x) (4.2.1)

between two points A (x1, y1) and B (x2, y2). Here, y′ = dy/dx. We are interested in finding a particular
curve y(x) for which the line integral I of the function f between the two points

I =

x2∫
x1

f(y, y′, x) dx (4.2.2)

35
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has a stationary value. Suppose thatAPB be the curve for which I is stationary. Now, consider a neighbouring
curveAP ′B with the same end pointsA andB. The point P (x, y) of the curveAPB corresponds to the point
P ′(x, y + δy) of the curve AP ′B, keeping x coordinate of the points fixed. This defines a δ-variation of the
curve. The variation is arbitrary but small and may be expressed as

Figure 4.2.1: δ - variation

δy =
∂y

∂α
δα = η(x)δα (4.2.3)

where α is a parameter (independent of x ) common to all points of the path and η(x) is a function of x with
the condition that

δy1 = δy2 = η (x1) = η (x2) = 0 (4.2.4)

By choosing different η(x), we may construct different varied paths. The corresponding variation in y′ is

δy′ = η′(x) δα (4.2.5)

Now, the integral on the varied path is

I ′ =

x2∫
x1

f
(
y + δy, y′ + δy′, x

)
dx

or, I ′ =

x2∫
x1

f
(
y + ηδα, y′ + η′δα, x

)
dx (4.2.6)

Since the variation is small, the integral I ′ may be obtained by considering only first order terms in the Taylor
expansion of the function f i.e.,

I ′ =

x2∫
x1

[
f
(
y, y′, x

)
+
∂f

∂y
ηδα+

∂f

∂y′
η′δα

]
dx (4.2.7)

Hence

δI = I ′ − I = δα

x2∫
x1

(
∂f

∂y
η +

∂f

∂y′
η′
)
dx (4.2.8)
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But
x2∫
x1

∂f

∂y′
η′dx =

∂f

∂y′
η

∣∣∣∣x2
x1

−
x2∫
x1

d

dx

(
∂f

∂y′

)
η dx = −

x2∫
x1

d

dx

(
∂f

∂y′

)
η dx [∵ η(x1) = η(x2) = 0]

Therefore,

δI = δα

x2∫
x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx (4.2.9)

The condition that the integral I is stationary means that δI = 0, i.e.,

x2∫
x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx = 0 (4.2.10)

As η is arbitrary, the integrand of (4.2.10) must be zero, i.e.,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (4.2.11)

which is known as Euler-Lagrange equation.

The result can easily be generalized to the case where f is a function of many independent variables yk and
their derivatives y′k. However, yk and y′k are function of x. Then

δI = δ

ẋ2∫
x1

f
(
y1, y2, . . . , yk, . . . , yn, y

′
1, y

′
2, . . . , y

′
k, . . . y

′
n, x
)
dx = 0 (4.2.12)

leads to the Euler-Lagrange equations

∂f

∂yk
− d

dx

(
∂f

∂y′k

)
= 0 (4.2.13)

where, k = 1, 2, . . . , n. It is to be pointed out that in most of the problems the stationary value of the integral
is seen to be a minimum but occasionally maximum.

4.3 Application of Variational Principle to Shortest Distance

Example 4.3.1. Show that the shortest distance between two points in a plane is a straight line.

Solution. Suppose A (x1, y1) and B (x2, y2) are two points in XY plane. An element of length ds of any
curve, say AP ′B, passing through A and B points is given by

ds2 = dx2 + dy2 ⇒ ds =
√
1 + y′2dx

Total length of the curve from point A to the point B is given by

S =

B∫
A

√
1 + y′2dx =

B∫
A

f dx
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Figure 4.3.1: Shortest distance between two points in a plane

where f =
√

1 + y′2. The length of the curve s will be minimum, when δs = 0. This means that f should
satisfy the Euler Lagrange’s equation, i.e.,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

Here,
∂f

∂y
= 0 and

∂f

∂y′
=

y′√
i+ y′2

.

Therefore,

d

dx

(
y′√

1 + y′2

)
= 0 or

y′√
1 + y′2

= C, a constant

⇒ y′2 = C2
(
1 + y′2

)
or y′2

(
1− C2

)
= C2 or y′ =

C√
1− C2

= a (constant
)

⇒ dy

dx
= a

Integrating it, we get
y = ax+ b

where b is a constant of integration. This represents a straight line. Therefore the shortest distance between
any two points in a plane is a straight line. The constants of integration a and b can be determined by the
condition that the straight line passes through A (x1, y1) and B (x2, y2).

Example 4.3.2. A particle of massm falls a given distance z0 in time t0 =
√

2z0/g and the distance travelled
in time t is given by z = at+ bt2, where constants a and b are such that the time t0 is always the same. Show

that the integration

t0∫
0

Ldt is an extremum for real values of the coefficients only when a = 0 and b = ġ/2.

Solution. Solution : Let the particle fall from O(z = 0) to P (OP = z) in time t. Kinetic energy of the
particle at P ,

T =
1

2
mż2.

Potential energy of the particle at P, V = −mgz Hence

L = T − V =
1

2
mż2 +mgz (4.3.1)
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According to the Hamilton’s principle

δ

t0∫
0

Ldt = 0 ⇒
t0∫
0

Ldt = extremum, for which

d

dt

[
∂L

∂ż

]
− ∂L

∂z
= 0 (4.3.2)

is to be satisfied. Here,
∂L

∂ż
= mż and

∂L

∂z
= mg. Hence the Euler-Lagrange’s equation becomes

d

dt
(mż)−mg = 0 ⇒ z̈ = g (4.3.3)

But z = at+ bt2 and therefore ż = a+ 2bt and z̈ = 2b (4.3.4)

From (4.3.3) and (4.3.4), we get

2b = g ⇒ b = g/2 (4.3.5)

Also at t = t0, z = z0, we have

z0 = at0 + bt20 (4.3.6)

But

t0 =

√
2z0
g

⇒ z0 =
1

2
gt20 (4.3.7)

Comparing (4.3.6) and (4.3.7) and putting b = g/2, we get

at0 +
g

2
t20 =

1

2
gt20 ⇒ at0 = 0

Since t0 ̸= 0, therefore, a = 0. Thus we find that

t0∫
0

Ldt is extremum, when a = 0, b = g/2.
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Figure 4.4.1: Minimum surface area of revolution Figure 4.4.2: Circular strip of area 2πx ds

4.4 Application of Variational Principle to Minimum Surface of Revolution

Example 4.4.1. We take a curve passing through the fixed points (x1, y1) and (x2, y2) and revolve it about
Y -axis to form a surface of revolution. Find the equation of the curve for which the surface area is minimum.

Solution. Let AB be the curve which passes through the fixed points A (x1, y1) and B (x2, y2). The curve
AB has been revolved about Y -axis to generate a surface. Consider a strip of the surface whose radius is x
and breadth is PP ′ = ds, given by

ds2 = dx2 + dy2 or ds =
√

1 + y′2dx

Area of the strip dS = 2πx ds == 2πx
√

1 + y′2dx (Fig. 4.4.2).
Total area of revolution

S = 2π

B∫
A

x
√
1 + y′2 dx (4.4.1)

This area will be minimum, strictly speaking extremum, if δS = 0, for which Euler-Lagrange equation is to
be satisfied, i.e.,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (4.4.2)

where f = x
√
1 + y′2, when compared to Eq. (4.2.2). Here

∂f

∂y
= 0,

∂f

∂y′
=

xy′√
1 + y′2

Substituting in Eq. (4.4.2), we have

d

dx

xy′√
1 + y′2

= 0 ⇒ xy′√
1 + y′2

= a (4.4.3)

where a is constant of integration. Squaring (4.4.3), we get

x2y′2 = a2 + a2y′2 ⇒ y′ =
dy

dx
=

a√
x2 − a2

Therefore,

y =

∫
a√

x2 − a2
dx = a cosh−1 x

a
+ b (4.4.4)
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where b is another constant of integration. From (4.4.4) we have

cosh−1 x

a
=
y − b

a
⇒ x = a cosh

y − b

a
(4.4.5)

which is the equation of a catenary. This is the equation of the curve for which the surface of revolution is
minimum The two constants a and b can be determined by the condition that the curve (4.4.5) passes through
(x1, y1) and (x2, y2) points.

4.5 Brachistochrone Problem

Example 4.5.1. A particle slides from rest at one point on a frictionless wire in a vertical plane to another
point under the influence of the earth’s gravitational field. If the particle travels in the shortest time, show that
the path followed by it is a cycloid.

Solution. Let the shape of wire be in the form of a curve OA. The particle starts to travel from O(0; 0)
from rest and moves to A (x1, y1) under the influence of gravity on the frictionless wire.

Figure 4.5.1: The Brachistochrone Problem

Let v be the speed at P . Then in moving PP ′ = ds element, the time taken will be ds/v. Therefore, total
time taken by the particle in moving from the higher point O to the lower point A is

t =

A∫
0

ds

v
(4.5.1)

If the vertical distance of fall from O to P be x, then from the principle of conservation of energy
1

2
mv2 =

mgx⇒ v =
√
2gx. Therefore,

t =

A∫
0

√
1 + y′2dx√

2gx

[
ds =

√
dx2 + dy2 = dx

√
1 + y′2

]
(4.5.2)
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So that f =

√
1 + y′2

2gx
and for t to be minimum,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (4.5.3)

Here,
∂f

∂y
= 0 and

∂f

∂y′
=

y′
√
2gx

√
1 + y′2

. Substituting in (4.5.3), we get

d

dx

(
y′

√
2gx

√
1 + y′2

)
= 0 ⇒ y′

√
x
√
1 + y′2

= C, constant

⇒ y′2

C2
= x

(
1 + y′2

)
⇒ y′2

(
1

C2
− x

)
= x⇒ y′2 =

x

b− x
(where b = 1/C2, a constant).

⇒ dy

dx
=

√
x

b− x
⇒ y =

∫ √
x

b− x
dx+ C ′, another constant(4.5.4)

Let x = b sin2 θ, then dx = 2b sin θ cos θ dθ. Therefore,

y =

∫
sin θ

cos θ
2b sin θ cos θ dθ + C ′

= b

∫
2 sin2 θdθ + C ′ = b

∫
(1− cos 2θ)dθ + C ′

= b

[
θ − sin 2θ

2

]
+ C ′ =

b

2
[2θ − sin 2θ] + C ′

Thus the parametric equations of the curve are

x = b sin2 θ =
b

2
(1− cos 2θ) and y =

b

2
(2θ − sin 2θ) + C ′ (4.5.5)

Since the curve passes through (0, 0) we have C = 0. Therefore,

x =
b

2
(1− cos 2θ) and y =

b

2
(2θ − sin 2θ) (4.5.6)

Let 2θ = ϕ and b/2 = a. Then the parametric equations of the curve are

x = a(1− cosϕ) and y = a(ϕ− sinϕ) (4.5.7)

This represents a cycloid [Fig. 4.5.2]. The constant a can be determined because the curve passes through the
point A (x1, y1).

Example 4.5.2. Apply variational principle to find the equation of one dimensional harmonic oscillator.

Solution. The Lagrangian L for one dimensional harmonic oscillator is

L = T − V =
1

2
mẋ2 − 1

2
kx2 or L = f(x, ẋ, t) =

1

2
mẋ2 − 1

2
kx2

According to variational principle
∫
L dt or

∫
f(x, ẋ, t) dt is extremum. Euler-Lagrange’s equation is

d

dt

(
∂f

∂ẋ

)
− ∂f

∂x
= 0

. Here,
∂f

∂x
= −kx, ∂f

∂ẋ
= mẋ. Therefore, mẍ+kx = 0 which is the equation of motion for one-dimensional

harmonic oscillator.
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Figure 4.5.2: Cycloid

Example 4.5.3. Show that for a spherical surface, the geodesics are the great circles. (For a non-flat surface,
the curves of extremal lengths are called geodesics.)

Solution. ds2 = a2
(
dθ2 + sin2 θdϕ2

)
or ds = adθ

√
1 + sin2 θϕ′2.

According to the variational principle,

δs = δ

∫
ds = δ

∫
a dθ

√
1 + sin2 θϕ′2 = 0 or δ

θ2,ϕ2∫
θ1,ϕ1

dθ

√
1 + sin2 θϕ′2 = 0

Here, f =

√
1 + sin2 θϕ′2; ∴

∂f

∂ϕ
= 0 and

∂f

∂ϕ′
=

ϕ′ sin2 θ√
1 + sin2 θϕ′2

Now,

∂f

∂ϕ
− d

dθ

(
∂f

∂ϕ′

)
= 0 ⇒ ϕ′ sin2 θ√

1 + sin2 θϕ′2
= C

⇒ ϕ′ =
C 2θ

(1− C2 − C2 cot2 ϕ)
1/2

=
dϕ

dθ
, ∴ ϕ = α− sin−1

(
C ′ cot θ

)
where α and C ′ are constants and these may be fixed by limits θ1, ϕ1 and θ2, ϕ2

C ′ cot θ = sin(α− ϕ) ⇒ C ′r cos θ = r sin(α− ϕ) sin θ

⇒ C ′r cos θ = sinαr cosϕ sin θ − cosαr sinϕ sin θ

⇒ C ′z = x sinα− y cosα

where we have transformed from spherical coordinates to Cartesian coordinates.

The above equation represents a plane passing through the origin (0, 0, 0). This plane will cut the surface
of the sphere in a great circle (whose centre is at the origin). This indicates that the shortest or longest distance
between two points on the surface of the sphere is an arc of the circle with its centre at the origin.

4.6 Geodesics

A line is the shortest path between two points in a plane. We also wish to find shortest paths between pairs of
points on other, more general, surfaces. To find these geodesics, we must minimize arc length.

The simplest case arises when the surface is a level set for one of the coordinates in a system of orthogo-
nal curvilinear coordinates. The arc length can then be written using the scale factors of the coordinate system.
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Consider, for example, two points, A and B, on a sphere of radius R centered at the origin. We wish to
join A and B by the shortest, continuously differentiable curve lying on the sphere. We start by specifying
position,

r⃗(x, y, z) = xî+ yĵ + zk̂,

using the Cartesian coordinates x, y, and z and Cartesian basis vectors î, ĵ, and k̂. For points on the surface of
a sphere, we now switch to the spherical coordinates r, θ, and ϕ (see Figure 4.6.1). Since

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

the position vector r⃗ now takes the form

Figure 4.6.1: Spherical coordinates

r⃗(r, θ, ϕ) = r sin θ cosϕî+ r sin θ sinϕĵ + r cos θk̂.

Since this position vector depends on r, θ, and ϕ,

dr⃗ =
∂r⃗

∂r
dr +

∂r⃗

∂θ
dθ +

∂r⃗

∂ϕ
dϕ.

The three partial derivatives on the right-hand side of this equation are vectors tangent to motions in the r, θ,
and ϕ directions. Thus

dr⃗ = hr dr êr + hθ dθ êθ + hϕ dϕ êϕ,

where êr, êθ, and êϕ are unit vectors in the r, θ, and ϕ directions and

hr =

∥∥∥∥∂r⃗∂r
∥∥∥∥ = 1, hθ =

∥∥∥∥∂r⃗∂θ
∥∥∥∥ = r, hϕ =

∥∥∥∥ ∂r⃗∂ϕ
∥∥∥∥ = r sin θ

are the scale factors for spherical coordinates.

The element of arc length in spherical coordinates is given by

ds =
√
dr⃗ · dr⃗ =

√
h2rdr

2 + h2θdθ
2 + h2ϕdϕ

2

=

√
dr2 + r2dθ2 + r2 sin2 θdϕ2.
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For a sphere of radius r = R, this element reduces to

ds = R

√
dθ2 + sin2 θdϕ2.

If we assume that ϕ = ϕ(θ), finding the curve that minimizes the arc length between the points A = (θa, ϕa)
and B = (θb, ϕb) simplifies to finding the function ϕ(θ) that minimizes the integral

s =

B∫
A

ds = R

θB∫
θA

√
1 + sin2 θ(dϕ/dθ)2dθ

subject to the boundary conditions
ϕ (θa) = ϕa, ϕ (θb) = ϕb.

Unfortunately, we cannot expect every interesting surface to be the level set for some common coordinate. We
may, however, hope to represent our surface parametrically. We may prescribe the x, y, and z coordinates of
points on the surface using the parameters u and v and write our surface in the vector form

r⃗(u, v) = x(u, v)̂i+ y(u, v)ĵ + z(u, v)k̂.

We can now specify a curve on this surface by prescribing u and v in terms of a single parameter - call it t -
so that

u = u(t), v = v(t).

The vector
˙⃗r ≡ dr⃗

dt
=
∂r⃗

∂u
u̇+

∂r⃗

∂v
v̇

is tangent to both the curve and the surface. We find the square of the distance between two points on a curve
by integrating

ds2 = dr⃗ · dr⃗ =
(
∂r⃗

∂u
du+

∂r⃗

∂v
dv

)
·
(
∂r⃗

∂u
du+

∂r⃗

∂v
dv

)
(4.6.1)

along the curve. Equation (4.6.1) is often written

ds2 = E du2 + 2 F du dv +G dv2, (4.6.2)

where

E =
∂r⃗

∂u
· ∂r⃗
∂u
, F =

∂r⃗

∂u
· ∂r⃗
∂v
, G =

∂r⃗

∂v
· ∂r⃗
∂v

The right-hand side of equation (4.6.2) is called the first fundamental form of the surface. The coefficients
E(u, v), F (u, v), and G(u, v) have many names. They are sometimes called first-order fundamental magni-
tudes or quantities. Other times, they are simply called the coefficients of the first fundamental form.

The distance between the two points A = (ua, va) and B = (ub, vb) on the curve u = u(t), v = v(t) may
now be written

s =

tb∫
ta

√
E

(
du

dt

)2

+ 2F
du

dt

dv

dt
+G

(
dv

dt

)2

dt,

with
u (ta) = ua, v (ta) = va, u (tb) = ub, v (tb) = vb.
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In this formulation, we have two dependent variables, u(t) and v(t), and one independent variable, t. If v can
be written as a function of u, v = v(u), we can instead rewrite our integral as

s =

ub∫
ua

√
E + 2F

(
dv

du

)
+G

(
dv

du

)2

du

with
v (ua) = va, v (ub) = vb.

This is now a problem with one dependent variable and one independent variable.

Illustration: To make all this concrete, let us take, as an example, the pseudosphere (see Figure 4.6.2), half
of the surface of revolution generated by rotating a tractrix about its asymptote. If the asymptote is the z-axis,

Figure 4.6.2: Pseudosphere

we can write the equation for a pseudosphere, parametrically, as

r⃗(u, v) = a sinu cos vî+ a sinu sin v + a
(
cosu+ ln tan

u

2

)
k̂.

Since
r⃗u =

∂r⃗

∂u
= (a cosu cos v, a cosu sin v, − a sinu+ a cscu)

and
r⃗v =

∂r⃗

∂v
= (−a sinu sin v, a sinu cos v, 0),

the first-order fundamental quantities reduce to

E = r⃗u · r⃗u = a2 cot2 u

F = r⃗u · r⃗v = 0

G = r⃗v · r⃗v = a2 sin2 u

To determine a geodesic on the pseudosphere, we must thus find a curve, u = u(t) and v = v(t), that
minimizes the arc-length integral

s = a

tb∫
ta

√
cot2 uu̇2 + sin2 uv̇2dt
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subject to the boundary conditions

u (ta) = ua, v (ta) = va, u (tb) = ub, v (tb) = vb.

Alternatively, we may look for a curve, v = v(u), that minimizes the integral

s = a

ub∫
ua

√
cot2 u+ sin2 u

(
dv

du

)2

du

subject to the boundary conditions
v (ua) = va, v (ub) = vb.

John Bernoulli (1697) posed the problem of finding geodesics on convex surfaces. In 1698, he remarked, in
a letter to Leibniz, that geodesics always have osculating planes that cut the surface at right angles. (An os-
culating plane is the plane that passes through three nearby points on a curve as two of these points approach
the third point.) This geometric property is frequently used as the definition of a geodesic curve, irrespective
of whether the curve actually minimizes arc length. Later, Euler (1732) derived differential equations for
geodesics on surfaces using the calculus of variations. This was Euler’s earliest known use of the calculus of
variations.

Exercise 4.6.1. 1. Show that for a function f = f(y1, y2, . . . , yn, y
′
1, y

′
2, . . . , y

′
n, x), the integral

I =

x2∫
x1

f dx

will be extremum, if
d

dx

(
∂f

∂y′k

)
− ∂f

∂yk
= 0

.

2. What do you mean by variational principle? Prove that the equation of curve for which surface area of
revolution is minimum, is a catenary x = a cosh(y − b)/a where a and b are constants.

3. Use the variational principle to show that the shortest distance between two points in space is a straight
line joining them.

4. Apply the vaiational principle to deduce the equation for stable equilibrium configuration of a uniform
heavy flexible string fixed between two points A(x1, y1) and B(x2, y2 in the constant gravity field of
the earth.

5. A curve AB, having end points A(x1, y1) and B(x2, y2), is revolved about X- axis so that the area of

the surface of revolution is a minimum. Show that S = 2π

x2∫
x1

y
√

1 + y′2 dx. Obtain the differential

equation of the curve and prove that the curve represents a catenary.

6. Determine the first fundamental form for the following surfaces.
(i) the helicoid x = u cos v, y = u sin v, z = av;

(ii) the catenoid x = a cosh
u

a
cos v, y = a cosh

u

a
sin v, z = u;

(iii) the hyperbolic paraboloid x = a(u+ v), y = b(u− v), z = uv.



Unit 5

Course Structure

• Hamilton’s principle.

• Lagrange’s undetermined multipliers.

• Hamilton’s equations of motion.

5.1 Hamilton’s Principle

This principle states that for a conservative holonomic system, its motion from time t1 to time t2 is such that
the line integral (known as action or action integral)

S =

∫ t2

t1

L dt (5.1.1)

with L = T − V has stationary (extremum) value for the correct path of the motion.

The quantity S is called as Hamilton’s principal function. The principle may be expressed as

δ

∫ t2

l1

L dt = 0 (5.1.2)

where δ is the variation symbol.

5.1.1 Lagrange’s equation from Hamilton’s principle

The Lagrangian L is a function of generalized coordinates qk’s and generalized velocities q̇k’s and time t, i.e.,

L = L (q1, tq2, . . . , qk, . . . , qn, q̇1, q̇2, . . . , q̇k, . . . , q̇n, t)

If the Lagrangian does not depend on time t explicitly, then the variation δL can be written as

δL =

n∑
k=1

∂L

∂qk
δqk +

n∑
k=1

∂L

∂q̇k
δq̇k (5.1.3)

48
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Integrating both s, ides from t = t1 to t = t2, we get

t2∫
t1

δL dt =

t2∫
t1

∑
k

∂L

∂qk
δqk dt+

t2∫
t1

∑
k

∂L

∂q̇k
δq̇k dt

But in view of the Hamilton’s principle

δ

∫ t2

l1

L dt = 0

Therefore,
t2∫
t1

∑
k

∂L

∂qk
δqk dt+

t2∫
t1

∑
k

∂L

∂q̇k
δq̇k dt = 0 (5.1.4)

where δq̇k =
d

dt
(δqk). Integrating by parts the second term on the left hand side of Eq. (5.1.4), we get

t2∫
t1

∑
k

∂L

∂q̇k
δq̇k dt =

∑
k

[
∂L

∂q̇k
δqk

]t2
t1

−
t2∫
t1

∑
k

d

dt

(
∂L

∂q̇k

)
δqk dt (5.1.5)

At the end points of the path at the times t1 and t2, the coordinates must have definite values qk (t1) and

Figure 5.1.1: δ - variation - extremum path

qk (t2) respectively, i.e., δqk (t1) = δqk (t2) = 0 (Fig. 5.1.1) and hence

∑
k

[
∂L

∂qk
δqk

]t2
t1

= 0

Therefore, Eq. (5.1.4) takes the form

t2∫
t1

∑
k

∂L

∂qk
δqk dt−

t2∫
t1

∑
k

d

dt

(
∂L

∂q̇k

)
δqk dt = 0

⇒
∑
k

t2∫
t1

[
d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

]
δqk dt = 0 (5.1.6)
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For holonomic system, the generalized cooordinates δqk are independent of each other. Therfore, the coeffi-
cien of each δqk must vanish, i.e.,

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 (5.1.7)

where k = 1, 2, . . . , n are the generalized coordinates. Eq. (5.1.7) are the Lagrange’s equations of motion.

5.2 Lagrange’s Equations of Motion for Non-holonomic systems

(Lagrange’s method of undetermined multipliers)

In the derivation of Lagrange’s equations from D’Alembert’s principle or Hamilton’s principle, we need the
requirement of holonomic constraints at the final step, when the variations δqk are considered to be indepen-
dent of each other. In case of non-holonomic systems, the generałized coordinates are not independent of each
other. However, we can treat certain types of non-holonomic systems for which the equations of constraint
can be put in the form ∑

k

alk dqk + alt dt = 0 (5.2.1)

These equations of constraints connect the differentials dqk’s by linear relations. For each l, there is one
equation and we assume that there are m such equations for l = 1, 2, . . . ,m.

In case of δ-variation, the virtual displacements δqk are taken at constant times and hence the m equations
of constraints, consistent for virtual displacements, are∑

k

alkδqk = 0 (5.2.2)

Eq. (5.2.2) now can be used to reduce the number of virtual displacements to independent ones. The proce-
dure applied for this purpose is called Lagrange’s method of undetermined multipliers.

If Eq. (5.2.2) is valid, then the multiplication of this equation by λl, an undetermined quantity, yields

λl
∑
k

alk δqk = 0 or
∑
k

λlalk δqk = 0 (5.2.3)

where λl (1, 2, . . . ,m) are undetermined quantities and they are functions in general of the coordinates and
time. Summing Eq. (5.2.3) over l and then integrating the sum with respect to time from t = t1 to t = t2, we
get

t2∫
t1

∑
k,l

λl alk δqk dt = 0 (5.2.4)

We assume the Hamilton’s principle δ

t2∫
t1

L dt = 0 to hold for the non-holonomic system. This implies that

t2∫
t1

∑
k

[
∂L

∂qk
− d

dt

(
∂L

∂q̇k

)]
δqk dt = 0 (5.2.5)
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Adding (5.2.4) and (5.2.5), we obtain

t2∫
t1

n∑
k=1

[
∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
+
∑
l

λlalk

]
δqk dt = 0 (5.2.6)

Still all δqk’s (k = 1, 2, . . . , n) are not independent of each other. First n −m of these δqk’s may be chosen
independently and the last m of these δqk’s are then fixed by the Eq. (5.2.2).

Till now the values of λl, have not been specified. We choose the λl’s such that

∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
+

m∑
l=1

λkalk = 0 (5.2.7)

which are n−m equations for k = 1, 2, . . . , n−m. Adding Eqs. (5.2.7) (45) and (47), we get the complete
set of the Lagrange’s equations for the non-holonomic system, i.e.,

d

dt

[
∂L

∂q̇k

]
− ∂L

∂qk
=

m∑
l=1

λlalk (5.2.8)

where k = 1, 2, . . . n. Eq. (5.2.8) gives us n equations, but there are n+m unknowns, n coordinates qk and
m Lagrange’s multipliers. The remaining m unknown qk’s are determined from m equations of constraints
(5.2.1), written in the following form of m first-order differential equations:∑

k

alkq̇k + alt = 0 (5.2.9)

5.3 Physical Significance of Lagrange’s Multipliers λi
Suppose we remove the constraints on the system, but apply external forces Gk so that the motion of the
system remains unchanged. Now, the equations of motion are

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Gk (5.3.1)

Since the applied force are equal to the forces of constraints, Eqs. (5.2.8) and (5.3.1) must be identical,
resulting

Gk =

n∑
l=1

λlalk (5.3.2)

Thus the generalized forces of constraints Gk have been identified to
∑
λlalk We observe that in such prob-

lems, we need not to eliminate the forces of the constraints but the procedure itself determines these forces by
Eq. (5.3.2).

Eq. (5.2.1) does not represent the most general type of non-holonomic constraints because it does not
include equations of constraints in the form of inequalities. However, it includes holonomic constraints.
Equation representing holonomic constraints is given by

f (qℓ, q2, . . . , qn, t) = 0 (5.3.3)

so that
n∑
k=1

∂f

∂qk
dqk +

∂f

∂t
dt = 0 (5.3.4)
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This is identical in form to Eq. (5.2.1) with the coefficients alk and alt, given by

alk =
∂f

∂qk
and alt =

∂f

∂t
(5.3.5)

Thus one can use Lagrange’s method of undetermined multipliers for holonomic constraints when it is not easy
to reduce all the qk’s to independent coordinates or we may be interested in knowing the force of constraints.

Example 5.3.1. Simple pendulum: Find the equation of motion and force of constraint in case of simple pen-
dulum by using Lagrange’s method of undetermined multipliers.

Solution. Referring Fig. 5.3.1, the Lagrangian L is given by

=
1

2
mr2θ̇2 +mgr cos θ (5.3.6)

where V = −mgr cos θ with respect to position S. The equation of constraint is

r = l or dr = 0 (5.3.7)

Here there is only one constraint equation, hence only one Lagrange’s multiplier λ will be needed. There are

Figure 5.3.1: Simple pendulum

two coordinates r and θ and the general constraint equation will be

ar dr + aθ dθ = 0 (5.3.8)

Therefore ar = 1 and aθ = 0.
Equation of motion are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= λar (5.3.9)

and
d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= λaθ (5.3.10)

Here,
∂L

∂ṙ
= 0,

∂L

∂r
= mrθ̇2 +mg cos θ,

∂L

∂θ̇
= mr2θ̇,

∂L

∂θ
= −mgr sin θ. Thus,

−mrθ2 −mg cos θ = λ (5.3.11)

mr2θ̈ +mgr sin θ = 0 (5.3.12)
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where ṙ = 0 from (5.3.7). Using r = l, (the constraint equation), equation of motion of simple pendulum is
given by Eq. (5.3.12), i.e.,

lθ̈ + g sin θ = 0

For small θ, sin θ = θ and hence
θ̈ +

g

l
θ = 0 (5.3.13)

The force of constraint is
λ = −mlθ̇2 −mg cos θ (5.3.14)

which gives the force of constraint, i,e. tension F = mlθ̇2 +mg cos θ in magnitude.

5.4 Hamiltonian Dynamics

In the Lagrangian formulation, the equations of motion are in the form of a set of second order differential
equations. An alternative formulation, given by Hamilton and known as the Hamiltonian dynamics, makes
use of the generalized momenta p1, p2, . . . , pn in place of the generalized velocities q̇1, q̇2, . . . , q̇n used in
the Lagrangian formulation. In the Hamiltonian formulation, two sets of first order differential equations are
used instead of a set of second order differential equations. Both the formulations are equivalent, but the
Hamiltonian formulation is more fundamental to the foundations of statistical and quantum mechanics.

5.4.1 Generalized Momentum and Cyclic Coordinates

In order to define the generalized momentum, we take a simple example of a single particle, moving with
velocity ẋ along X-axis. The kinetic energy of the particle is

T =
1

2
mẋ2 (5.4.1)

The derivative of T with respect to ẋ i.e.,
∂T

∂ẋ
= mẋ = p defines the momentum. If V is not a function of the

velocity ẋ, i.e., V = V (x) and
∂V

∂ẋ
= 0, then the momentum p can be written also as

p =
∂

∂ẋ
(T − V ) or p =

∂L

∂ẋ
(5.4.2)

Similarly for a system described by a set of generalized coordinates qk’s and generalized velocities q̇k’s, we
define the generalized momentum corresponding to the generalized coordinate qk as

pk =
∂L

∂q̇k
(5.4.3)

This is also called conjugate momentum (conjugate to the coordinate qk) or canonical momentum. For a
conservative system, the Lagrange’s equations are given by

d

dt

[
∂L

∂q̇k

]
− ∂L

∂qk
= 0 (5.4.4)

Substituting for
∂L

∂q̇k
= pk, we get

dpk
dt

− ∂L

∂qk
= 0 or ṗk =

∂L

∂qk
(5.4.5)
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Now, suppose in the expression for Lagrangian L of a system, a certain coordinate qk does not appear explic-
itly. Then

∂L

∂qk
= 0 (5.4.6)

This means from Eq. (5.4.5) that

ṗk =
d

dt

[
∂L

∂q̇k

]
= 0 (5.4.7)

and hence on integration, we get

pk =
∂L

∂q̇k
= a constant (5.4.8)

Thus whenever the Lagrangian function does not contain a coordinate qk explicitly, the generalized momentum
pk is a constant of motion. The coordinate qk is called cyclic or ignorable. In other words, the generalized
momentum associated with an ignorable coordinate is a constant of motion for the system.

5.4.2 Hamiltonian Function H and Conservation of Energy

In the Lagrangian formulation one may expect the deduction of the theorem of conservation of the total energy
for a system where the potential energy is a function of position only. In fact we shall see, as discussed below,
the theorem of conservation of total energy is a special case of a more general conservation theorem.

Consider a general Lagrangian L of a system given by

L = L (q1, q2, . . . , qk, . . . , qn, q̇1, q̇2, . . . , q̇k, . . . , q̇n, t)

We denote it for our convenience by
L = L (qk, q̇k, t)

The total time derivative of L is

dL

dt
=
∑
k

∂L

∂qk

dqk
dt

+
∑
k

∂L

∂q̇k

dq̇k
dt

+
∂L

∂t
(5.4.9)

From Lagrangian equations, we have
∂L

∂qk
=

d

dt

(
∂L

∂q̇k

)
Substituting for ∂L/∂qk in Eq. (5.4.9), we get

dL

dt
=
∑
k

d

dt

(
∂L

∂q̇k

)
q̇k +

∑
k

∂L

∂q̇k

dq̇k
dt

+
∂L

∂t

⇒ dL

dt
=
∑
k

d

dt

(
q̇k
∂L

∂q̇k

)
+
∂L

∂t

⇒ d

dt

(∑
k

q̇k
∂L

∂q̇k
− L

)
= −∂L

∂t
(5.4.10)

The quantity in the bracket is sometimes called the energy function and is denoted by h:

h (q1, q2, . . . , qn, q̇1, q̇2, . . . , . . . , q̇n, t) =
∑
k

q̇k
∂L

∂q̇k
− L (5.4.11)
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Thus from Eq. (5.4.10) the total time derivative of h is

dh

dt
= −∂L

∂t
(5.4.12)

If the Lagrangian L does not depend on time t explicitly, then ∂L/∂t = 0, so that

dh

dt
= 0 i.e., h = Constant (5.4.13)

Thus when the lagrangian is not explicit function of time, the energy function is the constant of motion. It is
one of the first integrals of the motion and is called Jacobi’s integral. But from Eq. (5.4.8) ∂L/∂q̇k = pk,
hence Eq. (5.4.10) can be written as

d

dt

(∑
k

pkq̇k − L

)
= −∂L

∂t
(5.4.14)

The quantity in the bracket is called the Hamiltonian function H , i.e.,

H =
∑
k

pkq̇k − L (5.4.15)

In general, the Hamiltonian function H is the function of generalized momenta pk, generalized coordinates qk
and time t i.e.,

H = H (p1, p2, . . . , pk, .., pn, q1, q2, . . . , qk, . . . , qn, t) (5.4.16)

or H = H (pk, qk, t) (5.4.17)

It is to be seen that the energy function h is identical in value with the Hamiltonian H . It is given a different
name and symbol because h is a function of qk, qk and t, while H that of qk, pk and t.

If t does not appear in the Lagrangian L explicitly, then ∂L/∂t = 0 and Eqs. (5.4.14) and (5.4.15) give

dH

dt
= 0 or H =

∑
k

pkq̇k − L = constant (5.4.18)

Thus, if the time t does not appear in the Lagrangian L explicitly, we see that the Hamiltonian H is constant
in time, i.e., conserved. This is the conservation theorem for the Hamiltonian of the system. Under special
circumstances, the Hamiltonian H is equal to the total energy E of the system. In fact, this is the case in most
of the physical problems.

Conservation of Energy-Physical Significance

The Hamiltonian takes a special form, if the system is conservative i.e., the potential energy V is indepen-
dent of velocity coordinates q̇k and the transformation equations for coordinates do not contain time explicitly
i.e.,

ri = ri (q1, q2, . . . , qk, . . . , qn) .

For a conservative system ∂V ∂q̇k = 0. From Eq. (5.4.8), we have

pk =
∂L

∂q̇k
=

∂

∂q̇k
(T − V ) =

∂T

∂q̇k
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So that Eq. (5.4.18) is

H =
∑
k

pkq̇k − L =
∑
k

∂T

∂q̇k
q̇k − L (5.4.19)

If ri does not depend on time t explicitly, then the kinetic energy T is a homogeneous quadratic function. It is
easy to show that ∑

k

∂T

∂q̇k
q̇k = 2T (5.4.20)

In fact, for a natural conservative system neither T nor V contains any explicit time dependence (i.e., the La-
grangian does not depend on time explicitly) and T is a homogeneous quadratic function of the time derivatives
q̇k. Hence from Eq. (5.4.19) and Eq. (5.4.20),

H = 2T − L = 2T − (T − V ) ⇒ H = T + V = E, constant (5.4.21)

Thus the Hamiltonian H represents the total energy of the system E and is conserved, provided the system is
conservative and T is a homogeneous quadratic function.

5.4.3 Hamilton’s Equation

The Hamiltonian, in general, is a function of generalized coordinates qk, generalized momenta pk and time t,
i.e.,

H = H (q1, q2, . . . , qk, . . . , qn, p1, p2, . . . , pk, . . . , pnt)

We may write the differential dH as

dH =
∑
k

∂H

∂qk
dqk +

∑
k

∂H

∂pk
dpk +

∂H

∂t
dt (5.4.22)

But as defined in Eq. (5.4.15), H =
∑
k

pkq̇k − L and hence

dH =
∑
k

q̇kdpk +
∑
k

pk dq̇k − dL (5.4.23)

Also, L = L (q1, q2, . . . , qk, . . . , qn, q̇1, q̇2, . . . , q̇k, . . . , q̇n, t). Therefore,

dL =
∑
k

∂L

∂qk
dqk +

∑
k

∂L

∂q̇k
dq̇k +

∂L

∂t
dt

But ṗk =
∂L

∂qk
[Eq. (5.4.5)] and pk =

∂L

∂q̇k
[Eq. (5.4.3)]. Therefore,

dL =
∑
k

ṗk dqk +
∑
k

pk dq̇k +
∂L

∂t
dt (5.4.24)

Substituting for dL from Eq. (5.4.24) in Eq. (5.4.23), we get

dH =
∑
k

q̇k dpk −
∑
k

ṗkdqk −
∂L

∂t
dt (5.4.25)
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Comparing the coefficients of dpk, dqk and dt in Eqs. (5.4.22) and (5.4.25), we obtain

q̇k =
∂H

∂pk
(5.4.26)

−ṗk =
∂H

∂qk
(5.4.27)

−∂L
∂t

=
∂H

∂t
(5.4.28)

Eqs. (5.4.26) and (5.4.27) are known as Hamilton’s equations or Hamilton’s canonical equations of motion.

It is clear from Eq. (5.4.27) that if any coordinate qk is cyclic, i.e., not contained in H , then

∂H

∂qk
= 0 or ṗk = 0 or pk = constant in time (5.4.29)

Thus for any cyclic coordinate, corresponding conjugate momentum is a constant of motion. Further from Eq.
(5.4.22), we have

dH

dt
=
∑
k

∂H

∂qk
q̇k +

∑
k

∂H

∂pk
ṗk +

∂H

∂t
(5.4.30)

Substituting for q̇k and ṗk from Eqs. (5.4.26) and (5.4.27) in Eq. (5.4.30), we get

dH

dt
=
∂H

∂t
= −∂L

∂t
(5.4.31)

If the Lagrangian L and hence H does not depend on time t explicitly; then ∂L/∂t = −∂H/∂t = 0 and
hence

dH

dt
= 0 or H = constant . (5.4.32)

We are mainly interested in the conservative systems for which H = T + V = E is a constant of motion, as
discussed earlier.

Example 5.4.1. Write the Hamiltonian for a simple pendulum and deduce its equation of motion.

Solution. We know for a simple pendulum the kinetic energy T =
1

2
ml2θ̇2, Potential energy V = mgl(1−

cos θ). Therefore,

Lagrangian L = T − V =
1

2
ml2θ̇2 −mgl(1− cos θ)

Hence, pθ =
∂L

∂θ̇
= ml2θ̇, Now, Hamiltonian

H =
∑
k

pkq̇k − L = pθθ̇ −
[
1

2
ml2θ̇2 −mgl(1− cos θ)

]
= ml2θ̇2 − 1

2
ml2θ̇2 −mgl(1− cos θ)

=
1

2
ml2θ̇2 +mgl(1− cos θ) = T + V = Total energy

=
1

2
ml2

[ pθ
ml2

]2
+mgl(1− cos θ) =

p2θ
2ml2

+mgl(1− cos θ)
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Hence Hamilton’s equations are

θ̇ =
∂H

∂pθ
=

pθ
ml2

and − ṗθ =
∂H

∂θ
= mgl sin θ

Thus

ṗθ = ml2θ̈ = −mgl sin θ ⇒ lθ̈ + g sin θ = 0 ⇒ θ̈ +
g

l
θ = 0 for small θ (∵ sin θ ≈ θ)

This is the equation of motion of simple pendulum.

Example 5.4.2. Find the Hamiltonian corresponding to Lagrangian L = aẋ+ bẏ − kxy.

Solution. We know H =
∑
k

pkq̇k − L, pk =
∂L

∂q̇k
. Here L = aẋ+ bẏ − kxy.

Now px =
∂L

∂ẋ
= 2aẋ, py =

∂L

∂ẏ
= 2bẏ.

Therefore,

H = pxẋ+ pyẏ − L = 2aẋ2 + 2bẏ2 − aẋ2 − bẏ2 + kxy = aẋ2 + bẏ2 + kxy

As ẋ =
px
2a

and ẋ =
py
2b

, we obtain

H = a
p2x
4a2

+ b
p2y
4b2

+ kxy =
p2x
4a

+
p2y
4b

+ kxy

Example 5.4.3. Find the Lagrangian for the case when the Hamiltonian is H(p, r) =
p2

2m
− (⃗a · p⃗), a⃗ =

axî+ ay ĵ + azk̂ being a constant vector.

Solution. Given H(p, r) =
p2

2m
− (⃗a · p⃗). Now,

H(p, x, y, z) =
p2x
2m

+
p2y
2m

+
p2z
2m

− (axpx + aypy + azpz) (5.4.33)

Hamilton’s equations are q̇ =
∂H

∂pk
, − ṗk =

∂H

∂qk
.

In this problem, ẋ =
∂H

∂pk
, ẏ =

∂H

∂py
, ż =

∂H

∂pz
.

Using (5.4.33)
ẋ =

px
m

− ax, ẏ =
py
m

− ay, ż =
pz
m

− az (5.4.34)

But =
∑

pkq̇k − L. Hence

p2x
2m

+
p2y
2m

+
p2z
2m

− (axpx + aypy + azpz = pxẋ+ pyẏ + pz ż − L

⇒ p2x
2m

+
p2y
2m

+
p2z
2m

− (axpx + aypy + azpz = px

(px
m

− ax

)
+ py

(py
m

− ay

)
+ pz

(pz
m

− az

)
− L

⇒ p2x
2m

+
p2y
2m

+
p2z
2m

=
p2x
2m

+
p2y
2m

+
p2z
2m

− L
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Therefore, L =
p2x
2m

+
p2y
2m

+
p2z
2m

.

But form (5.4.34), px = m(ẋ+ ax), py = m(ẏ + ay), pz = m(ż + az).
Hence

L =
1

2
m
[
(ẋ+ ax)

2 + (ẏ + ay)
2 + (ż + az)

2
]

=
1

2
m
[
(vx + ax)

2 + (vy + ay)
2 + (vz + az)

2
]

=
1

2
m[v⃗ + a⃗]2

Example 5.4.4. Using Hamilton’s equation of motion, show that the HamiltonianH =
p2

2m
e−m+

1

2
mω2x2ert

leads to the equation of motion of a damped harmonic oscillator ẍ+ rẋ+ ω2x = 0.

Solution. Equations of motion are q̇ =
∂H

∂p
and ṗ = −∂H

∂q
.

For q = x, ẋ =
∂H

∂p
and ṗ = −∂H

∂x
.

Here
ẋ =

p

m
e−rt and ṗ = −mω2xert (5.4.35)

whence p = mẋert and ṗ = mẍert +mrẋert.

Substituting for ṗ in (5.4.35), we get

mẍert +mrẋert = −mω2xert ⇒ ẍ+ rẋ+ ω2x = 0

which is the desired equation of damped harmonic oscillator.

Exercise 5.4.5. 1. Deduce the Hamiltonian function and equation of motion for a compound pendulum.

2. The Lagrangian for anharmonic oscillator is given by L(x, ẋ) =
1

2
ẋ− 1

2
ω2x2 − αx3. Find the Hamil-

tonian.

3. The Hamiltonian of a system with generalized coordinate and momentum (q, p) is H = p2q2. Show

that the solution of the Hamiltonian equation of motion is p = Be−2At, q =
A

B
e2At, where A and B

are constants.

4. A system is governed by the Hamiltonian H =
1

2
(px−ay)2+

1

2
(py− bx)2 where a and b are constants

and px, py are momenta conjugate to x and y respectively. For what values of a and b will the quantities
(px − 3y) and (py + 2x) be conserved?

5. A particle in two dimension is in a potential V (x, y) = x + 2y. Show that py − 2px is a constant of
motion.

6. The Hamiltonian for a system described by the generalized coordinate x and generalized momentum

p is H = ax2p +
p2

2(1 + 2βx)
+

1

2
ω2x2 where α, β and ω are constants. Find the corresponding

Lagrangian.
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Course Structure

• Canonical Transformations:

• Canonical coordinates and canonical transformations

• Poincare theorem.

6.1 Canonical Transformations

In several problems, we nay need to change one set of position and momentum coordinates into another set of
position and momentum coordinates. Suppose that qk and pk are the old position and momentum coordinates
and Qk and Pk are the new ones. Let these coordinates be related by the following transformations:

Pk = Pk (p1, p2, . . . , pn, q1, q2, . . . , qn, t)

and Qk = Qk (p1, p2, . . . , pn, q1, q2, . . . , qn, t)
(6.1.1)

Now, if there exists a Hamiltonian H ′ in the new coordinates such that

Ṗk = −∂H
′

∂Qk
and Q̇k =

∂H ′

∂Pk
(6.1.2)

where H ′ =
n∑
k=1

PkQ̇k − L′ and L′ substituted in the Hamilton’s principle δ
∫
L′dt = 0 gives the correct

equations of motion in terms of the new coordinates Pk and Qk, then the transformations (6.1.1) are known
as canonical (or contact) transformations.

6.2 Legendre Transformations

This is a mathematical technique used to change the basis from one set of coordinates to another. If f(x, y) is
a function of two variables x and y, then the differential of this function can be written as

df =
∂f

∂x
dx+

∂f

∂y
dy or df = udx+ vdy (6.2.1)

60
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where u = ∂f/∂x and v = ∂f/∂y Now, we want to change the basis from (x, y) to (u, v) so that u is now an
independent variable and x is a dependent one. Let f ′ be a function of u and y such that

f ′ = f − ux. (6.2.2)

Then df ′ = df − u dx− x du. Substituting for df from (6.2.1), we get

df ′ = u dx+ v dy − u dx− x du

⇒ df ′ = v dy − x du (6.2.3)

But f ′ is a function of u and y, therefore

df ′ =
∂f ′

∂u
du+

∂f ′

∂y
dy (6.2.4)

Comparing Eqs. (6.2.3) and (6.2.4), we get

x = −∂f
′

∂u
and v =

∂f ′

∂y
(6.2.5)

These are the necessary relations for Legendre transformations.

6.3 Generating Functions

For canonical transformations, the Lagrangian L in pk, qk coordinates and L′ in Pk, Qk coordinates must
satisfy the Hamilton’s principle, i.e.,

δ

t2∫
t1

L dt = 0 and δ

t2∫
t1

L′ dt = 0 (6.3.1)

But L =

n∑
k=1

pkq̇k −H and L′ =

n∑
k=1

PkQ̇k −H ′, therefore,

δ

t2∫
t1

[∑
k

pkq̇k −H

]
dt = 0 (6.3.2)

and δ

t2∫
t1

[∑
k

PkQ̇k −H ′

]
dt = 0 (6.3.3)

Subtracting Eq. (6.3.3) from Eq. (6.3.2), we get

δ

t2∫
t1

[(∑
k

pkq̇k −H

)
−

(∑
k

PkQ̇k −H ′

)]
dt = 0 (6.3.4)

In δ-variation process, the condition δ
∫
fdt = 0 is to be satisfied, in general, by f = dF/dt, where F is an

arbitrary function. Therefore,

δ

t2∫
t1

dF

dt
dt = 0 (6.3.5)
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where

dF

dt
= L− L′

dF

dt
=

(∑
k

pkq̇k −H

)
−
(
PkQ̇k −H ′

)
(6.3.6)

The function F is known as the generating function. The first bracket in (6.3.6) is a function of pk, qk and
t and the second as a function of Pk′ , Qk and t. F is therefore, in general, a function of (4n + 1) variables
pk, qk, Pk, Qk and t. It is to be remembered that the variables are subjected to the transformation equations
(6.1.1) and therefore F may be regarded as the function of (2n + 1) variables, comprising t and any 2n of
the pk, qk, Pk, Qk. Thus we see that F can be written as a function of (2n + 1) independent variables in the
following four forms:

(i) F1 (qk, Qk, t) , (ii) F2 (qk, Pk, t) , (iii) F3 (pk, Qk, t) , and (iv) F4 (pk, Pk, t) (6.3.7)

The choice of the functional form of the generating function F depends on the problem under consideration.

Case I : If we choose the form (i), i.e.,

F1 = F1 (q1, q2, . . . , qk, . . . , qn, Q1, Q2, . . . , Qk′ , . . . , Qn′t) (6.3.8)

then,
dF1

dt
=
∑
k

∂F1

∂qk
q̇k +

∑
k

∂F1

∂Qk
Q̇k +

∂F1

∂t
(6.3.9)

Subtracting (6.3.9) from (6.3.6), we can write∑
k

(
pk −

∂F1

∂qk

)
q̇k −

∑
k

(
Pk +

∂F1

∂Qk

)
Q̇k +H ′ −H − ∂F1

∂t
= 0

or,
∑
k

(
pk −

∂F1

∂qk

)
dqk −

∑
k

(
Pk +

∂F1

∂Qk

)
dQk +

[
H ′ −H − ∂F1

∂t

]
dt = 0 (6.3.10)

As qk, Qk and t may be regarded as independent variables,

pk =
∂

∂qk
F1 (qk, Qk, t) , Pk = − ∂

∂Qk
F1 (qk, Qk, t) , and H ′ −H =

∂

∂t
F1 (qk, Qk, t) (6.3.11)

In principle, first equation of (6.3.11) may be solved to give

Qk = Qk (qk, pk, t) (6.3.12)

Substituting this in the second equation of (6.3.11), one gets

Pk = Pk (qk, pk, t) (6.3.13)

In fact, these are the transformation equations (6.1.1). Thus we find that transformation equations can be
derived from a knowledge of the function F . This is why F is known as the generating function of the trans-
formation.

Case II : If the generating function is of the type F2 (qk, Pk, t), then it can be dealt with by affecting
Legendre transformation of F1 (qk, Qk, t). In case of Legandre transformation (6.2.2) :

f ′ = f − ux, where u = ∂f/∂x
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Here, since Pk = −∂F1/∂Qk, we have u = −Pk, x = Qk, f
′ = F2 and f = F1. Therefore

F2 (qk, Pk, t) = F1 (qk, Qk, t) +
∑
k

PkQk (6.3.14)

Evidently, F2 is independent of Qk variables, because

∂F2

∂Qk
=
∂F1

∂Qk
+ Pk = −Pk + Pk = 0 as

∂F1

∂Qk
= −Pk in (6.3.11).

Using Eq. (6.3.6) (∑
k

pkq̇k −H

)
−

(∑
k

PkQ̇k −H ′

)
=
dF1

dt
=

d

dt

[
F2 −

∑
k

PkQk

]

or,
dF2

dt
=
∑
k

pkq̇k +
∑
k

QkṖk +H ′ −H (6.3.15)

Total time derivative of F2 (qk, Pk, t) is

dF2

dt
=
∑
k

∂F2

∂qk
q̇k +

∑
k

∂F2

∂Pk
Ṗk +

∂F2

∂t
(6.3.16)

From (6.3.15) and (6.3.16), we get

pk =
∂F2

∂qk
, Qk =

∂F2

∂Pk
and H ′ −H =

∂F2

∂t
(6.3.17)

If we look (6.3.11) and (6.3.17), we find
∂F1

∂t
=
∂F2

∂t
. Further as

∂F1

∂qk
=
∂F2

∂qk
, first equation of (6.3.11) and

that of (6.3.17) are identical. Second equation of (6.3.17) appears to be different from the second equation of
(6.3.11), but in fact it is a rearrangement of it.

Case III : We can again relate the third type of generating function F3 (pk, Qk, t) to F1 by a Legendre
transformation in view of the relation pk = ∂F1/∂qk. Here u = pk, x = qk, f

′ = F3 and f = F1. Therefore,

F3 (pk, Qk, t) = F1 (qk, Qk, t)−
∑
k

pkqk

F1 (qk, Qk, t) = F3 (pk, Qk, t) +
∑
k

pkqk (6.3.18)

Using Eq. (6.3.6), we have(∑
k

pkq̇k −H

)
−

(∑
k

PkQ̇k −H ′

)
=
dF1

dt
=

d

dt

(
F3 +

∑
pkqk

)
or,

dF3

dt
= −

∑
k

ṗkqk −
∑
k

PkQ̇k +H ′ −H

Also,
dF3

dt
=
∑
k

∂F3

∂pk
ṗk +

∑
k

∂F3

∂Qk
Q̇k +

∂F3

∂t

Therefore, the new transformation equations are

qk = −∂F3

∂pk
, Pk = − ∂F3

∂Qk
and H ′ −H =

∂F3

∂t
(6.3.19)
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Case IV : Using Legendre transformations, the generating functionF4 (pk, Pk, t) can be connected toF1 (qk, Qk, t)
as

F4 (pk, Pk, t) = F1 (qk, Qk, t) +
∑
k

PkQk −
∑
k

pkqk (6.3.20)

Using Eq. (6.3.6), we have(∑
k

pkq̇k −H

)
−

(∑
k

PkQ̇k −H ′

)
=

d

dt

(
F4 −

∑
k

PkQk +
∑
k

pkqk

)

or,
dF4

dt
= −

∑
k

qkṗk +
∑
k

QkṖk +H ′ −H

But
dF4

dt
=
∑
k

∂F4

∂pk
ṗk +

∑
k

∂F4

∂Pk
Ṗk +

∂F4

∂t

A comparison of the above two equations gives the fourth set of transformation equations:

qk = −∂F4

∂pk
, Qk =

∂F4

∂Pk
, H ′ −H =

∂F4

∂t
(6.3.21)

6.4 Procedure for Application of Canonical Transformations

We note that the relation between,H and H ′ in all the cases has the same form i.e., H ′ = H + ∂F/∂t. Now,
if F has no explicit time dependence, then ∂F/∂t = 0 and hence

H ′ = H (6.4.1)

Thus, when the generating function has no explicit time dependence, the new Hamiltonian H ′ is obtained
from the old Hamiltonian H by substituting for pk, qk in terms of the new variables Pk, Qk. Further we note
that the time t has been treated as an invariant parameter of the motion and we have not made any provision
for a transformation of the time coordinate alongwith the other coordinates.

If in the new set of coordinates (Pk, Qk, t) all coordinates Qk are cyclic, then

Ṗk = −∂H
′

∂Qk
= 0 or Pk = Constant, say αk (6.4.2)

If the generating function F does not depend on time t explicitly andH is a constant of motion, not depending
on time, then from (6.4.1) H ′ is also constant of motion. Thus H ′ will not involve Qk and t (explicit time
dependence). Therefore,

H (qk, pk) = H ′ (Qk, Pk) = H ′ (Pk) = H ′ (α1, α2, . . . , αn)

Hamilton’s equations for Qk are

Q̇k =
∂H ′

∂Pk
=
∂H ′

∂αk
= ωk (6.4.3)

where ωk’s are functions of the αk’s only and are constant in time.

Eq. (6.4.3) has the solution
Qk = ωkt+ βk (6.4.4)

where βk’s are the constants of integration, determined by the initial conditions.
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6.5 Condition for Canonical Transformations

Suppose F = F (qk, Qk), then obviously ∂F/∂t = 0 and H = H ′ [from (6.3.11)]. Further from (6.3.11), we
have

pk =
∂F

∂qk
and Pk = − ∂F

∂Qk

Also

dF =
∑
k

∂F

∂qk
dqk +

∑
k

∂F

∂Qk
dQk

or, dF =
∑
k

pkdqk −
∑
k

PkdQk (6.5.1)

The left hand side of Eq. (6.5.1) is an exact differential, hence for a given transformation to be canonical, the
right hand side of Eq. (6.5.1), i.e.,

∑
k

pkdqk −
∑
k

PkdQk must be an exact differential.

Example 6.5.1. Prove that the generating function F =
∑
i

qiPi generates the identity transformation.

Solution. Here, the generating function is F2 =
∑
i

qiPi and hence applying Eq. (6.3.17), we get

pi = ∂F2/∂qi = Pi, Qi = ∂F2/∂Pi = qi

H ′ = H (∵ F2 is not t dependent )

Thus the new and old variables are separately equal and hence F generates an identity transformation.

Example 6.5.2. Show that for the function F =
∑
k

qkQk, the transformations are pk = Qk, Pk = −qk and

H ′ = H .

Solution. Here F =
∑
k

qkQk is F1 and hence applying Eqs. (6.3.11), we get

pk =
∂F1

∂qk
= Qk, Pk = − ∂F1

∂Qk
= −qk and H ′ = H.

Example 6.5.3. Show that the transformation

P =
1

2

(
p2 + q2

)
, Q = tan−1 q

p

is canonical.

Solution. The transformation will be canonical, if p dq − P dQ is an exact differential. Here

dQ = (p dq − q dp)/p2 + q2

Therefore,

p dq − P dQ = p dq − 1

2

(
p2 + q2

) p dq − q dp

p2 + q2
=

1

2
(p dq + q dp) = d

(
1

2
pq

)
= an exact differential

This means that the given transformation is canonical.
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Example 6.5.4. The transformation equations between two sets of coordinates are

P = 2
(
1 + q1/2 cos p

)
q1/2 sin p and Q = log

(
1 + q1/2 cos p

)
Show that the transformation is canonical and the generating function of this transformation is

F3 = −
(
eQ − 1

)2
tan p.

Solution. Here,

(p dq − P dQ) = p dq − 2
[
1 + q1/2 cos p

]
q1/2 cos p×

(
−q1/2 sin p dp+ 1

2 cos p dq/q
−1/2

)(
1 + q1/2 cos p

)
= p dq + 2q sin2 p dp− sin p cos p dq

=

(
p− 1

2
sin 2p

)
dq + q(1− cos 2p) dp

= d

[
q

(
p− 1

2
sin 2p

)]
which is an exact differential and hence the transformation is canonical. Further

Q = loge

(
1 + q1/2 cos p

)
⇒ eQ = 1 + q1/2 cos p

⇒ q1/2 cos p = eQ − 1 ⇒ q =
(
eQ − 1

)2
/ cos2 p

For this transformation, we take F = F3(p,Q), so that

q = −∂F3

∂p
and P = −∂F3

∂Q

Thus

−∂F3

∂p
=
(
eQ − 1

)2 1

cos2 p
or F3 = −

∫ (
eQ − 1

)2
cos2 p

dp

or, F3 = −
(
eQ − 1

)2
tan p+ constant

If the constant of integration is zero,
F3 = −

(
eQ − 1

)2
tan p.

6.6 Bilinear Invariant Condition

According to this condition, if a transformation (qk, pk) coordinates to (Qk, Pk) coordinates is canonical, then
bilinear form ∑

k

(δpkdqk − δqkdpk) (6.6.1)

remains invariant. This statement means that∑
k

(δpkdqk − δqkdpk) =
∑
k

(δPkdQk − δQkdPk) (6.6.2)
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Proof. From Hamilton’s canonical equations, we have

q̇k =
∂H

∂pk
or dqk =

∂H

∂pk
dt (6.6.3)

and ṗk = −∂H
∂qk

or dpk = −∂H
∂qk

dt (6.6.4)

Similarly,

dQk =
∂H

∂Pk
dt and dPk = − ∂H

∂Qk
dt (6.6.5)

Since δpk and δqk are arbitrary,∑
k

δpk

(
dqk −

∂H

∂pk
dt

)
−
∑
k

δqk

(
dpk +

∂H

∂qk
dt

)
= 0 (6.6.6)

Obviously in order to satisfy this equation, the coefficients of δpk and δqk must be zero and this gives Eqs.
(??). Therefore, Eq. (6.6.6) is correct and it can be written as∑

k

(δpkdqk − δqkdpk)−
∑
k

(
∂H

∂pk
δpk +

∂H

∂qk
δqk

)
dt = 0∑

k

(δpkdqk − δqkdpk)− δH dt = 0 (6.6.7)

Similarly, for H ′ = H , when F does not depend on time,∑
k

(δPk dQk − δQk dPk)− δH dt = 0 (6.6.8)

Eliminating δH dt from Eqs. (6.6.7) and (6.6.8), we obtain∑
k

(δpk dqk − δqk dpk) =
∑
k

(δPk dQk − δQk dPk) (6.6.9)

which proves the statement

Example 6.6.1. Show that the transformation Q =
1

p
and P = qp2 is canonical.

Solution. Since Q =
1

p
, therefore

dQ =
∂Q

∂p
dp+

∂Q

∂q
dq

or, dQ =
∂

∂p

(
1

p

)
dp+

∂

∂q

(
1

p

)
dq = − 1

p2
dp

Also, δQ =
∂Q

∂p
δp+

∂Q

∂q
δq = − 1

p2
δp

Similarly, dP = p2 dq + 2qp dp
(
∵ P = qp2

)
and δP = p2δq + 2qp δp.

Therefore,

δP dQ− δQ dP =
(
p2 δq + 2qp δp

)(
− 1

p2
dp

)
−
(
− 1

p2
δp

)(
p2dq + 2qp dp

)
= −δq dp− 2q

p
δp dp+ δp dq +

2q

p
δp dp

= δp dq − δq dp

Therefore, the bilinear form is invariant and hence the transformation is canonical.
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6.7 Integral Invariance of Poincare

Phase space is defined as a 2n dimensional space formed by the 2n coordinates q1, q2, . . . , qn, p1, p2, . . ., pn.
In this space a complete dynamical specification of a mechanical system is given by a point.

According to Poincare’s theorem, the integral

I =

∫∫
S

∑
k

dqk dpk (6.7.1)

taken over an arbitrary two dimensional surface S of 2n dimensional phase space is invariant under canonical
transformation, i.e., ∫∫

S

∑
k

dqk dpk =

∫∫
S

∑
k

dQkdPk (6.7.2)

If S is a 4-dimensional surface in 2n-dimensional phase space, then according to Poincare’s theorem,∫∫
S

∑
k

∑
l

dqkdqldpkdpl =

∫∫
S

∑
k

∑
l

dQkdQldPkdPl

In general, if the surface is 2n-dimensional in 2n-dimensional phase space, then the integral invariance of
Poincare means∫∫

· · ·
∫
dq1 dq2 . . . dqn dp1 · · · dpn =

∫∫
· · ·
∫
dQ1 dQ2 . . . dQn dP1 . . . dPn (6.7.3)

which shows that the volume in phase space is invariant under canonical transformation. In the advanced
calculus, we have the relation∫

· · ·
∫
dQ1 dQ2 . . . dQn dP1 . . . dPn =

∫
· · ·
∫
D dq1 dq2 . . . dqn dp1 . . . dpn (6.7.4)

where D is known as the Jacobian of the transformation, given by

D =
∂ (Q1, Q2, . . . , Qn, P1, P2, . . . , Pn)

∂ (q1, q2, . . . , qn, p1, p2, . . . , pn)
(6.7.5)

This means that in order to prove the integral invariance (6.7.3), we have to show D = 1. By using the
properties of the Jacobian, it can be written as

D =

∂(Q1,Q2,...,Qn,P1,P2,...,Pn)
∂(q1,q2,...,qn,P1,P2,...,Pn)

∂(q1,q2,...,qn,p1,p2,...,pn)
∂(q1,q2,...,qn,P1,P2,...,Pn)

(6.7.6)

In the calculus, we know that if the same variables are present in both the partial differentials, the Jacobian
is reduced to fewer variables in which the repeated variables are treated as constants in carrying out the
differentiation. Thus

D =

[
∂(Q1,Q2,...,Qn)
∂(q1,q2,...,qn)

]
P1,P2,...,Pn as constants[

∂(p1,p2,...,pn)
∂(P1,P2,...,Pn)

]
q1,q2,...,qn as constants

(6.7.7)
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The numerator is a determinant of order n whose element in the i-th row and k-th column is ∂Qk/∂qp′ , i.e.,

∂(Q1, Q2, . . . , Qn)

∂(q1, q2, . . . , qn)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Q1

∂q1
∂Q2

∂q1
· · · ∂Qn

∂q1
∂Q1

∂q2
∂Q2

∂q2
· · · ∂Qn

∂q2
...

... · · ·
...

∂Q1

∂qi
∂Q2

∂qi
· · · ∂Qn

∂qi
...

... · · ·
...

∂Q1

∂qn
∂Q2

∂qn
· · · ∂Qn

∂qn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.7.8)

Similarly, the denominator is a determinant of the same order nwhose element in the i-th row and k-th column

is
∂pk
∂Pi

. If the generating function of the above canonical transformation is written as F2 (qk, Pk), then from

Eq. (6.3.17), we obtain

Qk =
∂F2

∂Pk
and pk =

∂F2

∂qk

and hence
∂Qk
∂qi

=
∂2F2

∂qi∂Pk
and

∂pk
∂Pi

=
∂2F2

∂Pi∂qk
(6.7.9)

Thus, we see that the ik-element of the numerator is the same as the ki-element of the denominator. Since in
a determinant, rows and columns can be interchanged and hence the determinant of the numerator is equal to
the determinant of the denominator. Therefore, from (6.7.7), we get

D = 1 (6.7.10)

Thus we see that Eq. (6.7.3) is true, i.e., the volume in phase space is invariant under canonical transformation.
Also, if we take a two dimensional surface S of 2n-dimensional phase space, then the invariance of

Poincare’s integral under canonical transformation means that∫∫
S

∑
k

dqkdpk =

∫∫
S

∑
k

dQkdPk.

6.7.1 Infinitesimal Contact Transformations

Those transformations in which the new set of coordinates (Qk, Pk) differ from the old set (qk, pk) by in-
finitesimals i.e., Qk = qk + δqk and Pk = pk + δpk, are called infinitesimal contact transformations.

It is known that the generating function F2 =
∑
k

qkPk generates the identity transformation i.e., Qk = qk

and Pk = pk. The generating function, giving an infinitesimal change in the variables, can be readily written
as

F2 =
∑
k

qkPk + εG (qk, Pk) (6.7.11)

where ε is an infinitesimal parameter of the transformation andG (qk, Pk), is arbitrary. Substitution of (6.7.11)
in Eqs. (6.3.17) gives

pk =
∂F2

∂qk
= Pk + ε

∂G

∂qk
, Qk =

∂F2

∂Pk
= qk + ε

∂G

∂Pk
, H ′ = H (6.7.12)

Therefore,

Qk − qk = δqk = ε
∂G

∂Pk
and Pk − pk = δpk = −ε ∂G

∂qk
(6.7.13)
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Since the difference (Pk − pk) is infinitesimal. We can replace Pk by pk in the derivative and also G (qk, Pk)
by G (qk, pk). So that Eqs. (6.7.13) are

δqk = ε
∂G

∂pk
and δpk = −ε ∂G

∂qk
(6.7.14)

In case of infinitesimal contact transformations, the description is transferred to the function G instead of
the original generating function F . Thus G is the new generating function which generates the infinitesimal
contact transformation.

Let us consider a special case in which ϵ = dt andG = H . Eqs. (6.7.14) can be written by using Hamilton’s
equations of motion as

δqk = dt
∂H

∂pk
= dt q̇k = dqk and δpk = −dt∂H

∂qk
= dt ṗk = dpk (6.7.15)

These changes in the conjugate variables represent an infinitesimal change in coordinates in time dt. Eqs.
(6.7.15) givë thus a transformation from the variables qk, pk at time t to qk + dqk, pk + dpk at time t + dt.
Hence the motion of the system in a small time dt can be described by an infinitesimal canonical trans-
formation generated by the Hamiltonian H of the system. Evidently the motion of the system in a finite
interval of time is described by a succession of infinitesimal canonical transformations generated by the same
Hamiltonian. In other words, the motion of a system corresponds to the continuous evolution of canonical
transformation. Thus we can say that the Hamiltonian of the system is the generator of the motion of the
system in phase space with time.

Exercise 6.7.1. 1. Let F be a generating function depend only on Qα, Pα, t. Prove that

Pα = − ∂F

∂Qα
, qα = − ∂F

∂pα
, H ′ =

∂F

∂t
+H.

2. Determine the values of α and β so that the equations Q = qα cosβp and P = q2 sinβp is canonical
transformation. Also find the generating function F3 for this case.

3. Given that the linear transformation of a generalized coordinate q and the corresponding momentum p
is canonical. Find the value of constant α.

4. Show that the transformation Q =
√

2qeα cos p and P =
√

2qe−α sin p, with α being constant, is
canonical.

5. Prove that the transformation P = q cot p and Q = log
sin p

q
is canonical. Show that the generating

function is F (q,Q) = e−Q
(
1− q2e2Q

)1/2
+ q sin−1

(
qeQ

)
.

6. Show that the transformation Q = p+ iaq, P =
p− iaq

2ia
is canonical and find a generating function.

7. Find the canonical transformation defined by the generating function F1(q,Q) = qQ − 1

2
mωq2 −

Q2/4mω.

8. A canonical transformation (q, p) → (Q,P ) is made through the generating function F (q, p) = q2P

on the Hamiltonian H(p, q) =
p2

2αq2
+
β

4
q4 where α and β are constants. Find the equations of motion

for (Q,P ).
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Course Structure

• Lagrange’s and Poisson’s brackets and their variance under canonical transformations,

• Hamilton’s equations of motion in Poisson’s bracket.

• Jacobi’s identity.

• Hamilton-Jacobi equation.

7.1 Introduction

In the previous unit, we have shown that in the case of infinitesimal contact transformations, the changes in
the conjugate variables pk and qk are given by

δqk = ε
∂G

∂pk
and δpk = −ε ∂G

∂qk
(7.1.1)

where ε is an infinitesimal parameter and the generating function G (qk, pk) is arbitrary. Now let us con-
sider some function F (qk, pk). The change in the value of F (qk, pk) with the changes δqk and δpk in the
coordinates qk and pk respectively can be expressed as

δF =
∑
k

(
∂F

∂qk
δqk +

∂F

∂pk
δpk

)
(7.1.2)

If the transformation (7.1.1), generated by the function G, is applied, we get

δF =
∑
k

[
∂F

∂qk

(
ε
∂G

∂pk

)
+
∂F

∂pk

(
−ε ∂G

∂qk

)]
Since the parameter ε is independent of qk and pk, we have

δF = ε

[∑
k

(
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

)]
(7.1.3)

The quantity in the big bracket in (7.1.3) is called the Poisson bracket of two functions or dynamical variables
F (qk, pk) and G (qk, pk) and is denoted by [F,G]. This definition of Poisson bracket is true for F and G,
being functions of time. Thus

δF = ε [F,G] (7.1.4)

71
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7.2 Poisson’s Brackets

If the functions F and G depend upon the position coordinates qk, momentum coordinates pk and time t, the
Poisson bracket of F and G is defined as

[F,G]q,p =
n∑
k=1

(
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

)
(7.2.1)

For brevity, we may drop the subscripts q, p and write the Poisson bracket as [F,G]. The total time derivative
of the function F can be written as

dF

dt
=
∂F

∂t
+

n∑
k=1

(
∂F

∂qk
q̇k +

∂F

∂pk
ṗk

)
(7.2.2)

Using, Hamilton’s equations q̇k =
∂H

∂pk
and −ṗk =

∂H

∂qk
, Eq. (7.2.2) is obtained to be

dF

dt
= Ḟ =

∂F

∂t
+

n∑
k=1

(
∂F

∂qk

∂H

∂pk
− ∂F

∂pk

∂H

∂qk

)
(7.2.3)

In view of the definition of Poisson’s bracket given by Eq. (7.2.1), we obtain

dF

dt
=
∂F

∂t
+ [F,H] (7.2.4)

From this equation we see that the function F is a constant of motion, if

dF

dt
= 0 or

∂F

∂t
+ [F,H] = 0 (7.2.5)

Now, if the function F does not depend on time explicitly,
∂F

∂t
= 0 and then the condition for F to be constant

of motion is obtained to be
[F,H] = 0 (7.2.6)

Thus if a function F does not depend on time explicitly and is a constant of motion, its Poisson bracket with
the Hamiltonian vanishes. In other words, a function whose Poisson bracket with Hamiltonian vanishes is a
constant of motion. This result does not depend whether H itself is constant of motion.

Equations of motion in Poisson bracket form : Special cases of (7.2.4) are

F = qk, q̇k = [qk, H] (7.2.7)

F = pk, ṗk = [pk, H] (7.2.8)

F = H, Ḣ =
∂H

∂t
(7.2.9)

These equations (7.2.7), (7.2.8), (7.2.9) are identical to Hamilton’s equations and referred as equations of
motion in Poisson bracket form.

Properties of Poisson brackets and Fundamental Poisson brackets : The Poisson bracket has the prop-
erty of anti-symmetry, given by

[F,G] = −[G,F ], (7.2.10)
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because

[F,G] =
∑
k

[
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

]
= −

∑
k

[
∂G

∂qk

∂F

∂pk
− ∂G

∂pk

∂F

∂qk

]
= −[G,F ].

Thus Poisson bracket does not obey the commutative law of algebra. As an application of the Poisson brackets,
we are giving below some of the special cases :

1. When G = ql,

[F, ql] =
∑
k

[
∂F

∂qk

∂ql
∂pk

− ∂F

∂pk

∂ql
∂qk

]
= −

∑
k

∂F

∂pk
δlk = −∂F

pl

Also if F = qk, [qk, ql] = −∂qk
∂pl

= 0 and if F = pk, [pk, ql] = −∂pk
∂pl

= −δkl

2. When G = pt, [F, pl] =
∑
k

∂F

∂qk
δkl = [F, pl] =

∂F

∂ql
.

For F = pk, [pk, pl] =
∂pk
∂ql

= 0 and for F = qk, [qk, pl] =
∂qk
∂ql

= δkl.

The above results can be summarized as follows:

[qk, ql] = [pk, pl] = 0 and [qk, pl] = δkl (7.2.11)

where δkl is the kronecker delta symbol with the property

δkl = 0 for k ̸= l and δkl = 1 for k = l.

Equations (7.2.11) are called the fundamental Poisson’s brackets.

Further from the definition of Poisson bracket of any two dynamical variables or functions, one can obtain the
following identities:

(i) [F, F ] = 0 (ii) [F,C] = 0, C = constant (iii) [CF,G] = C[F,G]

(iv) [F1 + F2, G] = [F1, G] + [F2, G] (v)] [F,G1G2] = G1 [F,G2] + [F,G1]G2

(vi)
∂

∂t
[F,G] =

[
∂F

∂t
,G

]
+

[
F,
∂G

∂t

]
(vii) [F, [G,K]]+ [G, [K,F ]]+ [K, [F,G]] = 0 (Jacobi’s identity)

7.3 Lagrange Brackets

The Lagrange bracket of two dynamical variables F (qk, pk) and G (qk, pk) is defined as

{F,G} =
∑
k

[
∂qk
∂F

∂pk
∂G

− ∂pk
∂F

∂qk
∂G

]
(7.3.1)

The Langrange’s bracket does not obey the commutative law of algebra i.e., for Lagrangian bracket

{F,G} = −{G,F} (7.3.2)

because

{F,G} = −
∑
k

[
∂qk
∂G

∂pk
∂F

− ∂pk
∂G

∂qk
∂F

]
= −{G,F}
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Further

{qi, qj} =
∑
k

[
∂qk
∂qi

∂pk
∂qj

− ∂pk
∂qi

∂qk
∂qj

]
= 0 (7.3.3)

because
∂pk
∂qj

=
∂pk
∂qi

= 0.

Similarly, one can prove that for Lagrange brackets

{pi, pj} = 0; {qi, pj} = δij (7.3.4)

7.4 Relation between Lagrange and Poisson Brackets

If Fk, k = 1, 2, . . . , 2n, are 2n independent functions such that each Fk is a function of 2n coordinates q1,
q2, . . . , qn; p1, p2, . . . , pn, then

2n∑
k=1

{Fk, Fi} [Fk, Fj ] = δij (7.4.1)

In order to prove the relation (7.4.1), we take the left hand side of this equation and use the definitions of
Poisson and Lagrange brackets :

2n∑
k=1

{Fk, Fi} [Fk, Fj ] =
2n∑
k=1

[
n∑
l=1

n∑
m=1

(
∂ql
∂Fk

∂pl
∂Fi

− ∂pl
∂Fk

∂ql
∂Fi

)(
∂Fk
∂qm

∂Fj
∂pm

− ∂Fk
∂pm

∂Fj
∂qm

)]

=
n∑
l=1

(
∂Fj
∂pl

∂pl
∂Fi

+
∂Fj
∂ql

∂ql
∂Fi

)
=
∂Fj
∂Fi

= δij

In general, Poisson bracket is relatively much more useful than Lagrange bracket.

7.5 Invariance of Poisson Bracket with respect to Canonical Transformations

Poisson brackets are invariant under canonical transformations. First we shall prove this statement for funda-
mental Poisson brackets and then in general.

7.5.1 Fundamental Poisson brackets under canonical transformation

The fundamental Poisson brackets are invariant under canonical transformation means that if

[qk, ql] = [pk, pl] = 0, [qk, pl] = δkl (7.5.1)

and the transformation (qk, pk) → (Qk, Pk) is canonical, then

[Qk, Ql] = [Pk, Pl] = 0, [Qk, Pl] = δkl (7.5.2)

According to the definition of Poisson bracket [Eq. (7.2.1)], we have

[F,G]q,p =
n∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
(7.5.3)



7.5. INVARIANCE OF POISSON BRACKET WITH RESPECT TO CANONICAL TRANSFORMATIONS75

Therefore,

[Qk, Ql]q,p =
∑
i

[
∂Qk
∂qi

∂Ql
∂pi

− ∂Qk
∂pi

∂Ql
∂qi

]
(7.5.4)

From Eq. (6.3.11) of Unit 6, we get

∂pk
∂Ql

=
∂

∂Ql

∂F1

∂qk
=

∂

∂qk

∂F1

∂Ql
= −∂Pl

∂qk
(7.5.5)

Similarly Eqs. (6.3.17), (6.3.19) and (6.3.21) of Unit 6 yield

∂pk
∂Pl

=
∂

∂Pl

∂F2

∂qk
=

∂

∂qk

∂F2

∂Pl
=
∂Ql
∂qk

(7.5.6)

∂qk
∂Ql

= − ∂

∂Ql

∂F3

∂pk
= − ∂

∂pk

∂F3

∂Ql
=
∂Pl
∂pk

(7.5.7)

∂qk
∂Pl

= − ∂

∂Pl

∂F4

∂pk
= − ∂

∂pk

∂F4

∂Pl
= −∂Ql

∂pk
(7.5.8)

Hence Eq. (7.5.4) is [using (7.5.5) and (7.5.7)]

[Qk, Ql]q,p =
∑
i

(
−∂Qk
∂qi

∂qi
∂Pl

− ∂Qk
∂pi

∂pi
∂Pl

)
= −∂Qk

∂Pl
= 0 (7.5.9)

because Qk and Pk are independent variables. Also we note that

[Qk, Ql]Q,P =
∑
i

(
−∂Qk
∂Qi

∂Ql
∂Pi

− ∂Qk
∂Pi

∂Ql
∂Qi

)
= 0

Therefore,
[Qk, Ql]q,p = [Qk, Ql]Q,P = 0 (7.5.10)

Similarly we can prove
[Pk, Pl]q,p = [Pk, Pl]Q,P = 0 (7.5.11)

Now,

[Qk, Pl]q,p =
∑
i

(
∂Qk
∂qi

∂Pl
∂pi

− ∂Qk
∂pi

∂Pl
∂qi

)
Using Eqs. (7.5.5) and (7.5.7), we obtain

[Qk, Pl]q,p =
∑
i

(
∂Qk
∂qi

∂qi
∂Ql

+
∂Qk
∂pi

∂pi
∂Ql

)
=
∂Qk
∂Ql

= δkl (7.5.12)

By definition:
[Qk, Pl]Q,P = δkl (7.5.13)

Thus
[Qk, Pl]q,p = [Qk, Pl]Q,P = δkl. (7.5.14)

Eqs. (7.5.10), (7.5.11) and (7.5.14) show the invariance of fundamental Poisson brackets with respect to
canonical transformation.
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7.5.2 Poisson brackets under canonical transformation

In general, if Poisson bracket is invariant under canonical transformation (q, p) to (Q,P ), we mean that

[F,G]q,p = [F,G]Q,P (7.5.15)

In order to prove this, let us start from the definition of Poisson bracket, i.e.,

[F,G]q,p =
∑
k

(
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

)
(7.5.16)

As pk = Pk (Q1, Q2, . . . , Qk, . . . , P1, P2, . . . , Pk, . . . , ) and qk = qk (Q1, Q2, . . . , Qk, . . . , P1, P2, . . . , Pk, . . . , )
we can write

[F,G]q,p =
∑
k

∑
l

[
∂F

∂qk

(
∂G

∂Ql

∂Ql
∂pk

+
∂G

∂Pl

∂Pl
∂pk

)
− ∂F

∂pk

(
∂G

∂Ql

∂Ql
∂qk

+
∂G

∂Pl

∂Pl
∂pk

)]
⇒ [F,G]q,p =

∑
l

(
∂G

∂Ql
[F,Ql]q,p +

∂G

∂Pl
[F, Pl]q,p

)
(7.5.17)

In Eq. (7.5.17), substituting F = Qi and G = F , we get

[Qi, F ]q,p =
∑
l

(
∂F

∂Ql
[Qi, Ql]q,p +

∂F

∂Pl
[Qi, Pl]q,p

)
=
∂F

∂Pi
. (7.5.18)

Similarly, substituting F = Pi and G = F in (7.5.17), we have

{Pi, F ]q,p =
∑
l

(
∂F

∂Ql
[Pi, Ql]q,p +

∂F

∂Pl
[Pi, Pl]q,p

)
= − ∂F

∂Qi
(7.5.19)

Substituting (7.5.18) and (7.5.19) in (7.5.17), we obtain

[F,G]q,p =
∑
l

(
− ∂G

∂Ql

∂F

∂Pl
+
∂G

∂Pl

∂F

∂Ql

)
= [F,G]Q,P (7.5.20)

This proves the statement (7.5.15). Thus for the canonical variables, we can drop the subscripts of Poisson
brackets.

7.6 Invariance of Lagrange’s Bracket with respect to Canonical Transforma-
tions

According to the Poincare theorem, the integral

I1 =

∫∫
S

∑
k

dqk dpk (7.6.1)

taken over an arbitrary two dimensional surface S of 2n dimensional phase space (qk, pk) is invariant under
canonical transformation, i.e., ∫∫

S

∑
k

dqk dpk =

∫∫
S

∑
k

dQk dPk (7.6.2)
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The position of a point on any two dimensional surface can be completely specified by two parameters, say u
and v, so that

qk = qk(u, v) and pk = pk(u, v) (7.6.3)

Transforming the area element in terms of new variables (u, v) by means of Jacobian, we have

dqk dpk =
∂ (qk, pk)

∂(u, v)
du dv (7.6.4)

with

∂ (qk, pk)

∂(u, v)
=

∣∣∣∣∣∣∣
∂qk
∂u

∂pk
∂u

∂qk
∂v

∂pk
∂v

∣∣∣∣∣∣∣ (7.6.5)

as the Jacobian. Eq. (7.6.2) in view of Eq. (7.6.4) is obtained to be∫∫
S

∑
k

∂ (qk, pk)

∂(u, v)
du dv =

∫∫
S

∑
k

∂ (Qk, Pk)

∂(u, v)
du dv (7.6.6)

As the surface S is arbitrary, area du dv is arbitrary and therefore the expressions on both sides of Eq. (7.6.6)
will be equal in the condition that the integrals are equal, i.e.,

∑
k

∂(qk, pk)

∂(u, v)
=
∑
k

∂(Qk, Pk)

∂(u, v)
⇒
∑
k

∣∣∣∣∣∣∣
∂qk
∂u

∂pk
∂u

∂qk
∂v

∂pk
∂v

∣∣∣∣∣∣∣ =
∑
k

∣∣∣∣∣∣∣
∂Qk
∂u

∂Pk
∂u

∂Qk
∂v

∂Pk
∂v

∣∣∣∣∣∣∣
⇒
∑
k

(
∂qk
∂u

∂pk
∂v

− ∂qk
∂v

∂pk
∂u

)
=
∑
k

(
∂Qk
∂u

∂Pk
∂v

− ∂Qk
∂v

∂Pk
∂u

)
⇒ {u, v}q,p = {u, v}Q,P

Thus, Lagrange’s bracket is invariant under canonical transformation. Therefore it is immaterial which set of
canonical coordinates is to be used i.e., that subscripts q, p can be dropped in writing Lagrange’s brackets.

Example 7.6.1. Show that transformation defined by q =
√
2P sinQ, p =

√
2P cosQ is canonical by

using Poisson bracket.

Solution. The transformation is

q =
√
2P sinQ, p =

√
2P cosQ

From these equations, we can write the transformation as

tanQ =
q

p
and P =

1

2

(
q2 + p2

)
(7.6.7)

In order to show that the given transformation is canonical, the Poisson bracket conditions are

[Q,Q] = [P, P ] = 0 and [Q,P ] = 1 (7.6.8)

Here, [Q,Q] =
∂Q

∂q

∂Q

∂p
− ∂Q

∂p

∂Q

∂q
= 0. Similarly, [P, P ] = 0. Also

[Q,P ] =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
(7.6.9)
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But from (7.6.7),

sec2Q
∂Q

∂q
=

1

p
,

∂P

∂p
= p, sec2Q

∂Q

∂p
= − q

p2
,

∂P

∂q
= q

Substituting these values in (7.6.9), we get

[Q,P ] =
cos2Q

p
p+

q cos2Q

p2
q = cos2Q+

q2

p2
cos2Q

= cos2Q

[
1 +

q2

p2

]
= cos2Q[1 + tan2Q] = cos2Q sec2Q = 1

Thus we prove the condition (7.6.8) which means that the given transformation is canonical.

7.7 Jacobi’s identity

For any three functions F,G and K of pk and qk, the following relation holds true:

[F, [G,K]] + [G, [K,F ]] + [K, [F,G]] = 0

This relation is known as Jacobi’s identity.

Proof. Let us consider the expression for the following:

[F, [G,K]]− [G, [F,K]]

=

[
F,
∑
k

(
∂G

∂qk

∂K

∂pk
− ∂G

∂pk

∂K

∂qk

)]
−

[
G,
∑
k

(
∂F

∂qk

∂K

∂pk
− ∂F

∂pk

∂K

∂qk

)]

=

[
F,
∑
k

(
∂G

∂qk

∂K

∂pk

)]
−

[
F,
∑
k

(
∂G

∂pk

∂K

∂qk

)]
−

[
G,
∑
k

(
∂F

∂qk

∂K

∂pk

)]
+

[
G,
∑
k

(
∂F

∂pk

∂K

∂qk

)]
Now, using the property [F,GK] = [F,G]K + [F,K]G, we have

[F, [G,K]]− [G, [F,K]] =

[
F,
∑
k

∂G

∂qk

]∑
k

∂K

∂pk
+

[
F,
∑
k

∂K

∂pk

]∑
k

∂G

∂qk
−

[
F,
∑
k

∂G

∂pk

]∑
k

∂K

∂qk

−

[
F,
∑
k

∂K

∂qk

]∑
k

∂G

∂pk
−

[
G,
∑
k

∂F

∂qk

]∑
k

∂K

∂pk
−

[
G,
∑
k

∂K

∂pk

]∑
k

∂F

∂qk

+

[
G,
∑
k

∂F

∂pk

]∑
k

∂K

∂qk
+

[
G,
∑
k

∂K

∂qk

]∑
k

∂F

∂pk

=
∑
k

{
−∂K
∂qk

([
∂F

∂pk
, G

]
+

[
F,

∂G

∂pk

])
+
∂K

∂pk

([
∂F

∂qk
, G

]
+

[
F,
∂G

∂qk

])}
+
∑
k

{
∂G

∂qk

[
F,
∂K

∂pk

]
− ∂G

∂pk

[
F,
∂K

∂qk

]
− ∂F

∂qk

[
G,

∂K

∂pk

]
+
∂F

∂pk

[
G,

∂K

∂qk

]}

Using the identity
∂

∂x
[F,G] =

[
∂F

∂x
,G

]
+

[
F,
∂G

∂x

]
, we obtain

[F, [G,K]]− [G, [F,K]] =
∑
k

[
−∂K
∂qk

∂

∂pk
[F,G] +

∂K

∂pk

∂

∂qk
[F,G]

]
+ 0 = −[K, [F,G]]

Thus, [F, [G,K]] + [G, [K,F ]] + [K, [F,G]] = 0, which proves the Jacobi’s identity.
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Example 7.7.1. Show that the Poisson bracket of two constants of motion is itself a constant of motion.

Solution: In Jacobi’s identity, we put K = H , then

[F, [G,H] + [G, [H,F ]] + [H, [F,G]] = 0

Now, if F and G are constants of motion, then [F,H] = 0 and [G,H] = 0 Therefore, [H, [F,G]] = 0 which
means that the dynamic variable [F,G] is constant of motion. Thus the Poisson bracket of two constants of
motion is itself a constant of motion.

7.8 Hamilton-Jacobi Equation

If we make a canonical transformation from the old set of variables (qk, pk) to a new set of variables (Qk, Pk),
then the new equations of motion are,

Ṗk = −∂H
′

∂Qk
and Q̇k =

∂H ′

∂Pk
(7.8.1)

Now, if we require that the transformed Hamiltonian H ′ is identically zero i.e., H ′ = 0, then equations of
motion (7.8.1) assume the form

Ṗk = 0 and Q̇k = 0 ⇒ Pk = constant and Qk = constant (7.8.2)

Thus the new coordinates and momenta are constants in time and they are cyclic. The new Hamiltonian H ′ is
related to the old Hamiltonian H by the relation

H ′ = H +
∂F

∂t

which will be zero only when F satisfies the relation

H (qk, pk, t) +
∂F

∂t
= 0 (7.8.3)

whereH (qk, pk, t) is written forH (q̇1, q2, . . . , qn, p1, p2, . . . , pn, t). For convenience, we take the generating
function F as a function of the old coordinates qk, the new constant momenta Pk and time t i.e.; F2 (qk, Pk, t).

Then pk =
∂F2

∂qk
. Therefore,

H

(
qk,

∂F2

∂qk
, t

)
+
∂F2

∂t
= 0 (7.8.4)

Let us see what is the physical meaning of the generating function F2 (qk, Pk, t). The total time derivative of
F2 is

∂F2

∂t
=

n∑
k=1

∂F2

∂qk
q̇k +

n∑
k=1

∂F2

∂Pk
Ṗk +

∂F2

∂t

Here, Ṗk = 0,
∂F2

∂t
= −H and

∂F2

∂qk
= pk. Therefore,

∂F2

∂t
=

n∑
k=1

pkq̇k −H = L⇒ F2 =

∫
L dt = S (7.8.5)
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where S is the familiar action of the system, known as the Hamilton’s principal function in relation to the
variational principle. Writing F2 = S in Eq. (7.8.4), we get

H

(
qk,

∂S

∂qk
, t

)
+
∂S

∂t
= 0 (7.8.6)

This is known as the Hamilton-Jacobi equation which is a partial differential equation of first order in (n+1)
variables q1, q2, . . . , qn, t.

Let the complete solution of equation (7.8.6) be of the form

S = S (q1, q2, . . . , qn, α1, α2, . . . , αn, t) (7.8.7)

where α1, α2, . . . , αn are n independent constants of integration. Here, we have omitted one arbitrary additive
constant which has no importance in a generating function because only partial derivatives of the generating
function appear in the transformation equations.

In Eq. (7.8.7), the solution S is a function of n coordinates qk, time t and n independent constants. We can
take these n constants of integration as the new constant momenta i.e.,

Pk = αk (7.8.8)

Now, the n transformation equations [ Eqs. (6.3.17) of Unit 6] are

pk =
∂S (q1, . . . , qn, α1, . . . , αn, t)

∂qk
(7.8.9)

These are n equations, which at t = t0 (initially) give the n values of αk in terms of the initial values of qk
and pk. The other n transformation equations are

Qk =
∂S

∂Pk
= constant, say βk

or

βk =
∂S (q1, . . . , qn, α1, . . . , αn, t)

∂αk
(7.8.10)

Similarly, one can calculate the constants βk by using initial conditions i.e., at t = t0, the known initial values
of qk, in Eq. (7.8.10). Thus αk and βk constants are known and Eq. (7.8.10) will give qk in terms of αk, βk
and t i.e.,

qk = qk (α1, α2, . . . , αn, β1, β2, . . . , βn, t) (7.8.11)

After performing the differentiation in Eq. (7.8.9), Eq. (7.8.11) may be substituted for qk to obtain momenta
pk. Thus pk will be obtained as functions of constants αk, βk and time t i.e.,

pk = pk (α1, α2, . . . , αn, β1, β2, . . . , βn, t) (7.8.12)

In this way we obtain the desired complete solution of the mechanical problem. Thus we see that the Hamil-
ton’s principal function S is the generator of a canonical transformation to constant coordinates (βk) and
momenta (αk). Also in solving the Hamilton-Jacobi equation, we obtain simultaneously a solution to the
mechanical problem.
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7.9 Solution of Harmonic Oscillator Problem by Hamilton-Jacobi Method

Let us consider a one-dimensional harmonic oscillator. The force acting on the oscillator at a displacement

q is F = −kq, where k is force constant. Potential energy, V =

q∫
0

kq dq =
1

2
kq2 and Kinetic energy,

T =
1

2
mv2 =

p2

2m
. Therefore, Hamiltonian, H = T + V =

p2

2m
+

1

2
kq2. But p =

∂S

∂q
, therefore,

H =
1

2

[
∂S

∂q

]2
+

1

2
kq2 (7.9.1)

Hence the Hamilton-Jacobi equation corresponding to this Hamiltonian is

1

2m

[
∂S

∂q

]2
+

1

2
kq2 +

∂S

∂t
= 0 (7.9.2)

As the explicit dependence of S on t is involved only in the last term of left hand side of Eq. (7.9.2), a solution
to this equation can be assumed in the form

Si = S1(q) + S2(t) (7.9.3)

Thus
1

2m

[
∂S1
∂q

]2
+

1

2
kq2 = −∂S2

∂t
(7.9.4)

Setting each side of Eq. (7.9.4) equal to a constant, say α, we get

1

2m

[
∂S1
∂q

]2
+

1

2
kq2 = α and − ∂S2

∂t
= α

So that
∂S1
∂q

=

√
2m

(
α− 1

2
kq2
)

and − ∂S2
∂t

= α

Integrating, we get

S1 =

∫ √
2m

(
α− 1

2
kq2
)
dq + C1 and S2 = −αt+ C2

Therefore,

S =

∫ √
2m

(
α− 1

2
kq2
)
dq − αt+ C

where C = (C1 + C2) the constant of integration. It is to be noted that C is an additive constant and will not
affect the transformation, because to obtain the new position coordinate (Q = ∂S/∂P or β = ∂S/∂α) only
partial derivative of S with respect to α(= P , new momentum) is required. This is why this additive constant
C has no effect on transformation and is dropped. Thus

S =

∫ √
2m

(
α− 1

2
kq2
)
dq − αt (7.9.5)

In this expression for the Hamilton’s principal function S, first part is the function of α and q and is denoted
as W (q, α). This is called Hamilton’s characteristic function. Thus S =W (q, α)− αt.



82 UNIT 7.

We designate the constant α as the new momentum P . The new constant coordinate (Q = β) is obtained
by the transformation

β =
∂S

∂α
=

√
2m

2

∫
dq√

α− 1
2kq

2
− t =

√
m

2α

∫
dq√

1− kq2

2α

− t

or

β =

√
m

k
sin−1 q

√
k

2α
− t

Therefore,
√
m

k
sin−1 q

√
k

2α
= t+ β or sin−1 q

√
k

2α
=

√
k

m
(t+ β). Writing ω =

√
k/m, we obtain

q =

√
2α

mω2
sinω(t+ β) (7.9.6)

which is the familiar solution of the harmonic oscillator. Now,

p =
∂S

∂q
=

√
2m

(
α− 1

2
kq2
)

=
√
2mα−m2ω2q2 (7.9.7)

Putting the value of q from (7.9.6), we get

p =
√

2mα
(
1− sin2 ω(t+ β)

)
or p =

√
2mα cosω(t+ β) (7.9.8)

The constants α and β are to be known from initial conditions. Suppose at t = 0, the particle is at rest, i.e.,
p0 = 0 and it is at the displacement q = q0, from the equilibrium position. Then from Eq. (7.9.7)

p0 = 0 =
√

2mα−m2ω2q20 or α =
1

2
mω2q20 =

1

2
kq20 (7.9.9)

Also H ′ = H + ∂S/∂t = H − α = 0 [∵ ∂S/∂t = −α from (7.9.4)]. This gives H = α. But the system is
conservative and hence H = E. Thus the new canonical momentum (P = α) is identified as the total energy
of the oscillator.

Also from (7.9.9), q0 =
√
2α/mω2 and hence the solution (7.9.6) takes the more familiar form

q = q0 sinω(t+ β) (7.9.10)

Also from (7.9.8) and (7.9.10) at t = 0, cosωβ = 0 and sinωβ = 1. Therefore, ωβ = π/2 or β =
π/2ω. Thus the new constant canonical coordinate, measures the initial phase angle and in the present initial
conditions the initial phase ωβ = π/2. Therefore, Eq. (7.9.10) is

q = q0 cosωt (7.9.11)

In view of Eq. (7.9.7), and then (7.9.8), Hamilton’s principal function S from (7.9.5) is obtained to be

S =

∫
p dq − αt =

∫ √
2mαω cosω(t+ β)q0 cosω(t+ β)dt− αt

= 2α

∫
cos2 ω(t+ β)dt− αt = 2α

∫ [
cos2 ω(t+ β)− 1

2

]
dt.
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The Lagrangian L is given by

L =
p2

2m
− 1

2
kq2 = α cos2 ω(t+ β)− 1

2
kq20 sin

2 ω(t+ β)

= α
[
cos2 ω(t+ β)− sin2 ω(t+ β)

]
(as α =

1

2
kq20

)
= 2α

{
cos2 ω(t+ β)− 1

2

]
Therefore,

S =

∫
Ldt

Thus for harmonic oscillator we prove that the Hamilton’s principal function is the time integral of Lagrangian.

Exercise 7.9.1. 1. The Lagrangian for a simple pendulum is given by L =
1

2
ml2θ̇−mgl(1− cos θ). Find

the Poisson bracket between θ and θ̇.

2. Let q and p be the canonical coordinate and momentum of a dynamical system. Use the concept of

Poisson bracket to show that the transformation Q =
1√
2
(p+ q) and P =

1√
2
(p− q) is canonical.

3. If [α, β] is the Poisson bracket, prove that
∂

∂t

[
α, β

]
=

[
∂α

∂t
, β

]
+

[
α,
∂β

∂t

]
.

4. For a simple harmonic oscillator, the Lagrangian is given by L =
1

2
q̇2 − 1

2
q2. If A(p, q) =

p+ iq√
2

and H(p, q) is the Hamiltonian of the system, then show that the Poisson bracket {A(p, q), H(p, q)} is
given by iA(p, q).

5. The coordinates and momenta xi, Pi (i = 1, 2, 3) of a particle satisfy the canonical Poisson bracket
relations {xi, pj} = δij . If C1 = x2p3 + x3p2 and C2 = x1p2 − x2p1 are constants of motion, and if
C3{C1, C2} = x1p3 + x3p1, then show that {C2, C3} = C1 and {C3, C1} = −C2.



Unit 8

Course Structure

• Small Oscillations: General case of coupled oscillations.

• Eigen vectors and Eigen frequencies.

• Orthogonality of Eigen vectors.

• Normal coordinates. Two-body problem.

8.1 Introduction

The theory of small oscillations about the equilibrium position is of importance in molecular spectra, acoustics,
vibrations of atoms in solids, vibrations of coupled mechanical systems and coupled electrical circuits. If
the displacement from the stable equilibrium conditions are small, the motion can be described as that of a
system of coupled linear harmonic oscillators with each generalized co-ordinate expressed as a function of the
different frequencies of vibrations of the system. The problem can be simplified further by a transformation
of the generalized co-ordinates to another set of co-ordinates, each of which undergoes periodic changes with
a well-defined single frequency. In this unit we develop a theory of small oscillations based on Lagrangian
formulation.

8.2 General Theory of Small Oscillations

The potential energy of a conservative system, specified by n generalized coordinates q1, q2, . . . , qn, is repre-
sented as

V = V (q1, q2, . . . , qn) (8.2.1)

We are interested in the motion of the system, when the displacements of the particles are small from the
position of stable equilibrium. We denote the displacements of the generalized coordinates from equilibrium
position by ui, i.e.,

qi = q0i + ui (8.2.2)

84
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Since q0i is fixed, ui may be taken as new generalized coordinates of the motion. Expanding the potential
energy about the position of equilibrium, we obtain

V (q1, . . . , qn) = V
(
q01, q

0
2, . . . , q

0
n

)
+

n∑
i=1

[
∂V

∂qi

]
0

(
qi − q0i

)
+

1

2!

n∑
i=1

n∑
j=1

[
∂2V

∂qi∂qj

]
0

(
qi − q0i

) (
qj − q0j

)
+. . .

(8.2.3)
In consequence of equilibrium, (∂V/∂qi)0 = 0. First term in the expansion represents the potential energy in
the equilibrium position and is constant for the system. Assuming the potential energy in the equilibrium to
be zero and writing ui = qi − q0i and uj = qj − q0j , we get

V =
1

2

n∑
i=1

n∑
j=1

Vijuiuj (8.2.4)

where Vij =
[
∂2V

∂qi∂qj

]
0

=

[
∂2V

∂ui∂uj

]
0

= constant which is to be evaluated at qi = q0i and qj = q0j .

The constant Vij = Vji form a symmetric matrix V . In Eq. (8.2.4), we retain the terms quadratic in the
coordinates. The kinetic energy of the system is given by

T =
∑
i

∑
j

1

2
mij q̇iq̇j =

∑
i

∑
j

1

2
mij u̇iu̇j (8.2.5)

because the generalized coordinates do not involve time explicitly and therefore the kinetic energy is a homo-
geneous quadratic function of generalized velocities. The coefficients are, in general, functions of generalized
coordinates and therefore expanding mij in Taylor’s series, we get

mij (q1, . . . , qn) = mij

(
q10, . . . , q

n
0

)
+

n∑
k=1

[
∂mij

∂qk

]
0

uk + . . . (8.2.6)

In Eq. (8.2.5), the term is already quadratic in the ui ’s, we obtain the lowest non-vanishing approximation
to T in quadratic form only by retaining the first term in the expansion. If the constant values of the function
mij are denoted by Tij , then the kinetic energy is

T =
1

2

∑
i

∑
j

Tij u̇iu̇j (8.2.7)

Obviously the constants Tij are elements of symmetric matrix T . Now, the Lagrangian L(= T − V ) can be
written as

T =
1

2

∑
i

∑
j

[Tij u̇iu̇j − Vijuiuj ] (8.2.8)

Using ui ’s as generalized coordinates, the Lagrange’s equations
d

dt

[
∂L

∂q̇i

]
− ∂L

∂qi
= 0 take the form

n∑
j=1

[Tij üj + Vijuj ] = 0 (8.2.9)

For i = 1, 2, . . . ., n, Eqs. (8.2.9) represent n equations which are to be solved to obtain the motion near the
position of equilibrium.



86 UNIT 8.

8.2.1 Secular Equation and Eigen value Equation

We try an oscillatory solution of Eq. (8.2.9) in the form

ui = Caie
iωt (8.2.10)

where Cai is the complex amplitude of the oscillation for each coordinate ui the factor C being used for
convenience as a scale factor, the same for all the coordinates.

Substituting for uj from Eq. (8.2.10) into Eq. (8.2.9), we obtain

n∑
j=1

[
Vijaje

iωt − ω2Tijaje
iωt
]
= 0 or eiωt

n∑
j=1

[
Vijaj − ω2Tijaj

]
= 0

In general, eiωt is not zero, hence
n∑
j=1

[
Vijaj − ω2Tijaj

]
= 0 (8.2.11)

or in matrix form
V a− ω2Ta = 0 (8.2.12)

where the matrix V, T and a are

V =


V11 V12 · · · V1n
V21 V22 · · · V2n
· · · · · · · · · · · ·
Vn1 Vn2 · · · Vnn

 T =


T11 T12 · · · T1n
T21 T22 · · · T2n
· · · · · · · · · · · ·
Tn1 Tn2 · · · Tnn

 and a =


a1
a2
...
an


Eqs. (8.2.11)/(8.2.12) represent n tinear, homogeneous, algebraic equations in aj and ω, i.e.,[

V11 − ω2T11
]
a1 +

[
V12 − ω2T12

]
a2 + · · ·+

[
V1n − ω2T1n

]
an = 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... (8.2.13)[
Vn1 − ω2Tn1

]
a1 +

[
Vn2 − ω2Tn2

]
a2 + · · ·+

[
Vnn − ω2Tnn

]
an = 0

Let us assume that inverse of T matrix exists. Multiplying Eq. (8.2.12) by T−1, we get

T−1V a− ω2T−1Ta = 0

Since T−1T = I , unit matrix and T−1V = P (say), then

Pa− ω2Ia = 0 or
(
P − ω2I

)
a = 0 (8.2.14)

Eq. (8.2.14) is the eigen value equation. Here ω2 are the eigenvalues of P and a is the eigenvector with n
components.

8.2.2 Solution of the Eigenvalue Equation

The eigenvalues are obtained by solving the determinant

|P − ω2I| = 0 or |V − ω2T | = 0 (8.2.15)
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or ∣∣∣∣∣∣∣∣∣
V11 − ω2T11 V12 − ω2T12 · · · V1n − ω2T1n
V21 − ω2T21 V22 − ω2T22 · · · V2n − ω2T2n

...
... · · ·

...
Vn1 − ω2Tn1 Vn2 − ω2Tn2 · · · Vnn − ω2Tnn

∣∣∣∣∣∣∣∣∣ = 0 (8.2.16)

Eq. (8.2.15)- (8.2.16) is called secular equation. This determinantal condition is in effect an algebraic equa-
tion of n-th degree for ω2 and the roots of the determinant provide n frequencies

(
ω2
1, ω

2
2, . . . , ω

2
n

)
. These

values are the normal mode frequencies.

For each of the value of ω2, say ω2
k(k = 1, 2, . . . , n) in the k-th mode of vibration, Eqs. (8.2.13) may be

solved for amplitudes ai. Corresponding to this ω2
k, we denote the amplitudes by aik (i = 1, 2, . . . , n). Thus

aik is the amplitude in the k-th mode of the i-th coordinate. Only for ω2
k > 0, the motion is oscillatory about

the position of stable equilibrium.

In order to find the amplitudes aik, we use eqs. (8.2.14) for a particular value of ω, say ω1 and then we
know a11, a21, . . . , an1. Similarly for ω2, a12, a22, . . . , an2 and for ωn, a1n, a2n, . . . , ann are known. More
correctly speaking, we may find n− 1 amplitudes for a particular frequency. For example, for frequency ωk,
we can determine all the amplitudes except one, say a2k, a3k, . . . , ank except a1k. In other words, we may
determine the coefficients aik in terms of a1k in the form of ratios :

a2k
a1k

,
a3k
a1k

, · · · , ank
a1k

(8.2.17)

A general solution of equation of motion (8.2.11)/(8.2.12)/(8.2.13) involves a superposition of oscillations
with all the permitted frequencies. Thus if the system is displaced slightly from the equilibrium position
and then released, it performs small amplitude oscillations about the equilibrium position with frequencies
ω1, ω2, . . . , ωn. The solutions of the secular equation (8.2.15)/(8.2.16) are therefore often called as the fre-
quencies of free vibrations or as the resonant frequencies of the system.

The general solution may now be written as

ui =
n∑
k=1

Ckaike
iωkt (8.2.18)

where we have used index k for summation for displacements due to all the allowed frequencies. Correspond-
ing to the normal frequency ωk (k-th mode of vibration), the eigenvector is ak with n components given by
the matrix

ak =


a1k
a2k

...
ank

 (8.2.19)

For the oscillating system, there are n eigen vectors a1, a2, . . . , ak, . . . , an, where ak is given by (8.2.19).
Thus in all there are n× n eigenvector components for the system, which may be represented by the matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

 (8.2.20)
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Obviously one may say that for each solution ω2
k of the secular equation (8.2.15), there are two resonant

frequencies +ωk and −ωk. The eigenvector ak is the same for the two frequencies, but the scaling factors
C+
k and C−

k may be much different. Thus the general solution should be

ui =

n∑
k=1

aik
[
C+
k e

+iωkt + C−
k e

−iωkt
]

(8.2.21)

The actual motion is the real part of the complex solution (8.2.21) which can be expressed as

ui =
n∑
k=1

fkaik cos (ωkt+ ϕk) (8.2.22)

where fk and ϕk are determined from initial conditions.

8.2.3 Small Oscillations in Normal Coordinates

Let us define

ui =
n∑
k=1

aikQk (8.2.23)

In terms of single column matrices

u =


u1
u2
...
un

 and Q =


Q1

Q2
...
Qn


we have,

u = AQ (8.2.24)

The potential energy V can be written as

V =
1

2

∑
i

∑
j

Vijuiuj =
1

2

∑
i

∑
j

uiVijuj or V =
1

2
uTV u (8.2.25)

where uT is the transpose of u or single row matrix. From Eq. (8.2.24)

u = (AQ)T = QTAT

Therefore
V =

1

2
QTATV AQ (8.2.26)

The kinetic energy K similarly is

T =
∑
i

∑
j

u̇iTij u̇j =
1

2
Q̇ATTAQ̇ (8.2.27)

From Eq. (8.2.11), writing ω2
k = λk,

n∑
j=1

[Vijajk − λkTijajk] = 0 (8.2.28)
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The complex conjugate of this equation is
n∑
i=1

[Vija
∗
il − λ∗iTija

∗
il] = 0 (8.2.29)

As aij are real, we eliminate Vij from (8.2.28) and (8.2.29) by multiplying the former by ail and summing
over i and the latter by ajk and summing over j. Thus

(λk − λ∗l )
∑
i

∑
j

ajkTijail = 0 (8.2.30)

If all λk are distinct, i.e., (λk − λ∗l ) is not zero, then∑
i

∑
j

ajkTijail = 0 (8.2.31)

The coefficients ajk in eq. (8.2.28) cannot be completely determined, because this is a set of linear equations.
This indeterminacy can be removed by requiring that∑

i

∑
j

ajkTijaik = 1 (8.2.32)

The two equations (8.2.31) and (8.2.32) can be combined into one by means of Kronecker delta symbol δkl,
i.e., ∑

i

∑
j

ajkTijail = δkl (8.2.33)

Eqs. (8.2.31) and (8.2.32) can be written as

ATTA = I (8.2.34)

Writing λl = λkδlk, we obtain from eq. (8.2.28)
n∑
j=1

Vijajk =
n∑
j=1

Tijajkλkδlk (8.2.35)

which is in matrix notation
V A = TAλ (8.2.36)

Multiplying by AT from left, we get
ATV A = ATTAλ (8.2.37)

But ATTA = I [eq. (8.2.34)],
ATV A = λ (8.2.38)

In view of eq. (8.2.38), eq. is obtained to be

V =
1

2
QTλQ =

1

2
(Q1, Q2 . . . , Qn)


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

 ·


Q1

Q2
...
Qn


=

1

2

(
λ1Q

2
1 + λ2Q

2
2 + . . .+ λnQ

2
n

)
=

1

2

n∑
k=1

λkQ
2
k =

1

2

n∑
k=1

ω2
kQ

2
k

(8.2.39)
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Similarly from eqs. (8.2.27) and (8.2.34), we have

T =
1

2
Q̇T IQ̇ =

1

2

n∑
k=1

Q̇2
k (8.2.40)

We see from eqs. (8.2.39) and (8.2.40) that in the new coordinates, both the potential and kinetic energies are
the sums of squares only without any cross terms.

Now, the Lagrangian L = T − V is

L =
1

2

n∑
k=1

Q̇2
k −

1

2

n∑
k=1

ω2
kQ

2
k (8.2.41)

Hence the Lagrangian equations
d

dt

[
∂L

∂Q̇k

]
− ∂L

∂Qk
= 0

for the new coordinates are
Q̈k + ω2

kQk = 0 (8.2.42)

which are n equations for k = 1, 2, . . . , n.

Thus each new coordinate executes simple harmonic motion with a single frequency and therefore, Q1,
Q2, . . . , Qn are called normal coordinates. The frequencies ω1, ω2, . . . , ωn are referred as normal frequencies.
The solution of eq. (8.2.42) is

Qk = fk cos (ωkt+ ϕk) (8.2.43)

From eqs. (8.2.43) and (8.2.23), we see,

ui =

n∑
k=1

alkQk =

n∑
k=1

fkaik cos (ωkt+ ϕk) (8.2.44)

Thus (8.2.43) could have been obtained directly from (8.2.22) and (8.2.23).

It may be reminded again that each normal coordinate corresponds to a vibration of the system with only
one frequency and these component oscillations are called as the normal modes of vibration. In each mode all
the particles vibrate with the same frequency and with the same phase (the particle may be out of phase, if the
a’s have opposite sign), the relative amplitudes being determined by the matrix elements aik. The complete
motion is then composed of sum of the normal modes weighted with proper amplitude and phase factors
contained in the scaling factor Ck’s.

8.3 Two body problems

Here we discuss important examples of two coupled oscillators.

8.3.1 Two coupled pendulums

Consider two identical pendulums as shown in Fig 8.3.1. Each pendulum has a bob of mass m with an effec-
tive length l. The two bobs of the pendulums are connected by a light spring of force constant k. The relaxed
length of the spring is equal to the distance between the two bobs at equilibrium. We shall consider small
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Figure 8.3.1: Two coupled pendulums

amplitude oscillations, restricted to the plane in equilibrium configuration. Thus the system of two coupled
pendulums, under consideration, has two degrees of freedom.

Let the system of two coupled pendulums be allowed to oscillate so that x1 and x2 represent displacements
from the equilibrium positionsO1 andO2 respectively. If θ1 and θ2 be the angular displacements at any instant
t, then the potential energy of the system is given by

V = mgl (1− cos θ1) +mgl (1− cos θ2) +
1

2
k (x1 − x2)

2

where the potential energy in the equilibrium configuration is assumed to be zero. For small amplitude oscil-
lations.

1− cos θ1 = 1−
(
1− θ21/2

)
= θ21/2 = x21/2l

2

and similarly 1− cos θ2 = x22/2l
2, where θ1 = x1/l and θ2 = x2/l. Thus

V =
1

2

mg

l
x21 +

1

2

mg

l
x22 +

1

2
k (x1 − x2)

2 (8.3.1)

The kinetic energy of the system is

T =
1

2
mẋ21 +

1

2
mẋ22 (8.3.2)

The V and T matrices for the system are

V =

[
V11 V12
V21 V22

]
and T =

[
T11 T12
T21 T22

]
.

Here

V11 =

[
∂2V

∂x21

]
x1=0,x2=0

= k +
mg

l
, V12 =

[
∂2V

∂x1∂x2

]
x1=0,x2=0

= −k,

V21 =

[
∂2V

∂x2∂x1

]
x1=0,x2=0

= −k, V22 =
[
∂2V

∂x22

]
x1=0,x2=0

= k +
mg

l

Since
T =

1

2

[
T11ẋ

2
1 + T12ẋ1ẋ2 + T21ẋ1ẋ2 + T22ẋ

2
2

]
T11 = m = T22 and T12 = T21 = 0

Thus

V =

[
k + mg

l −k
−k k + mg

l

]
and T =

[
m 0
0 m

]
(8.3.3)
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The normal frequencies are determined from the equation

V − ω2T = 0

⇒
∣∣∣∣k + mg

l −mω2 −k
−k k + mg

l −mω2

∣∣∣∣ = 0

or,
[
k +

mg

l
−mω2

]2
− k2 = 0 or

[mg
l

−mω2
] [

2k +
mg

l
−mω2

]
= 0 (8.3.4)

which gives

ω2 = ω2
1 =

g

l
and ω2 = ω2

2 =
g

l
+

2k

m
or, ω1 = ±

√
g

l
and ω2 = ±

√
g

l
+

2k

m

Thus the normal frequencies of the system are

ω1 =

√
g

l
and ω2 =

√
g

l
+

2k

m
(8.3.5)

To determine the eigenvectors, we use the equation[
V − ω2

kT
]
ak = 0

or,
(
k + mg

l −mω2
k −k

−k k + mg
l −mω2

k

)(
a1k
a2k

)
= 0.

For
ω2 = ω2

1 = g/l, we have(
k −k
−k k

)(
a11
a21

)
= 0 or,

a21
a11

= 1

If a11 = α, then a21 = α. For ω2 = ω2
2 =

g

l
+

2k

m
, we have(

−k −k
−k −k

)(
a12
a22

)
= 0 or

a22
a12

= −1

If a12 = β, then a22 = −β. Thus the eigenvectors are

a1 =

(
a11
a21

)
=

(
α
α

)
and a2 =

(
a12
a22

)
=

(
β
−β

)
(8.3.6)

Now, the matrix A is

A =

(
a11 a12
a21 a22

)
=

(
α β
α −β

)
Therefore, the transpose of A matrix i.e., AT is

AT =

[
α α
β −β

]
We impose the condition ATTA = I i.e.,(

α α
β −β

)(
m 0
0 m

)(
α β
α −β

)
=

(
1 0
0 1

)
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or (
2mα2 0
0 2mβ2

)
=

(
1 0
0 1

)
whence α = β = 1/

√
2m.

Thus the eigenvecfors are

a1 =
1√
2m

[
1
1

]
and a2 =

1√
2m

[
1

−1

]
(8.3.7)

The generalized coordinates x1 and x2 are related to normal coordinates Q1 and Q2 by using the relation :

ui =

2∑
k=1

aikQk

where for i = 1, 2, u1 = x1 and u2 = x2. Therefore,

x1 = a11Q1 + a12Q2 and x2 = a21Q1 + a22Q2

or, x1 =
1√
2m

Q1 +
1√
2m

Q2 and x2 =
1√
2m

Q1 −
1√
2m

Q2 (8.3.8)

Hence the normal coordinates Q1 and Q2 are

Q1 =
√
2m (x1 + x2) and Q2 =

√
2m (x1 − x2) (8.3.9)

Further the normal coordinates Q1 oscillates with frequency ω1 and Q2 with ω2. So that

Q1 = f1 cos (ω1t+ ϕ1) and Q2 = f2 cos (ω2t+ ϕ2) (8.3.10)

Thus
x1 =

f1√
2m

cos (ω1t+ ϕ1) +
f2√
2m

cos (ω2t+ ϕ2) (8.3.11)

and
x2 =

f1√
2m

cos (ω1t+ ϕ1)−
f2√
2m

cos (ω2t+ ϕ2) (8.3.12)

Putting f1/
√
2m = A1 and f2/

√
2m = A2, we get

x1 = A1 cos (ω1t+ ϕ1) +A2 cos (ω2t+ ϕ2) (8.3.13)

x2 = A1 cos (ω1t+ ϕ1)−A2 cos (ω2t+ ϕ2) (8.3.14)

Thus the displacement of a pendulum is obtained by the superposition of harmonic oscillations of ω1 and ω2

frequencies.

Eqs. (8.3.5), (8.3.7), (8.3.9) and (8.3.10) completely describe the motion. Eqs. (8.3.11), (8.3.12) [or
(8.3.13), (8.3.14)] are the result of eqs. (8.3.9) and (8.3.10). If we put Q2 = 0 (or f2 or A2 ), then from eq.
(8.3.9)

x1 = x2

which means that in Mode 1 (Q1), the two pendula oscillate with the same frequency ω1 =
√
g/l in the same

phase. If we put Q1 = 0 (or f1 or A1 ), then from eq. (8.3.9), we have

x1 = −x2
This means that in Mode 2 (Q2), the two pendula oscillate exactly out of phase (with a phase difference

of π ) with the same frequency ω2 =

√
g

l
+

2k

m
. It is to be noted that in Mode 1 (x1 = x2), there is no

stretching or compression of the spring so that ω1 does not depend on spring constant k, while in Mode 2, due
to compression or stretching of the spring the force constant contributes in ω2.



94 UNIT 8.

8.3.2 Double Pendulum

A double pendulum consists of a pendulum of mass m1 and length l1 to which a second pendulum of mass
m2 and length l2 is suspended [Fig. 8.3.2]. The motion is considered in a plane so that the system has two
degrees of freedom. If (x1, y1) and (x2, y2) be the coordinates of the masses m1 and m2 respectively, then
from the figure, we have

x1 = l1 sin θ1, x2 = l1 sin θ1 + l2 sin θ2
and y1 = l1 cos θ1, y2 = l1 cos θ1 + l2 cos θ2

where θ1 and θ2 are the angles, made by the lengths of the pendulums with the vertical. These are taken as
generalized coordinates.

Figure 8.3.2: Double Pendulums

Thus the potential energy of the system is

V = −m1gy1 −m2gy2 = −m1gl2 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2)

where the potential energy is considered to be zero at O. For small θ1, cos θ1 = 1− θ21/2, cos θ2 = 1− θ22/2.
Therefore,

V = −m1gl1 −m2g(l1 + l2) +
1

2
m1gl1θ

2
1 +

1

2
m2gl2θ

2
2.

The V matrix is

V =

[
V11 V12
V21 V22

]
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Here

V11 =

[
∂2V

∂θ21

]
θ1=0,θ2=0

= (m1 +m2)gl1, V12 = V21 = 0, and V22 =
[
∂2V

∂θ22

]
θ1=0,θ2=0

= m2gl2

Therefore, V =

[
(m1 +m2)gl1 0

0 m2gl2

]
(8.3.15)

The kinetic energy of the system is

T =
1

2
m1

(
ẋ21 + ẏ21

)
+

1

2
m2

(
ẋ22 + ẏ22

)
T =

1

2
m1l

2
1θ̇

2
1 +

1

2
m2

[
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos (θ1 − θ2)

]
As θ1 and θ2 are small cos (θ1 − θ2) ≃ 1,

T =
1

2
(m1 +m2) l

2
1θ̇

2
1 +m2l1l2θ̇1θ̇2 +

1

2
m2l

2
2θ̇

2
2

Since for two degrees of freedom

T =
1

2
T11θ̇

2
1 +

1

2
T12θ̇1θ̇2 +

1

2
T21θ̇2θ̇1 +

1

2
T22θ̇

2
2,

therefore, T11 = [m1 +m2] l
2
1, T12 = T21 = m2l1l2 and T2 = m2l

2
2 Thus

T =

(
(m1 +m2) l

2
1 m2l1l2

m2l1l2 m2l
2
2

)
(8.3.16)

The normal mode frequencies are determined from the equation

∣∣V − ω2T
∣∣ = 0 or

[
(m1 +m2) gl1 − ω2 (m1 +m2) l

2
1 −ω2

2m2l1l2
−ω2m2l1l2 m2gl2 − ω2m2l

2
2

]
= 0

Dividing by l1 in the first row and m2l2 in the second row, we get[
(m1 +m2) g − ω2 (m1 +m2) l1

] (
g − ω2l2

)
− ω4m2l1l2 = 0

or, ω4m1l1l2 − ω2g (m1 +m2) (l1 + l2) + (m1 +m2) g
2 = 0

or, ω2 =
g (m1 +m2) (l1 + l2)±

√
[g (m1 +m2) (l1 + l2)]

2 − 4m1 (m1 +m2) l1l2g2

2m1l1l2
(8.3.17)

which gives two normal mode frequencies. Now, we consider following three special cases for the determina-
tion of frequencies.

Case I : When m1 ≫ m2, then m1 +m2 ≃ m1 Now from eq. (8.3.17), we have

ω2 =
gm1 (l1 + l2)± gm1

√
(l1 + l2)

2 − 4l1l2

2m1l1l2

whence the two normal frequencies are

ω2
1 = g/l2 and ω2

2 = g/l1
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Case II : When m1 ≪ m2, then m1 +m2 ≃ m2 Now from eq. (8.3.17), we obtain

ω2 =
gm2 (l1 + l2)± g

√
[m2 (l1 + l2)]

2 − 4m1m2l1l2

2m1l1l2
=

gm2 (l1 + l2)

[
1±

(
1− 4m1l1l2

m2(l1+l2)
2

) 1
2

]
2m1l1l2

=
gm2 (l1 + l2)

[
1±

(
1− 2m1l1l2

m2(l1+l2)
2

)]
2m1l1l2

Hence

ω2
1 =

gm2

m1

[
1

l1
+

1

l2

]
and ω2

2 =
g

l1 + l2
(8.3.18)

Case III : When m1 = m2 = m and l1 = l2 = l,

ω2 =
4gml ±

√
(4gml)2 − 8m2l2g2

2ml2
=

2g ± g
√
2

l
=
g

l
(2±

√
2)

Thus the two normal frequencies are

ω2
1 =

g

l
[2 +

√
2] and ω2

2 =
g

l
[2−

√
2] (8.3.19)

Example 8.3.1. Determine the eigen frequencies and normal coordinates of a system with two degrees of
freedom whose Lagrangian is

L =
m

2
(ẋ2 + ẏ2)− 1

2k
(x2 + y2) + αxy, α > 0

Solution.
L =

m

2

(
ẋ2 + ẏ2

)
− 1

2k

(
x2 + y2

)
+ αxy (8.3.20)

As L = T − V , hence

T =
m

2

(
ẋ2 + ẏ2

)
(8.3.21)

and V =
1

2k

(
x2 + y2

)
− αxy (8.3.22)

The V and T matrices are

V =

(
V11 V12
V21 V22

)
and T =

(
T11 T12
T21 T22

)
(8.3.23)

Kinetic energy

T =
1

2

∑
i

∑
j

Tij u̇i · u̇j with i, j = 1, 2

or
T =

1

2

[
T11u̇

2
1 + T12u̇1u̇2 + T21u̇2u̇1 + T22u̇

2
2

]
(8.3.24)

Therefore, from (8.3.21) and (8.3.24)

T11 = m,T22 = m,T12 = T21 = 0

Also,

V11 =

[
∂2V

∂x2

]
0

=
1

k
, V12 =

[
∂2V

∂x∂y

]
0

= −α, V21 = −α and V22 =
[
∂2V

∂y2

]
0

=
1

k
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Hence,

T =

(
m 0
0 m

)
and V =

(
1/k −α
−α 1

k

)
(8.3.25)

Eigen frequencies are determined from ∣∣V − ω2T
∣∣ = 0

Thus ∣∣∣∣ 1
k −mω2 −α

−α 1
k −mω2

∣∣∣∣ = 0

or,
(
1

k
−mω2

)2

− α2 = 0 or,
(
1

k
−mω2 − α

)(
1

k
−mω2 + α

)
= 0

or,
1

k
−mω2

1 = α and
1

k
−mω2

2 = −α

Hence,

ω2
1 =

1

mk
− α

m
and ω2

2 =
1

mk
+
α

m

i.e., eigen frequencies, ω1 =

√
1

mk
− α

m
and ω2 =

√
1

mk
+
α

m
.

To determine the eigen vectors, we use the equation[
V − ω2

kT
]
ak = 0(

1
k −mω2

k −α
−α 1

k −mω2
k

)(
a1k
a2k

)
= 0

For k = 1, ω2
1 =

1

mk
− α

m
and substituting in above, we have[

1
k − 1

k + α −α
−α 1

k − 1
k + α

] [
a11
a21

]
= 0 or

[
α −α
−α α

] [
a11
a21

]
= 0 whence

a21
a11

= 1 (8.3.26)

If a11 = p, then a21 = p. For k = 2, ω2
2 =

1

mk
+
α

m
, we have(

1
k − 1

k − α −α
α 1

k − 1
k − α

)(
a12
a22

)
= 0 or

(
−α −α
−α −α

)(
a12
a22

)
= 0 or

a22
a12

= −1

If a12 = q, then a22 = −q. Thus the eigen vectors are a1 =

(
a11
a21

)
=

(
p
p

)
and a2 =

(
a12
a22

)
=(

q
−q

)
. Now, the matrix A is

A =

(
a11 a12
a21 a22

)
=

(
p q
p −q

)
Transpose of A i.e.,

AT =

(
p p
q −q

)
Using the condition ATTA = I i.e.,(

p p
q −q

)(
m 0
0 m

)(
p q
p −q

)
=

(
1 0
0 1

)
or
(

2mp2 0
0 2mq2

)
=

(
1 0
0 1

)
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where p =
1√
2m

= q. Thus the eigen vectors are

a1 =

(
a11
a21

)
=

(
p
p

)
=

1√
2m

(
1
1

)
and

a2 =

(
a12
a22

)
=

(
q
−q

)
=

1√
2m

(
1
−1

)
The generalized coordinates x and y related to the normal coordinates Q1 and Q2 as

ui =

2∑
k=1

aikQk

where for i = 1, u1 = x and for i = 2, u2 = y. Therefore,

u1 = a11Q1 + a12Q2 and u2 = a21Q1 + a22Q2

or

x =
1√
2m

Q1 +
1√
2m

Q2 and y =
1√
2m

Q1 −
1√
2m

Q2

Hence normal coordinates are

Q1 =

√
2m

2
(x+ y) and Q2 =

√
2m

2
(x− y)

Further normal coordinates Q1 and Q2 oscillates with frequencies ω1 and ω2 respectively. Therefore.

Q1 = f1 cos (ω1t+ ϕ1) and Q2 = f2 cos (ω1t+ ϕ2)

with x =
f1√
2m

cos (ω1t+ ϕ1) +
f2√
2m

cos (ω2t+ ϕ2)

and y =
f1√
2m

cos (ω1t+ ϕ1)−
f2√
2m

cos (ω2t+ ϕ2)

Exercise 8.3.2. 1. Establish the Lagrangian and deduce the Lagrangian’s equations of motion for small
oscillations of a system in the neighbourhood of stable equilibrium.

2. Obtain the equation of motion for small oscillations of a system around a position of a stable equilib-
rium.

3. Deduce the eigen value equation for small oscillations. How will you obtain the eigen values and
eigenvectors from this equation?

4. What do you understand by normal modes of vibration? Explain the meaning of normal coordinates
and normal frequencies. Show that when the kinetic and potential energies are expressed in terms of
normal coordinates, both kinetic and potential energies are homogeneous quadratic functions.

5. Consider the case of two coupled pendulums. Determine T and V matrices, the normal frequencies, the
normal coordinates, the equation of motion, the eigenvectors and the general solution.
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6. Two equal masses (m) are connected to each other with the help of a spring of force constant k and then
upper mass is connected to a rigid support by an identical spring. The system is allowed to oscillate in
the vertical direction. Show that the frequencies of two normal modes are ω2 = (3±

√
5)k/2m and the

ratios of the amplitudes of two masses in the two modes are
1

2
(
√
5±+1).

7. Determine the normal mode frequency of the Lagrangian, given by

L =
1

2
(ẋ2 + ẏ2)− 1

2
(ω2

1x
2 + ω2

2y
2) + αxy

8. A particle of mass m is in a potential given by

V (r) = −a
r
+
ar20
3r3

,

where a and r0 are positive constants. When disturbed slightly from its stable equilibrium position, it

undergoes a simple harmonic oscillation. Show that time period of oscillation is 2π

√
mr30
2a

.

9. A particle of mass m is moving in the the potential V (x) = −1
2ax

2 + 1
4bx

4 where a, b are positive
constants. Show that the frequency of small oscillations about a point of stable equilibrium is

√
2a/m.

10. A particle of mass m is moving in the one-dimensional potential V (x) =
α

3
x3+

β

4
x4 where α, β < 0.

One of the equilibrium points is x = 0. Show that the angular frequency of small oscillations about the
other equilibrium point is

α√
mβ

.



Unit 9

Course Structure

• Rings and properties

• Integral Domains and properties

• Fields and properties

9.1 Introduction

This unit is a recollection of the concept of a ring, which is a generalization of the addition and multiplication
operations of standard numbers. The term “ring" was first coined by David Hilbert in 1892, although he only
referred to a particular type of ring. It wasn’t until 1920 that Emmy Noether gave an abstract definition of
a ring, which would apply to the “hyper-complex” number systems, developed earlier by William Hamilton
and Hermann Grassmann. The groups, for example was an abstract algebraic structure together with a single
binary operation that satisfies certain axioms. There are however certain groups in which we could define two
binary operations. An easy example is the set of integers. It forms a group with respect to addition. We could
also define multiplication on the elements of Z, which however does not form a group (you know why!). This
extra operation gives Z a much richer structure than standard groups. Such algebraic structure that has two
binary operations satisfying certain axioms is called a ring. Certain specific kinds of rings such as integral
domains, fields, etc. will also be explored in this unit.

Objectives

After studying this unit you will be able to

• recollect the idea of rings and its properties

• explore certain particular types of rings such as integral domains and fields

100
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9.2 Rings

We earlier read that a non-empty set R with two binary operations ‘+’ and ‘◦’ is said to be a ring if it satisfies
the following:

1. R is an Abelian group with respect to ‘+’

2. R is a semi-group with respect to ‘◦’

3. Multiplication distributes over addition, i.e.,

(a) a ◦ (b+ c) = a ◦ b+ a ◦ c, a, b, c ∈ R

(b) (b+ c) ◦ a = b ◦ a+ c ◦ a, a, b, c ∈ R

The triple (R,+, ◦), or simply R is called a ring. Since (R, ◦) is not a group, unit element may or may not
exist in R with respect to multiplication. If the unit element exists, that is, there exists an element e ∈ R such
that a ◦ e = a = e ◦ a, ∀a ∈ R, then R is said to be a ring with unity. R is called commutative only if it is
commutative with respect to ‘◦’. For the sake of simplicity, we will thereafter write a ◦ b as ab.

Example 9.2.1. 1. R = Z, is the ring of integers for usual addition and multiplication. It has 1 as unit
element and is commutative.

2. R = nZ, n ∈ N is also a ring for usual addition and multiplication. But it has no unit, and is commuta-
tive.

3. R = Zn, n ∈ N, the additive Abelian group of residue classes modulo n. It is a ring, known to be ring
of residue classes modulo n. It has 1̄ as unit element and it is commutative.

4. Let R be the set of all 2 × 2 matrices with real entries. R forms a ring with respect to usual matrix
addition and multiplication. It is not commutative.

5. Let F be the set of all continuous functions f : R → R. Then F forms a ring under addition and
multiplication defined by

(f + g)(x) = f(x) + g(x), and (fg)(x) = f(x)g(x) ∀x ∈ R

for any f, g ∈ F . The zero of this ring is the mapping O : R → R such that O(x) = 0 for all x ∈ R.
The additive inverse of any f ∈ F is the function (−f) : R → R such that (−f)(x) = −f(x). In fact
F contains a unit elements too. The function i : R → R defined by i(x) = 1 for all x ∈ R is the unit
element of F .

6. Let Z[i] = {a+ ib| a, b ∈ Z} forms a ring under usual addition and multiplication of complex numbers.
a+ ib, where a, b ∈ Z[i] is called a Gaussian integers and Z[i] is called the ring of Gaussian integers.

7. We can similarly define the ring of Gaussian integers modulo n, denoted by Zn[i] = {a+ib| a, b ∈ Zn}.

8. Let X be a non empty set. Then P(X), the power set of X forms a ring under ’+’ and ’·’ which are
respectively defined as

A+B = (A ∪B) \ (A ∩B), A ·B = (A ∩B).

In fact, it is a commutative ring with unity.
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9. Let M be the set of all 2× 2 matrices over members from the ring of integers modulo 2. Then it forms
a finite non commutative ring.

10. Let R be a ring. A polynomial with coefficients in R is of the form

a0 + a1x+ . . .+ amx
m,

ai ∈ R. The set of polynomials over R is denoted by R[x] and it forms a ring with respect to the
operations + and · defined as follows.

Let f, g ∈ R[x] be such that

f(x) = a0 + a1x+ . . .+ amx
m,

g(x) = b0 + b1x+ . . .+ bnx
n.

Then

f(x) + g(x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + . . .

f(x)g(x) = c0 + c1x+ c2x
2 + . . .+ cm+nx

m+n

where
ci =

∑
j+k=i

ajbk, 0 ≤ i ≤ m+ n.

R[x] is then called the polynomial ring over R. (detailed discussion in later units)

11. Let (R1,+1, ·1), (R2,+2, ·2), . . . , (Rn,+n, ·n) be rings. Similar to the idea of external direct product
of groups, we can construct a new ring as follows. Let

R = R1 ⊕R2 ⊕ . . .⊕Rn = {(a1, a2, . . . , an) | ai ∈ Ri}

and perform componentwise addition and multiplication as follows.

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 +1 b1, a2 +2 b2, . . . an +n bn)

and
(a1, a2, . . . , an) · (b1, b2, . . . , bn) = (a1 ·1 b1, a2 ·2 b2, . . . an ·n bn).

Then (R,+, ·) forms a ring called the direct sum of R1, R2, . . . , Rn.

Theorem 9.2.2. Let R be a ring. Then

1. a0 = 0 = 0a, a ∈ R

2. a(−b) = (−a)b = −(ab), a, b ∈ R.

3. (−a)(−b) = ab, a, b ∈ R.

4. a(b− c) = ab− ac and (b− c)a = ba− ca.

If R has unity 1, then (−1)a = −a and (−1)(−1) = 1. Further, if m,n are integers, then for any a, b ∈ R,
we have

1. n(a+ b) = na+ nb; (m+ n)a = na+ma; and (mn)a = m(na);

2. aman = am+n and (am)n = amn.
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Example 9.2.3. Let (R,+, ·) be a ring where (R,+) is cyclic. Show that R is a commutative ring.

Solution. Let (R,+) be generated by a. Let x, y ∈ R be any two elements. Then x = ma and y = na for
some integers m and n. Now,

xy = (ma)(na)

= (a+ a+ . . .+ a)(a+ a+ . . .+ a)

m times n times

= (mn)a2 = (nm)a2 = (na)(ma) = yx.

Hence, R is commutative. ■

The proof of this theorem follows directly from the definition of rings.

9.2.1 Subrings

Definition 9.2.4. Let (R,+, ·) be a ring and let S be a nonempty subset of R. Then S is called a subring if
(S,+, ·) is itself a ring.

We note that addition and multiplication of elements of S are to coincide with addition and multiplication
of these elements considered as elements of the larger ring R. Every ring R has two trivial subrings, {0} or
simply 0 and R. Let R be a ring (with or without unity). A subring of R may or may not have a unity; also if
it has a unity, it can be different from the unity of R.

Example 9.2.5. If R = Z and S = 2Z = {2x| x ∈ Z}, then S does not have unity even though R has one.
Further, if R = Z10 and S = {0̄, 2̄, 4̄, 6̄, 8̄}, then R has unity 1̄ whereas S has unity 6̄. (verify!)

The following result is frequently useful:

Theorem 9.2.6. A non empty subset S of a ringR is a subring if and only if for all a, b ∈ S, we have a−b ∈ S
and ab ∈ S.

The proof is elementary and is left as exercise.

Definition 9.2.7. Let R be a ring. Then the set Z(R) = {a ∈ R| xa = ax for all x ∈ R} is called the center
of the ring R.

Theorem 9.2.8. The center of a ring is a subring.

Definition 9.2.9. Let S be a subset of a ring R. Then the smallest subring of R containing S is called the
subring generated by S.

The intersection of subrings is a subring. Hence it follows that the subring generated by a subset S of R is
the intersection of all subrings of R containing S. The subring generated by the empty set is clearly {0}, and
the subring generated by a single element a inR consists of all elements of the form n1a+n2a

2+ . . .+nka
k,

niZ, and k is a positive integer.

Exercise 9.2.10. 1. If C[0, 1] is the set of all real-valed continuous functions on [0, 1] then show that for
a ∈ [0, 1], T = {f ∈ C[0, 1] | f(a) = 0} is a subring of C[0, 1].

2. Give an example of a finite non-commutative ring. Also, give an example of an infinite non-commutative
ring that does not have the unity.
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3. Let R be a ring such that x3 = x for all x ∈ R. Check if R is commutative.

4. Give an example of a subset of a ring that is a subgroup under addition but not a subring.

5. Describe all the subrings of the ring of integers.

6. Prove that the intersection of any collection of subrings of a ring R is a subring of R.

9.2.2 Integral Domains

We know that in a ring R, a is called left zero divisor of b if ab = 0. And b is called a right zero divisor, where
a, b ∈ R. A commutative ring which has no zero divisors is called an integral domain.

Example 9.2.11. 1. The rings Z,Q,R,C of integers, rational, real or complex numbers are all integral
domains.

2. Z5 is an integral domain.

3. The ring C[0, 1] of real valued continuous functions on [0,1] is not an integral domain because if

f(t) = 0, 0 ≤ t ≤ 1/2

= t− 1

2
, 1/2 ≤ t ≤ 1

and

g(t) =
1

2
− t, 0 ≤ t ≤ 1/2

= 0, 1/2 ≤ t ≤ 1

then both f(t) and g(t) belongs to C[0, 1], and both of them are not identically equal to 0. But,

fg ≡ 0

which shows that C[0, 1] has zero divisors.

4. Z6 is not an integral domain since 2 and 3 are both non-zero elements; although, we have,

2.3 = 6 = 0

showing that Z6 has zero divisors.

5. Consider the ring of all 2× 2 matrices over the set of integers. Let

A =

[
0 1
0 0

]
, B =

[
2 0
0 0

]
.

Both A and B are non-zero matrices but their product is equal to the zero matrix. Hence the ring of all
2× 2 matrices over the set of integers has zero divisors.

6. Z⊕ Z is not an integral domain (verify!).

Observe that, in the definition of ring, it is only a semi-group with respect to ’◦’.

Theorem 9.2.12. A commutative ring R is an integral domain if and only if for all a, b, c ∈ R, with a ̸= 0,
ab = ac⇒ b = c.
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Proof. Let R be an integral domain. Let ab = ac, a ̸= 0. Then

ab− ac = 0

⇒ a(b− c) = 0

⇒ a = 0 or b− c = 0.

Since a ̸= 0, so we get b = c.
Conversely suppose the given condition hold. Let a, b ∈ R be any two elements with a ̸= 0. Suppose

ab = 0. Then
ab = a · 0 ⇒ b = 0

using the given condition. Hence, ab = 0 ⇒ b = 0 whenever a ̸= 0. Hence, R is an integral domain.

A ring R is said to satisfy left cancellation law if for all a, b.c ∈ R, a ̸= 0, ab = ac⇒ b = c. Similarly we
can talk of right cancellation law. Thus, we can say that a commutative ring is an integral domain if and only
if it satisfies the cancellation laws.

Exercise 9.2.13. 1. Check whether Z⊕ Z is an integral domain.

2. Show that a commutative ring with the cancellation property (under multiplication) has no zero-divisors.

3. Give an example of a commutative ring without divisor of zero that is not an integral domain.

4. A ring element is called idempotent if a2 = a. Prove that the only idempotent elements in an integral
domain as 0 and 1.

5. Let R be the ring of real valued continuous functions on [0, 1]. Show that R has zero divisors.

9.3 Fields

We know that in a ring (R,+, ·), (R, ·) is a subring. That means, the elements of R need to have inverse
elements with respect to ’·’ in R. However, if some element has an inverse in R, then it is called invertible.

Definition 9.3.1. An element a in a ring R with unity 1 is called invertible (or a unit) with respect to the
multiplication operation in R, if there exists some b ∈ R such that ab = 1 = ba.

It is to be noted that unity and unit are two different concepts in a ring. A ring R in which every non-zero
element is a unit is called a division ring. The definition can also be given as follows.

Definition 9.3.2. A ring R whose non-zero elements form a group with respect to multiplication is called a
division ring or a skew field.

Example 9.3.3. 1. In a field or a skew field, every non-zero element is a unit.

2. In the ring of integers Z, the only units are ±1.

3. In the ring Zn of integers modulo n, the units are the prime residue classes modulo n.

Further, a commutative division ring is a field. The definition of a field can also be given as follows.

Definition 9.3.4. A commutative ring R with unit element 1 ̸= 0 in which every non-zero element has an
inverse with respect to multiplication, is called a field.
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In this case, (R, ◦) forms a commutative group which was not the case for a general ring.

Example 9.3.5. 1. The ring of rational, real or complex numbers are all fields.

2. The ring Zp, where p is a prime, forms a field with respect to addition and multiplication modulo p. We
have seen that Zp is a commutative ring with unit element 1. Now, for any non-zero a ∈ Zp, a is prime
to p. So, there exist some λ, µ in Z such that

λa+ µp = 1

Consequently,
λ.a = 1

Hence, a has an inverse in Zp with respect to ◦. Hence, the non-zero elements of Zp forms a commuta-
tive group with respect to ◦. It is a finite field.

3. Consider the ring of Gaussian integers modulo 3, that is,

Z3[i] = {a+ bi | a, b ∈ Z3}.

It contains 9 elements, viz., 0̄, 1̄, 2̄, i, 1̄ + i, 2̄ + i, 2̄i, 1̄ + 2̄i, 2̄ + 2̄i. Elements are added and multiplied
as in the complex numbers, except that the coefficients are reduced to modulo 3. In particular, −1 = 2̄.
The multiplication table of the non-zero elements of Z3[i] is given below.

1 2 i 1 + i 2 + i 2i 1 + 2i 2 + 2i

1 1 2 i 1 + i 2 + i 2i 1 + 2i 2 + 2i
2 2 1 2i 2 + 2i 1 + 2i i 2 + i 1 + i
i i 2i 2 2 + i 2 + 2i 1 1 + i 1 + 2i
1 + i 1 + i 2 + 2i 2 + i 2i 1 1 + 2i 2 i
2 + i 2 + i 1 + 2i 2 + 2i 1 i 1 + i 2i 2
2i 2i i 1 1 + 2i 1 + i 2 2 + 2i 2 + i
1 + 2i 1 + 2i 2 + i 1 + i 2 2i 2 + 2i i 1
2 + 2i 2 + 2i 1 + i 1 + 2i i 2 2 + i 1 2i

Thus, Z3[i] is a field with 9 elements.

4. Let Z5[i] =
{
a+ bi | a, b ∈ Z5, i

2 = −1
}

. This ring has 25 elements but is not an integral domain
because (1 + 2i)(1− 2i) = 1− 4i2 = 0.

From the definition it is clear that every field is a skew field. But the converse may not be true as can be
seen from the following example.

Example 9.3.6. Let H be the set of 2× 2 complex matrices of the form[
a b
−b̄ ā

]
where a, b ∈ C and their bars denote their conjugates. Then H is a non-commutative division ring. For if

A =

[
a b
−b̄ ā

]
is a nonzero matrix, then its determinant d = aā+ bb̄ ̸= 0, and, hence

A−1 =

[ ā
d − b

d
b̄
d

a
d

]
.
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Theorem 9.3.7. Every field is an integral domain.

Proof. Let R be a field. Suppose a ∈ R, b ∈ R, a ̸= 0, b ̸= 0 and ab = 0. Since R is a field, and b ̸= 0, b has
an inverse b′ ∈ R such that b.b′ = b′.b = 1. Now, (ab)b′ = 0.b′ = 0, but, a(bb′) = a.1 = a. Hence, a = 0,
which is a contradiction. Thus ab ̸= 0 showing that R is not an integral domain.

Corollary 9.3.8. If R is a ring with unit element, and b ∈ R be a unit, then b is not a zero divisor.

Corollary 9.3.9. Zn is not a field, when n is not a prime.

Proof. If n is not a prime, n = m1.m2, where m1, m2 are proper divisors. Hence,

m1.m2 = m1m2 = n = 0,

where, m1 ̸= 0, m2 ̸= 0. Hence, Zn is not an integral domain. Hence, it is not a field.

Thus, a skew field is also an integral domain. But the converse is not true. For example, Z is an integral
domain without being a skew field. Also the same example shows that an integral domain may not be a field
as well. Thus, the converse of the above theorem may not be true in general. However, we see that the set
of integers is infinite. What happens if the integral domain is finite? The next result gives an answer to this
question.

Theorem 9.3.10. Let R be a finite integral domain. Then R is a field.

Proof. We shall first show that R has a unit element. Let R = {a1, a2, · · · , an} be the distinct elements of R
and let a be any non-zero element ofR. Then the elements aa1, aa2, aa3, · · · , aan are all distinct points ofR,
because if aai = aaj , then a(ai − aj) = 0 and since R is an integral domain and a ̸= 0, so ai = aj . Hence,
the set {aa1, aa2, aa3, · · · , aan} coincide with R. In particular, aak = a for some k. We shall show that ak
is the unit element of R. Let aj be any element of R. Then aj = aai for some i. Now,

ajak = akaj

= ak(aai)

= (aka)ai

= (aak)ai

= aai

= aj

Thus, ak is the unit element of R. The unit element is unique and we shall denote it by 1. Let a ∈ R, a ̸= 0.
Since 1 ∈ R, aal = ala = 1, for some al. Thus a has an inverse with respect to multiplication showing that
R is a field.

Corollary 9.3.11. For any prime p, Zp is a field.

Proof. Zp is an integral domain, because if a.b = 0, that is, ab = 0, then p about ab. Since p is a prime, p
divides either a or b, that is, a = 0 or, b = 0. Hence, Zp is an integral domain, and since it is a finite ring, so
it is a field.

Another term that needs to be introduced is the nilpotent element.

Definition 9.3.12. Let (R,+, ·) be a commutative ring with additive identity 0. An element a ∈ R is said to
be Nilpotent if there exists an n ∈ N such that an = 0.
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Example 9.3.13. 1. By definition, the additive identity 0 is always a nilpotent element in a ring (R,+, ·).

2. In the commutative ring (Z4,+, ·). Then the element 2 ∈ Z4 is nilpotent since 22 = 4 ≡ 0 (mod 4).

Theorem 9.3.14. Let (R,+, ·) be a commutative ring and let a, b ∈ R be nilpotent. Then a+ b is nilpotent.

Proof. Let a, b ∈ R be nilpotent. Then there exists n,m ∈ N such that an = 0 and bm = 0. Let t = nm+ 1.
Then t is a positive integer and by the binomial theorem:

(a+ b)t =

(
t

0

)
atb0 +

(
t

1

)
at−1b1 + ...+

(
t

t

)
a0bt

Each term in the expression is of the form
(
t

k

)
at−kbk. Since t = nm + 1, we must have at least t − k > n

or k > m (since if t − k < n and k < m then t = (t − k) + k < n +m ≤ nm < t). So each term in the
expression above is equal to zero. So (a+ b) is nilpotent.

Exercise 9.3.15. 1. Show that a non-zero element a in Zn is a unit if and only if a and n are relatively
prime. Also show that if a is not a unit, then it is a zero divisor.

2. Show that Zp is a field if and only if p is a prime.

3. Let R be a commutative ring with unity. Show that

(a) a is a unit if and only if a−1 is a unit.

(b) a, b are units if and only if ab us a unit.

4. Show that the set of all units in a commutative ring with unity forms an Abelian group.

5. If (R,+, ·) is a commutative ring and a ∈ R is nilpotent, then show that for all r ∈ R, r · a and a · r are
nilpotent.

6. Let (R,+, ·) be a commutative ring and let u, a ∈ R. If u is a unit and a is nilpotent, show that u − a
is a unit.

9.4 Characteristic of a Ring

Definition 9.4.1. Let R be a ring. The characteristic of R is the smallest positive integer n, if it exists, such
that na = 0 for all a ∈ R. If no such n exists, the characteristic of R is said to be zero. We denote the
characteristic of R as charR.

Example 9.4.2. 1. If R = Z, then charR = 0, because there exists no such positive integer m such that,
mZ = 0.

2. charZn = n since na = 0 for all a ∈ Zn.

Theorem 9.4.3. Let R be a ring with unit element e. Then

1. charR = n, if n is the smallest positive integer such that ne = 0, and

2. charR = 0 if no such n exists.
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Proof. 1. Suppose n is the smallest positive integer such that ne = 0. Then, for any a ∈ R,

na = a+ a+ · · ·+ a(n times)

= ae+ ae+ · · ·+ ae(n times)

= a(e+ e+ · · ·+ e)

= a(ne)

= a0

= 0

Also, for 0 < m < n, me ̸= 0. Hence, charR = n.

2. Suppose no such n exists. If possible, let there exists some m > 0, with ma = 0 for all a ∈ R. In
particular, me = 0, m > 0 which contradicts the given hypothesis. Hence, our assumption is wrong
and charR has to be 0.

Theorem 9.4.4. Let R be an integral domain. Then charR is either 0 or a prime.

Proof. Suppose charR = n ̸= 0 and suppose n is not prime. Then n = m1.m2, where m1 and m2 are proper
divisors of n. For any a ∈ R, a ̸= 0, we have,

0 = na2 = (m1m2)a
2 = (m1a)(m2a).

SinceR is an integral domain, m1a = 0 orm2a = 0. Supposem1a = 0. Then we show thatm1x = 0 for any
x ∈ R. Now, m1(xa) = (m1x)a = x(m1a) = x0 = 0. Since a ̸= 0, and R is an integral domain, m1x = 0.
Thus, m1x = 0 for all x, m1 < n. This contradicts the assumption that charR = n. Hence proved.

Corollary 9.4.5. The characteristic of a field is either 0 or a prime.

Exercise 9.4.6. 1. Suppose that R is a commutative ring without zero-divisors. Show that the characteris-
tic of R is 0 or prime.

2. Let R be a ring with m elements. Show that the characteristic of R divides m.

3. Let F be a field of order 2n. Show that char F = 2.

4. Find the characteristic of Z4 ⊕ 4Z.

5. If R is a ring of characteristic m > 0 and S is a subring of R, what can you say about the characteristic
of S?

Sample Questions

1. In a ring (R,+, ◦) if (R,+) is cyclic, show that R is a commutative ring.

2. Show that the center of a ring is its subring.

3. Show that a finite integral domain is a division ring.

4. Show that a field is an integral domain. Is the converse true? Justify your answer.

5. Let F be a field of characteristic 2 with more than two elements. Show that (x + y)3 = x3 + y3 for
some x and y in F .



Unit 10

Course Structure

• Definition of Ideals

• Classification of ideals

• Factor Rings

10.1 Introduction

We have studied the concept of subrings of a given ring. Recollect that in the theory of groups, the normal
subgroups played a special role. They helped in the construction of quotient groups. In a similar manner, we
will study a special kind of subring of a ring which will enable us to define the concept of quotient rings. Such
subrings will be called ideals. Factor rings will be constructed in the same fashion as factor groups. The role of
an ideal in a “homomorphism between rings" is similar to the role of a normal subgroup in a “homomorphism
between groups.

Objectives

After reading this unit, you will be able to

• define left and right ideals and use them to define ideal

• visualise the connection between ideals and normal subgroups

• define certain important kinds of ideals and deal with their properties

• define factor rings with the help of an ideal and characterize them in accordance with the type of ideal

10.2 Ideals in rings

Let R be a ring and I ⊂ R. I is called a left(right) ideal of R if

1. a− b ∈ I where a, b ∈ I .

110
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2. For each a ∈ I and x ∈ R, xa ∈ I(ax ∈ I).

Clearly, a right or left ideal is a subring of the ring. An ideal is both a left and right ideal, and in a commutative
ring, any left or right ideal is an ideal. The following result gives a way to check ideals of R

Theorem 10.2.1. A nonempty subset A of a ring R is an ideal of R if

1. a− b ∈ A whenever a, b ∈ A.

2. ra and ar are in A whenever a ∈ A and r ∈ R.

Example 10.2.2. 1. For any ring R, {0} and R are ideals of R. These are called the trivial ideals of R.

2. For any positive integer n, the set nZ = {nz : z ∈ Z} is an ideal of Z.

3. Let R be a commutative ring with unit element an let a1, a2, . . . , an ∈ R. Then I = ⟨a1, a2, . . . , an⟩ =
{r1a1 + r2a2 + · · · rnan : ri ∈ R} is an ideal of R called the ideal generated by a1, a2, . . . , an. This
is the smallest ideal containing a1, a2, . . . , an. (discussed shortly)

4. Let R be the ring of 2× 2 upper triangular matrices over a field F . Then the subset

I =

{[
0 a
0 0

]
| a ∈ F

}
is an ideal in R.

5. LetR be the ring of all functions from the closed interval [0, 1] to the field of real numbers. Let c ∈ [0, 1]
and I = {f ∈ R | f(c) = 0}. Then I is an ideal of R.

6. Let R[x] denote the set of all polynomials with real coefficients and let A denote the subset of all
polynomials with constant term 0. Then A is an ideal of R[x] and A = ⟨x⟩.

7. Let Z[x] denote the ring of all polynomials with integer coefficients and let I be the subset of Z[x] of
all polynomials with even constant terms. Then I is an ideal of Z[x] and I = ⟨x, 2⟩.

8. Let R be the ring of all real-valued functions of a real variable. The subset S of all differentiable
functions is a subring of R but not an ideal of R.

Also, if I is an ideal of R, then I forms a normal subgroup of (R, ◦)(check it).

Theorem 10.2.3. Let {Ai}i∈Λ be a family of right (left) ideals in a ring R. Then
⋂
i∈Λ

Ai is also a right (left)

ideal of R.

Proof. Let A =
⋂
i∈Λ

Ai and a, b ∈ A and r ∈ R. Then for all i ∈ Λ, a, b ∈ Ai and ar (ra) ∈ Ai since Ai’s

are right (left) ideals. Hence the result.

Next, let S be a subset of a ring R. Let A = (A | A is a right ideal of R containing S ). Then A ̸= ∅
because R ∈ A . Let I =

⋂
A∈A

A. Then I is the smallest right ideal of R containing S and is denoted by ⟨S⟩r.

The smallest right ideal ofR containing a subset S is called a right ideal generated by S. If S = {a1, . . . , am}
is a finite set, then ⟨S⟩r is also written ⟨a1, . . . , am⟩r. Similarly, we define the left ideal and the ideal generated
by a subset S, denoted, respectively, by ⟨S⟩l and ⟨S⟩.
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Definition 10.2.4. A right ideal I of a ring R is called finitely generated if I = ⟨a1, . . . , am⟩r for some
ai ∈ R, 1 ≤ i ≤ m.

Definition 10.2.5. A right ideal I of a ring R is called principal if I = ⟨a⟩r for some a ∈ R.

In a similar manner we define a finitely generated left ideal, a finitely generated ideal, a principal left ideal
⟨a⟩l, and a principal ideal ⟨a⟩.

Exercise 10.2.6. 1. Let A and B be ideals in a ring. Show that AB ⊆ A ∩B.

2. Prove that I = {f(x) ∈ Z[x] | f(1) is even} is an ideal of Z[x].

3. Let S = {a + bi | a, b ∈ Z, b is even}. Show that S is a subring of Z[i]. Is it an ideal of Z[i]? Justify
your answer.

4. If A and B are ideals of a ring, show that the sum of A and B, that is, A+B = {a+ b | a ∈ A, b ∈ B}
is also an ideal of the ring.

5. Show that

⟨a⟩ =

{
k∑
i=1

riasi + ra+ as+ na | r, s, ri, si ∈ R ∀i, n, k ∈ Z

}
⟨a⟩r = {ar + na | r ∈ R, n ∈ Z}
⟨a⟩l = {ra+ na | r ∈ R, n ∈ Z}.

6. If R contains unity, then show that

⟨a⟩ =

{
k∑
i=1

riasi | ri, si ∈ R ∀i, k ∈ Z

}
⟨a⟩r = {ar | r ∈ R, n ∈ Z}
⟨a⟩l = {ra | r ∈ R, n ∈ Z}.

(In this case, ⟨a⟩r and ⟨a⟩l are also denoted by aR and Ra respectively.

10.3 Factor Rings (or Quotient Rings)

Let R be a ring and let A be an ideal of R. Since R is a group under addition and A is a normal subgroup of
R, we may form the factor group R/A = {r + A | r ∈ R}. The natural question at this point is: How may
we form a ring of this group of cosets? The addition is already taken care of, and, by analogy with groups of
cosets, we define the product of two cosets s+A and t+A of R as st+A. The next theorem shows that this
definition works as long as A is an ideal of R, and not just a subring of R.

Theorem 10.3.1. (Existence of factor rings) Let R be a ring and A be a subring of R. The set of cosets
{r +A | r ∈ R} is a ring under the operations

1. (s+A) + (t+A) = s+ t+A,

2. (s+A)(t+A) = st+A

s, t ∈ R, if and only if A is an ideal of R.
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Proof. We know that the set of cosets forms a group under addition. Once we know that multiplication is
indeed a binary operation on the cosets, it is trivial to check that the multiplication is associative and that
multiplication is distributive over addition. Hence, the proof reduces to showing that multiplication is well-
defined if and only if A is an ideal of R. To do this, let us suppose that A is an ideal and let s + A = s′ + A
and t+A = t′+A. Then we must show that st+A = s′t′+A. Well, by definition, s = s′+a and t = t′+ b,
where a and b belong to A. Then

st =
(
s′ + a

) (
t′ + b

)
= s′t′ + at′ + s′b+ ab,

and so
st+A = s′t′ + at′ + s′b+ ab+A = s′t′ +A,

since A absorbs at′ + s′b+ ab. Thus, multiplication is well-defined when A is an ideal.
On the other hand, suppose that A is a subring of R that is not an ideal of R. Then there exist elements

a ∈ A and r ∈ R such that ar /∈ A or ra /∈ A. For convenience, say ar /∈ A. Consider the elements
a + A = 0 + A and r + A. Clearly, (a + A)(r + A) = ar+ but (0 + A)(r + A) = 0 · r + A = A. Since
ar +A ̸= A, the multiplication is not well-defined and the set of cosets is not a ring.

Thus, the ring (R/A,+, ·) is called the factor ring.

Example 10.3.2. 1. Z/4Z={0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z} is a factor ring under the two operations
modulo 4.

2. 2Z/6Z is a commutative example of an ideal and factor ring.

3. Consider the factor ring R = Z3[x]/
〈
x2 + 1

〉
. To simplify the notation let I =

〈
x2 + 1

〉
and let us

write the elements of Z3 as simply numbers without using bars. By definition, the elements ofR have the
form f(x)+I where f(x) is a polynomial with coefficients from Z3. But what are the distinct elements
ofR? The fact that x2+1+I = 0+I means that when dealing with coset representatives we may treat
x2+1 as equivalent to 0 and therefore x2 = −1. For example, the coset 2x2+x+1+I = −2+x+1+I =
x − 1 + I . Moreover, when dealing with coset representatives we have, x2 = −1, which implies that
x3 = −x and x4 = 1. So, x4+2x3+x2+2+I = 1−2x−1+2+I = −2x+2+I = x+2+I (because
−2 = 1 in Z3 ). In the same way, we have x5 = x, x6 = x2x4 = −1 and so on. Thus we see that
R = {ax+ b+ I | a, b ∈ Z3}. This means that R has order 9 . We can make one more simplification
by suppressing the use of I and just refer to the coset ax + b + I as ax + b. All we need to keep in
mind is that when we preform the product (ax+ b)(cx+d) = acx2+(ad+ bc)x+ bd we replace acx2

with −ac. We can now ask if any particular non-zero element of R is a unit or a zero-divisor. Consider
x+ 1. Note that (x+ 1)2 = x2 + 2x+ 1 = 2x. Then (x+ 1)4 = (2x)2 = 4x2 = −4 = −1. So, x+ 1
is a unit and |x+ 1| = 8. This means the eight non-zero elements of R form a cyclic group and R is a
field of order 9.

4. Consider the factor ring R = Z5[x]/⟨x2 + 1⟩. This time, |R| = 25 and (x + 1)4 = (2x)2 = 4x2 =
−4 = 1. So, x+ 1 is a unit in R and |x+ 1| = 4. Further, (x+ 2)(x+ 3) = x2 + 1 = 0 and so x+ 2
and x+ 3 are zero divisors and hence R is not a field.

10.4 Types of Ideals

We will come across three types of ideals. First we have already seen the principal ideals. In this section, we
will come across two more ideals, viz., Prime and Maximal ideals.
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Definition 10.4.1. A prime ideal A of a commutative ring R is a proper ideal of R such that a, b ∈ R and
ab ∈ A imply a ∈ A or b ∈ A.

The motivation for the definition of prime ideals comes from the integers.

Definition 10.4.2. A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever B is
an ideal of R and A ⊆ B ⊆ R, then B = A or B = R.

So, the only ideal that properly contains a maximal ideal is the entire ring.

Example 10.4.3. 1. Let n be an integer greater than 1. Then, in the ring of integers, the ideal nZ is prime
if and only if n is prime.

2. ⟨2⟩ and ⟨3⟩ are maximal ideals of Z36.

3. ⟨x2 + 1⟩ is maximal in R[x].

Theorem 10.4.4. In a commutative ring R, let A be an ideal. If a unit element is in A, then A = R.

Proof. Let u ∈ A be an unit element of R. Let v ∈ R be such that uv = 1. Now, since A is an ideal of R, so
for u ∈ A and v ∈ R, we must have uv ∈ A, i.e., 1 ∈ A. Now, for every r ∈ R, we must have r1 ∈ A, i.e.,
r ∈ A ∀r ∈ R. Thus, A = R.

Theorem 10.4.5. LetR be a commutative ring with unity and letA be an ideal ofR. Then, R/A is an integral
domain if and only if A is prime.

Proof. Let R/A is an integral domain and ab ∈ A. Then, (a + A)(b + A) = ab + A = A, the zero element
of the ring R/A. So, either a+A = A or b+A = A, that is, either a ∈ A or b ∈ A. Hence, A is prime.

We observe that R/A is a commutative ring with unity for any proper ideal A. Our task is only to show
that R/A has no zero divisors. So, let A be prime ideal and (a+A)(b+A) = 0+A = A. Then, ab ∈ A and
hence, a ∈ A or b ∈ A. Thus, one of a+A or b+A is the zero coset in R/A.

Theorem 10.4.6. Let R be a commutative ring with unity and let A be an ideal of R. Then, R/A is a field if
and only if A is maximal.

Proof. Let R/A be a field and B is an ideal of R that properly contains A. Let b ∈ B but b /∈ A. Then b+A
is a nonzero element of R/A and hence there exists an element c+A such that (b+A).(c+A) = 1+A, the
multiplicative identity of R/A. Since b ∈ B, we have bc ∈ B. Since

1 +A = (b+A)(c+A) = bc+A,

we have 1− bc ∈ A ⊂ B. So, 1 = (1− bc) + bc ∈ B. So, B = R. Thus, A is maximal.
Now let A is maximal and b ∈ R but b /∈ A. It suffices to show that b + A has a multiplicative inverse.

Consider B = {br + a|r ∈ R, a ∈ A}. This is an ideal in R that properly contains A. Since A is maximal,
we must have B = R. Thus, 1 ∈ B, and 1 = bca′(say), where a′ ∈ A. Then

1 +A = bc+ a′ +A = bc+A = (b+A)(c+A).

Since Z is an integral domain but not a field, and since

Z[x]/ < x >≃ Z

(follows from the next unit) we must have from the previous theorems, ideal ⟨x⟩ is prime but not maximal.
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Theorem 10.4.7. In a commutative ring with unity, every maximal ideal is a prime ideal.

Proof. Left as an exercise.

But the converse of the theorem is not true in general. For example, ⟨0⟩ is a prime ideal in Z but not a
maximal ideal.

Exercise 10.4.8. 1. Find all the maximal ideals of Z8, Z10, Z12, Z30.

2. Let n = st, where s and t are divisors of n greater than 1. Prove that ⟨s⟩ is a maximal ideal in Zn if and
only if s is prime.

3. In Z[x], prove that ⟨2x, 3⟩ = ⟨x, 3⟩.

4. If n is an integer greater than 1, show that ⟨n⟩ = nZ is a prime ideal of Z if and only if n is a prime
number.

5. Give an example of a commutative ring that has a maximal ideal that is not a prime ideal.

6. Let R be a commutative ring with unity. Suppose that the only ideals of R are {0}and R. Show that R
is a field.

10.5 Factorization

We assume throughout this section that R is an integral domain with unit element.

Definition 10.5.1. Let a ∈ R and b ∈ R, a ̸= 0. a is said to divide b if there exists c ∈ R such that b = ac.

Example 10.5.2. 1. In R = Z, 3 divides 15.

2. In R = Z+ iZ = {a+ ib|a, b ∈ Z}, (1 + 3i) divides 10 as 10 = (1 + 3i)(1− 3i).

Definition 10.5.3. Two non-zero elements a and b are said to be associates if a|b and b|a.

That is, a and b are associates if and only if b = au, for some unit u ∈ R.

Definition 10.5.4. Any element a in ring R is called irreducible if

1. a in not an unit,

2. the only divisors of a are units and associates of a

Example 10.5.5. 1. Let R = Z and n > 1. Then n is irreducible if and only if the only divisors of n are
1,-1,n,-n. Thus n is a prime integer.

2. In R = Z, 5 and −5 are associates as −5 = (−1).5.

3. Let R = {a+ b
√
−5|a, b ∈ Z}. Then, 1 + 2

√
−5 is an irreducible element of R.

Definition 10.5.6. Let p ∈ R which is not a unit, p is called a prime element if whenever p|ab, then either
p|a or p|b.

Theorem 10.5.7. Every prime element is irreducible.
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Proof. Let p is prime, and let a be any divisor of p so that p = ab. Since p is a prime p|a or p|b. If p|a, since
we have a|p we have a is an associate of p and b is a unit. Similarly, if p|b, then b is an associate of p and a is
a unit. Thus the only divisors of p are units and associates of p. Hence, p is irreducible.

In general rings, the converse of the theorem is not true. But we know, in R = Z, every irreducible element
is prime.

Proposition 10.5.8. An element p∈ R is prime if and only if the ideal ⟨p⟩ is prime ideal.

Proof. Let p is a prime element and let ab ∈< p >. Then ab = cp for some c ∈ R. Since, p is a prime, p|a
or p|b, i.e., a ∈ P or b ∈ P . Hence, P is a prime ideal. Conversely, let P be a prime ideal and let p|ab. Then
ab = cp ∈ P and since P is a prime ideal, a ∈ P or b ∈ P , i.e., p|a or p|b. Hence, p is a prime element.

Definition 10.5.9. Let a ∈ R and b ∈ R. An element d ∈ R is called a greatest common divisor(gcd) of a
and b if

1. d|a and d|b,

2. whenever d′|a and d′|b, then d′|d.

Example 10.5.10. In R = Z, if a = 9, b = −48 then d = 3 is a gcd of a, b.

Example 10.5.11. Let R be an integral domain and let a and b are two elements in R.

1. b divides a if and only if Ra ⊂ Rb and vice versa. The proof is obvious since if b|a there exists some c
in R, such that a = bc. Thus, for any x in R, we have

x = ya

= ybc

= ycb

Hence, x ∈ Rb. Thus, Ra ⊂ Rb. the converse part is left as an exercise.

2. a and b are associates if and only if Ra = Rb. Since a and b are associates, a|b which yields Rb ⊂ Ra;
and b|a which gives Ra ⊂ Rb. Combining, we get the desired result. The converse part is left as
exercise.

Example 10.5.12. LetR be an integral domain. If a ∈ R such thatRa is a maximal ideal, then a is irreducible.
Since Ra is maximal ideal, a is not a unit. If possible, let a be reducible. Then there exists b and c in R such
that a = bc. Then b and c are proper divisors of a. Hence, by the previous example, Ra ⊂ Rb and Ra ⊂ Rc.
Which is impossible since Ra is a maximal ideal in R.

Exercise 10.5.13. 1. Show that the union of a chain I1 ⊂ I2 ⊂ . . . of ideals of a ring R is an ideal of R

2. Show that the product of an irreducible and a unit is irreducible in an integral domain. Is the result true
in any arbitrary ring?

3. Let D be an integral domain. Define aρb if a and b are associates. Show that ’ρ’ is an equivalence
relation on R.
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Sample Questions

1. Show that the set of all upper triangular matrices form an ideal of the ring of all 2 × 2 matrices over
some field F .

2. Show that a R/A forms a factor ring if and only if A is an ideal of R.

3. With proper justifications, list the elements of Z5[x]/⟨x2 + 1⟩.

4. If R is a commutative ring with unity, then show that

(a) A is a prime ideal of R if and only if R/A is an integral domain;

(b) A is a maximal ideal of R if and only if R/A is a field.

5. Show that an ideal A of R containing a unit is equal to R.

6. Show that in a commutative ring with unity, every maximal ideal is a prime ideal.

7. Show that every prime element in an integral domain with unity is irreducible.

8. Let R be an integral domain with unity. Show that a and b are associates if and only if Ra = Rb.



Unit 11

Course Structure

• Ring homomorphisms: basic definitions and properties

• Classification of rings, their definitions and characterization theorem with examples and counter exam-
ples.

11.1 Introduction

We have constantly tried to establish the theory of rings taking motivation from the theory of groups. We
had studied the idea of group homomorphisms which preserve the algebraic structure of the groups. Also,
depending upon the algebraic structure, the groups were classified using the idea of homomorphisms. We
will do somewhat similar in case of rings as well. We note that there are two binary operations in rings. A
structure preserving map between rings will have to preserve both the operations. Such maps are called ring
homomorphisms. In an similar way, we will use the ring homomorphism to characterise rings depending upon
their algebraic structures.

Objectives

After reading this unit, you will be able to

• define ring homomorphism and learn its basic properties

• define various types of homomorphisms and look into their examples

• characterise rings on the basis of ther algebraic structures

11.2 Ring Homomorphisms

A ring homomorphism ϕ from a ring (R,+R, ·R) to (S,+S , ·S) is a mapping from R to S that preserves the
two ring operations, that is, for all a, b ∈ R,

1. ϕ(a+R b) = ϕ(a) +S ϕ(b)

118
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2. ϕ(a ·R b) = ϕ(a) ·S ϕ(b).

For the sake of simplicity, we will use just the symbols ’+’ and ’·’ instead of +R (or +S) or ·R (or ·S).
If f is 1 − 1, then f is called a monomorphism from R into S. In this case f is also called an embedding

of the ring R into the ring S (or R is embeddable in S ); we also say that S contains a copy of R, and R may
be identified with a subring of S.

If a homomorphism f from a ring R into a ring S is both 1-1 and onto, then there exists a homomorphism
g from S into R that is also 1-1 and onto. In this case we say that the two rings R and S are isomorphic,
and, abstractly speaking, these rings can be regarded as the same (algebraically). We write R ≃ S whenever
there is a 1 − 1 homomorphism (isomorphism) of R onto S. As stated above R ≃ S implies S ≃ R. Also,
the identity mapping gives R ≃ R for any ring R. It is easy to verify that if f : R → S and g : S → T are
isomorphisms of R onto S and S onto T , respectively, then gf is also an isomorphism of R onto T . Hence,
R ≃ S and S ≃ T imply R ≃ T . Thus, we have shown that

Isomorphism is an equivalence relation in the class of rings.

Example 11.2.1. 1. For any two rings R and S, the maps f : R→ S and g : R→ S defined as f(r) = 0
and g(r) = 1, for all r ∈ R, where 0 and 1 are the additive identity and unity in S, then f and g are ring
homomorphisms called the trivial homomorphisms.

2. For any positive integer n, the mapping k → k mod n is a ring homomorphism from Z onto Zn. This
mapping is called the natural homomorphism from Z onto Zn.

3. The mapping a + bi → a − bi is a ring isomorphism from the complex numbers onto the complex
numbers.

4. Let ϕ : Z2 → Z2 be defined by ϕ(x) = x2. Then,

ϕ(x+ y) = (x+ y)2 = x2 + 2xy + y2 = x2 + y2 = ϕ(x) + ϕ(y)

since 2xy = 0 since the characteristic of Z2 is 2. Next,

ϕ(xy) = (xy)2 = x2y2 = ϕ(x)ϕ(y).

The second equality follows from the fact that Z2 is commutative. Also, note that ϕ(1) = 12 = 1. Thus,
ϕ is a ring homomorphism.

5. Let R be a commutative ring of characteristic 2. Then the mapping a → a2 is a ring homomorphism
from R to R.

6. The function ϕ : Z → Z defined by ϕ(x) = 2x is not a ring homomorphism. Indeed, for any x, y ∈ Z,
we have

ϕ(x+ y) = 2(x+ y) = 2x+ 2y = ϕ(x) + ϕ(y).

Thus, ϕ is additive. But,

ϕ(1.3) = ϕ(3) = 2.3 = 6, while ϕ(1)ϕ(3) = (2.1)(2.3) = 12.

Thus, ϕ(1.3) ̸= ϕ(1)ϕ(3).

Exercise 11.2.2. 1. Show that ϕ : Z → Z defined by ϕ(x) = 2x+ 5 is not a ring homomorphism.

2. Check whether ϕ : Z → Z defined by ϕ(x) = 3x is a ring homomorphism.
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Theorem 11.2.3. Let R,S, T be rings and let f : R → S and g : S → T be ring homomorphisms. Then the
composite map g ◦ f : R→ T is also so.

Proof. Let x, y ∈ R and h = g ◦ f . Then

h(x+ y) = g(f(x+ y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = h(x) + h(y).

h(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) = h(x)h(y).

Hence the result.

Let us now list a few elementary but fundamental properties of homomorphisms.

Theorem 11.2.4. (Properties of Ring Homomorphism) Let ϕ be a ring homomorphism from a ring R to a
ring S. Let A be a subring of R.

1. For any r ∈ R and any positive integer n, ϕ(nr) = nϕ(r) and ϕ(rn) = (ϕ(r))n.

2. ϕ(A) = {ϕ(a)|a ∈ A} is a subring of S.

3. If A is an ideal and ϕ is onto S, then ϕ(A) is an ideal.

4. ϕ−1(B) = {r ∈ R | ϕ(r) ∈ B} is an ideal of R.

5. If R is commutative, then ϕ(R) is commutative.

6. If R has a unity 1, S ̸= {0}, and ϕ is onto, then ϕ(1) is the unity of S and units in R map to units in S.

7. ϕ is an isomorphism if and only if ϕ is onto and the kernel of ϕ, kerϕ = {r ∈ R|ϕ(r) = 0} = {0}.

8. ϕ is an isomorphism from R onto S, then ϕ−1 is an isomorphism from S onto R.

Proof. Proofs are similar to those of groups. Left as exercise.

Example 11.2.5. Show by an example that we can have a homomorphism ϕ : R → S, such that ϕ(1) is not
unity in S, where 1 is the unity of R.

Solution. Consider the map ϕ : Z → Z such that ϕ(x) = 0 for all x ∈ Z. Then ϕ is a homomorphism
(verify!). Again, ϕ(1) = 0, but 0 is not unity in Z.

We could also take the same mapping from Z onto 2Z to solve the given problem. ■

Example 11.2.6. Find all the ring homomorphisms from Z20 → Z30.

Solution. Let f : Z20 → Z30 be any ring homomorphism and f(1) = a. Then f(x) = f(x.1) = xa by the
additive property of f . Also since f satisfies the definition of group homomorphism, so o(a)|o(Z30) = 30
and o(a)|o(Z20) = 20. Thus, the possible values of o(a) are 1, 2, 5, 10 and so the possible values of a will be
0, 3, 6, 9, 12, 15, 18, 21, 24, 27 which gives us ten group homomorphisms. Now, f is a ring homomorphism
and in Z20, 1.1 = 1, we find f(1.1) = f(1) ⇒ f(1)f(1) = f(1) ⇒ a2 = a in Z30. This is satisfied by
0, 6, 15, 21. Hence, there are four ring homomorphisms from Z20 → Z30. ■

Example 11.2.7. Show that 2Z is not isomorphic to 3Z as rings. What can be said about the isomorphism
between mZ and nZ, where m,n are positive integers?
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Solution. Suppose 2Z ≃ 2Z and let f : 2Z → 3Z be the isomorphism. As 2 ∈ 2Z, f(2) = 3n for some
n ∈ Z \ {0}. Now,

f(4) = f(2 + 2) = f(2) + f(2) = 6n.

f(4) = f(2.2) = f(2).f(2) = (3n)2.

Thus, 6n = 9n2 ⇒ 2 = 3n. But this is not possible for any n ∈ Z. Hence, f is not an isomorphism.
Suppose now f : mZ → nZ is any ring isomorphism. Then

f(m+m+ . . .+m) = f(m) + f(m) + . . .+ f(m)

m times

⇒ f(mm) = mf(m)

⇒ f(m)f(m) = mf(m)

⇒ f(m) = m. (11.2.1)

Again as f is onto and n ∈ nZ, there exists mr ∈ mZ such that

f(mr) = n⇒ rf(m) = n⇒ f(m)|n.

Again, as m ∈ mZ, f(m) ∈ nZ ⇒ f(m) = nk for some k. Thus, n|f(m) and hence f(m) = n. This and
equation (11.2.1) together implies that m = n.

So, if mZ ≃ nZ then m = n. The converse of course is obviously true.
Hence we conclude that mZ ≃ nZ if and only if m = n. ■

Example 11.2.8. Show that the only homomorphism from Z to itself is the identity or the zero mappings.

Solution. Let f : Z → Z be a homomorphism. Since

(f(1))2 = f(1)f(1) = f(1.1) = f(1),

so f(1)[f(1)− 1] = 0 ⇒ f(1) = 0, or f(1) = 1.
If f(1) = 0 then f(x) = 0 for all x ∈ Z. Thus in this case f is the zero homomorphism.
If f(1) = 1, then for all x ∈ Z,

f(x) = f(1 + 1 + . . .+ 1) = xf(1) = x (x > 0)

f(x) = f(−y) = −f(y) = −[f(1 + 1 + . . .+ 1)] = −yf(1) = xf(1) = x (x < 0, y = −x)
f(0) = 0.

So in this case f is identity map , which proves the result. ■

Example 11.2.9. Let R and S be two commutative rings with unity and let f : R→ S be an onto homomor-
phism. If charR ̸= 0, show that charS divides charR.

Solution. Suppose charR = n. Then n.1 = 0, n being the smallest such integer and 0 being the additive
identity of R. Thus, 1+ 1+ . . .+1 = 0 and so additive order of 1 is n. Again as f is onto, f(1) is unity of S
and so charS is additive order of f(1). As o(f(1))|o(1), we find the desired result. ■

Exercise 11.2.10. 1. Find all the ring homomorphisms from Z12 to Z30.

2. Determine all ring homomorphisms from Z25 to Z20.

3. Determine all ring homomorphisms from Zn to itself.
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4. Let

R =

{[
a b
b a

]
| a, b ∈ Z

}
and let ϕ be the mapping that takes

(
a b
b a

)
to a− b.

(a) Show that ϕ is a homomorphism.

(b) Determine the kernel of ϕ

(c) Show that R/Kerϕ is isomorphic to Z
(d) Is Kerϕ a prime ideal? Is it maximal?

Theorem 11.2.11. Let ϕ be a ring homomorphism from a ring R to a ring S. Then kerϕ = {r ∈ R | ϕ(r) =
0} is an ideal of R.

Proof. Let x, y ∈ kerϕ. Then ϕ(x) = ϕ(y) = 0. Then ϕ(x − y) = ϕ(x) − ϕ(y) = 0. Thus, x − y ∈ kerϕ.
Also, for r ∈ R, we have ϕ(rx) = ϕ(r)ϕ(x) = ϕ(r).0 = 0. Hence, rx ∈ Kerϕ. Thus, Kerϕ is an ideal of
R.

From the above theorem, we can have an ideal from a homomorphism. The converse is also true. Suppose
I is an ideal of a ring R. Then it induces a homomorphism from R onto the factor ring R/I , which is called
the canonical homomorphism for I .

Theorem 11.2.12. Let I be an ideal of a ring R. Then the function ϕ : R→ R/I defined by ϕ(r) = r + I is
a ring homomorphism and its kernel is I .

Proof. For all r, s ∈ R,

ϕ(r + s) = (r + s) + I = (r + I) + (s+ I) = ϕ(r) + ϕ(s)

and
ϕ(rs) = rs+ I = (r + I)(s+ I) = ϕ(r)ϕ(s).

So, ϕ is a ring homomorphism. Further,

Kerϕ = {r ∈ R | ϕ(r) = 0 + I = I}
= {r ∈ R | r + I = I}
= {r ∈ R | r ∈ I}
= I.

Theorem 11.2.13. (First Isomorphism Theorem) Let ϕ be a ring homomorphism fromR to S. ThenR/Kerϕ ≃
ϕ(R).

Proof. Put I = Kerϕ(R). Define f : R/I → ϕ(R) by f(r + I) = ϕ(r). Then, for r, s ∈ R/I , we have

f((r + I) + (s+ I)) = f(r + s+ I) = ϕ(r + s) = ϕ(r) + ϕ(s) = f(r + I) + f(s+ I)

f((r + I)(s+ I)) = f(rs+ I) = ϕ(rs) = ϕ(r)ϕ(s) = f(r + I)f(s+ I).

Hence, f is a ring homomorphism. Further, for f(r + I) = f(s + I) we have, ϕ(r) = ϕ(s) ⇒ ϕ(r − s) =
0 ⇒ r − s ∈ I ⇒ r + I = s + I . Hence, f is injective. For surjectivity, let y ∈ ϕ(R). Then, there exists
r ∈ R such that ϕ(r) = y. Now, r + I ∈ R/I such that f(r + I) = ϕ(r) = y. Hence f is surjective. Thus
the result.
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Corollary 11.2.14. If ϕ : R→ S be a surjective homomorphism. Then, S ≃ R/Kerϕ.

Theorem 11.2.15. Let R be a ring with unity 1. The mapping ϕ : Z → R given by n → n.1 is a ring
homomorphism.

Proof. Since the multiplicative group property am+n = aman translates to (m + n)a = ma + na when the
operation is addition, we have

ϕ(m+ n) = (m+ n).1 = m.1 + n.1

So, ϕ preserves addition.
ϕ also follows multiplication. We know that (m.a)(n.b) = (mn)(ab) for all integers. Thus,

ϕ(mn) = (mn).1 = (mn).((1)(1)) = (m.1)(n.1) = ϕ(m)ϕ(n)

So, ϕ preserves multiplication as well.

Corollary 11.2.16. If R is a ring with unity and characteristic of R is n > 0, then R contains a subring
isomorphic to Zn. If the characteristic of R is 0, then R contains a subring isomorphic to Z.

Proof. Let 1 be the unity of ring R and let S = {k.1|k ∈ Z}. The previous theorem shows that ϕ from Z to
S given by ϕ(k) = k.1 is a homomorphism, and by the First Isomorphism theorem for rings, we have

Z/Kerϕ ≃ S.

Clearly, Kerϕ = ⟨n⟩, where n is the additive order of 1 and n is also the characteristic of R. So, R has
characteristic n,

S ≃ Z/⟨n⟩ ≃ Zn.

When R has characteristic 0, then
S ≃ Z/⟨0⟩ ≃ Z.

Corollary 11.2.17. For any positive integer m, the mapping ϕ : Z −→ Zm given by x −→ x mod m is a ring
homomorphism.

Proof. Left as exercise.

Corollary 11.2.18. If F is a field of characteristic p, then F contains a subfield isomorphic to Zp. If F is a
field of characteristic 0, then F contains a subfield isomorphic to Q.

Theorem 11.2.19. (Second Isomorphism Theorem) Let B ⊆ A be two ideals of a ring R. Then

R/A ≃ (R/B)/(A/B).

Proof. Define a mapping f : R/B → R/A such that f(r+B) = r+A. Then it is easy to check that f is an
onto homomorphism (verify!). By the first isomorphism theorem, (R/B)/Kerf ≃ R/A. We will be done if
we find the kernel of f . We have

Kerf = {r +B ∈ R/B | f(r +B) = A}
= {r +B ∈ R/B | r +A = A}
= {r +B ∈ R/B | r ∈ A}
= A/B.

Hence the result.
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Theorem 11.2.20. (Third Isomorphism Theorem) Let A,B be two ideals of a ring R. Then

(A+B)/A ≃ B/(A ∩B).

Proof. Define a mapping f : B → (A+B)/A such that f(b) = b+A for all b ∈ B. Then f is a well-defined
homomorphism (check!). Again, if x+A ∈ (A+B)/A be any element then

x ∈ A+B ⇒ x = a+ b, a ∈ A, b ∈ B.

So,
x+A = (a+ b) +A = (b+ a) +A = b+ (a+A) = b+A.

Thus, x + A = b + A = f(b), that is, b is the pre-image of x + A under f or that f is onto. By the first
isomorphism theorem, (A+B)/A ≃ B/Kerf .

Now,

x ∈ Kerf ⇔ f(x) = A

⇔ x+A = A

⇔ x ∈ A

⇔ x ∈ A ∩B (x ∈ Kerf ⊆ B).

Hence, Kerf = A ∩B. Hence the result.

Example 11.2.21. Show that Z/⟨2⟩ ≃ 5Z/10Z.

Solution. Take A = ⟨2⟩ = 2Z, B = ⟨5⟩ = 5Z, the ideals of Z. Then A+B = ⟨d⟩, where d = gcd(2, 5) = 1.
A ∩ B = ⟨l⟩, where l = lcm(2, 5) = 10. So, A + B = Z and A ∩ B = 10Z. Hence using the third
isomorphism theorem, we get the desired result. ■

Exercise 11.2.22. 1. Prove that the ring Z3/⟨x2 + 1⟩ is isomorphic to the field Z3[i].

2. For any integer n > 1, prove that Zn[x]/⟨x⟩ is isomorphic to Zn.

3. Is there a ring homomorphism from the reals to some ring whose kernel is the integers?

Sample Questions

1. Show that the homomorphic image of a commuattive ring is commutative. Is converse true? Justify
your answer.

2. Show that the homomorphic image of a ring with unity is an ring with unity. Is the converse true?
Justify your answer.

3. State and prove the first isomorphism theorem.

4. State and prove the second isomorphism theorem.

5. State and prove the third isomorphism theorem.

6. Show that if m and n are distinct positive integers, then mZ is not ring-isomorphic to nZ.

7. Determine all ring homomorphisms from Z to Z.



Unit 12

Course Structure

• Polynomial rings: definition and properties

• Division algorithm and its applications

12.1 Introduction

We have primarily come across integer or real polynomials in one variable, mostly x, (having coefficients in
Z and R respectively) previously. But we can also form polynomials using elements from any arbitrary ring
R. Such polynomials along with addition and multiplication, as defined in unit 9, also forms a ring, called
the polynomial rings. The study of polynomial rings are closely related to the idea of field extensions, vector
spaces, etc. It is needless to say that the idea of polynomial rings in more than one variable can be drawn from
polynomial rings in one variable.

Objectives

After reading this unit, you will be able to

• define polynomial rings and come across several examples and properties of polynomial rings

• come across the idea of division algorithm and its applications

12.2 Polynomial rings

We are all familiar with expressions like, x2 + 4x+ 1. This is a polynomial with integer coefficients. We can
factorise them, find their roots, etc. Likewise, here we will look into those polynomials with coefficients from
commutative rings only.

Definition 12.2.1. Let R be a ring. A polynomial in x with coefficients from R is an expression of the type
f(x) = a0 + a1x+ · · ·+ anx

n, ai ∈ R, i = 0, 1, . . . , n.

Example 12.2.2. 1. f(x) = x4 + 4x3 + 1 is a polynomial with coefficients in Z.
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2. f(x) = x3 + (4 + i)x2 + 5 + 6i is a polynomial with coefficients from the ring of Gaussian integers,
that is, Z[i] = {a+ bi : a, b ∈ Z}.

3. If R = {a+ b
√
−5 : a, b ∈ Z}, then

f(x) = (3 + 6
√
−5)x7 + 5x3 + (8 + 7

√
−5)x+ (1 +

√
−5)

is a polynomial with coefficients from R.

We now recapitulate the definitions of addition and multiplication between two polynomials from a set of
polynomials with coefficients from R.

Definition 12.2.3. Let f(x) = a0+a1x+ · · ·+anxn and g(x) = b0+ b1x+ · · ·+ bmxm, where an, bm ̸= 0
be two polynomials over R. Then their sum and multiplication are defined as,

(f + g)(x) = (a0 + b0) + (a1 + b1)x+ · · ·

and,
(fg)(x) = c0 + c1x+ c2x

2 + · · ·+ cm+nx
m+n

where, ci is defined as

ci =
i∑

k=0

akbi−k

for i = 0, 1, . . . ,m+ n.

Then it is clear that addition is associative since addition in R is so. Also, the zero element is given by the
polynomial

0(x) = 0 + 0x+ 0x2 + · · ·

The inverse element of any polynomial f(x) = a0 + a1x + · · · + anx
n is given by −f(x) = −a0 − a1x −

· · · − anx
n. by virtue of all these properties, we have the following theorem:

Theorem 12.2.4. The set of polynomials over the ring R forms a ring under addition and multiplication. This
ring of polynomials is denoted by R[x].

Example 12.2.5. The ring of polynomials with coefficients from R, C are denoted by R[x], C[x] respectively.

Exercise 12.2.6. 1. Compute (i) (x2 + 2x+ 2) + (x2 + 3) (ii) (x2 + 2x+ 2)(x2 + 3) in Z5[x]

2. Compute (i) (2x2 + 1) + (4x2 + 5) (ii) (3x+ 2)(2x+ 3) in Z6[x].

R[x] may or may not have unit element. For example, consider the ring 2Z. It has no unit element.The
polynomial ring over 2Z also does not have unit element. Also see that R, C both have unit element 1 and also
their corresponding polynomials have so. So we see that the existence of unit element in R can be a possible
requisite for R[x] to contain so. We can see from the following theorem:

Theorem 12.2.7. Let R be a commutative ring with unit element 1. Then, R[x] is also a commutative ring
with unit element.



12.2. POLYNOMIAL RINGS 127

Proof. Since R is commutative, for any a, b ∈ R, a.b = b.a. So, for f(x) = a0 + a1x + · · · + anx
n, and

g(x) = b0 + b1x+ · · ·+ bmx
m in R[x], we have

(fg)(x) = c0 + c1x+ c2x
2 + · · ·+ cm+nx

m+n

where, ci is given as

ci =
i∑

k=0

akbi−k

=
i∑

k=0

bi−kak

since R is commutative. This shows that, fg = gf , for any polynomials f(x) and g(x) in R[x]. Also, if
we define the polynomial 1(x) = 1 + 0x + 0x2 + · · · , then we can easily check that, for any polynomial
f(x) ∈ R[x], we have f.1 = f . So, the above defined polynomial is the unit element in R[x].

All the examples of polynomial rings given before are polynomial rings with unity. The next theorem that
directly follows from the above is

Theorem 12.2.8. If R is an integral domain, then R[x] is so.

Proof. Since, R is an integral domain, it is a commutative ring with unity. By the previous theorem, we can
say that R[x] is also so. We are left only to show that R[x] does not contain any divisors of zero. For this, let
us assume that f(x) = a0 + a1x + · · · + anx

n, and g(x) = b0 + b1x + · · · + bmx
m are two polynomials in

R[x], with an, bm ̸= 0. So, we have,

(fg)(x) = a0b0 + (a1b0 + b1a0)x+ · · ·+ anbmx
m+n

Since R does not contain any zero divisor, and an, bm ̸= 0, so anbm ̸= 0. Hence, fg ̸= 0. Thus, R[x] does
not contain any zero divisor. Hence the result.

Corollary 12.2.9. If R is a field, then R[x] is an integral domain.

But can we say that R[x] is a field if R is so? It is evident that the constant polynomials of R[x] are units
and have an inverse in R[x]. Indeed, we have the following result.

Theorem 12.2.10. Let R be an integral domain with unity 1. Then the units of R[x] are the same as those of
R.

To prove the above theorem, we will need a few more results.

Definition 12.2.11. Let f(x) be a non-zero polynomial in R[x]. Then the largest n for which the coefficient
of xn is non-zero, is called the degree of f . It is generally denoted by deg f .

Theorem 12.2.12. Let R be any commutative ring, f(x), g(x) ∈ R[x]. Then deg(fg) ≤ deg(f) + deg(g)
and equality holds when R is an integral domain.

Proof. Let f(x) = a0+ a1x+ · · ·+ anxn, an ̸= 0, so that deg f = n and let g(x) = b0+ b1x+ · · ·+ bmxm,
bm ̸= 0 with deg g = m. Then, f(x)g(x) = a0b0 + (a0b1 + a1b0)x + · · · + anbmx

m+n. Thus, deg(fg) ≤
m+n = deg f+deg g. IfR is an integral domain, then anbm ̸= 0. So, deg(fg) = m+n = deg f+deg g.

Corollary 12.2.13. If F is a field, deg(fg) = deg f+deg g and in particular deg(fg) ≥ deg f , as deg g ≥ 0.
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Definition 12.2.14. If f(x) ∈ R[x] is such that deg f = 0, it is called a constant polynomial.

If deg f = 0, then f(x) = a0 ∈ R and conversely, if a ∈ R, then a can be written as a+ 0x+ 0x2 + ... of
degree 0. Thus the constant polynomials can be identified with elements of R and under this identification, R
is a subring of R[x].

Theorem 12.2.15. Let R be an integral domain. Then If f, g ∈ R[x], then

deg(f + g) ≤ max{deg f, deg g}.

Proof. Let f(x) = a0 + a1x + . . . + anx
n ∈ R[x], an ̸= 0 and g(x) = b0 + b1x + . . . + bmx

m ∈ R[x],
bm ̸= 0. Then,

(f + g)(x) = f(x) + g(x) = (a0 + a1x+ . . .+ anx
n) + (b0 + b1x+ . . .+ bmx

m)

= (a0 + b0) + (a1 + b1)x+ . . .+ anx
n + . . .+ bmx

m if m > n

= (a0 + b0) + (a1 + b1)x+ . . .+ bmx
m + . . .+ anx

n if n > m

= (a0 + b0) + (a1 + b1)x+ . . .+ (an + bm)x
n if n = m and an ̸= −bm.

Hence the result.

Note that the result may also be true for arbitrary rings instead of integral domains. Also, there may be
cases when we can get strict inequalities.

Now we prove theorem 12.2.10.

Proof. Let f(x) ∈ R[x] be a unit so that there exists some g(x) ∈ R[x] such that f(x)g(x) = g(x)f(x) = 1.
Now, 0 = deg 1 = deg(fg) = deg f + deg g. Thus, deg f = deg g = 0, that is, f and g are constant
polynomials. The relation fg = gf = 1 implies that f and g are units in R. Thus, the units of R[x] are units
of R. Conversely, the units of R is also a unit of R[x].

Exercise 12.2.16. 1. What are the units of the ring Z7[x]?

2. Let R be a commutative ring with 1 and p(x) =
n∑
j=0

ajx
j ∈ R[x]. Prove that p(x) is a unit if and only

if a0 is a unit and aj are nilpotent for all j ≥ 1.

3. Give examples of polynomials f, g ∈ R[x] such that deg(f + g) < max{deg f,deg g}.

4. Give examples of polynomials f, g ∈ R[x] such that deg(fg) < deg f + deg g.

12.2.1 Division Algorithm

Theorem 12.2.17. Let F be a field and let f(x), g(x) ∈ F [x] with g(x) ̸= 0. Then there exists unique
polynomials q(x) and r(x) in F [x] such that

f(x) = g(x)q(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).
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Proof. If f(x) = 0 or deg f(x) < deg g(x), we simply set q(x) = 0 and r(x) = f(x). So, we assume that
n = deg f(x) ≥ deg g(x) = m. Let

f(x) = anx
n + · · ·+ a0, and

g(x) = bmx
m + · · ·+ b0

By, doing long division method, we let

f1(x) = f(x)− anbmx
n−mg(x)

Then, f1(x) = 0 or deg f1(x) < deg f(x). By induction hypothesis, there exists q1(x) and r1(x) in F [x]
such that

f1(x) = g(x)q1(x) + r1(x)

where, r1(x) = 0 or deg r1(x) < deg g(x). Thus,

f(x) = anb
−1
m xn−mg(x) + f1(x)

= anb
−1
m xn−mg(x) + g(x)q1(x) + r1(x)

= [anb
−1
m xn−m + q1(x)]g(x) + r1(x)

So the polynomials

q(x) = anb
−1
m xn−m + q1(x), and

r(x) = r1(x)

have the desired properties.
To prove the uniqueness, let

f(x) = g(x)q(x) + r(x) and

f(x) = g(x)q̄(x) + r̄(x)

where, and either r(x) = 0 or deg r(x) < deg g(x) and and either r̄(x) = 0 or deg r̄(x) < deg g(x).
Subtracting these two equations, we obtain

0 = g(x)[q(x)− q̄(x)] + [r(x)− r̄(x)]

r̄(x)− r(x) = g(x)[q(x)− q̄(x)]

Thus, r̄(x)− r(x) = 0, or the degree of r̄(x)− r(x) is at least that of g(x). Since the latter is impossible, we
have r̄(x) = r(x) and q(x) = q̄(x) as well.

The polynomials q(x) and r(x) in the division algorithm are called quotient and remainder in the division.

12.2.2 Remainder Theorem

Corollary 12.2.18. Let F be a field, a ∈ F , and f(x) ∈ F [x]. Then f(a) is the remainder in the division of
f(x) by x− a.

Proof. Left as exercise.
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Example 12.2.19. Divide 3x4 + 2x3 + x + 2 by x2 + 4 in Z5[x]. As we follow the division, we note that
−4 = 1,−3 = 2, and −2 = 3− we are doing arithmetic mod 5.

3x2 + 2x+ 3

x2 + 4
∣∣3x4 + 2x3 + x+ 2

3x4 + 2x2

− −
2x3 + 3x2 + x

2x3 + 3x

− −
3x2 + 3x+ 2

3x2 + 2

− −
3x

The quotient is 3x2 + 2x+ 3 and remainder is 3x. Thus,

3x4 + 2x3 + x+ 2 = (3x2 + 2x+ 3)(x2 + 4) + 3x.

12.2.3 Factor Theorem

Corollary 12.2.20. Let F be a field, a ∈ F , and f(x) ∈ F [x]. Then a is the zero of f(x) if and only if x− a
is a factor of f(x).

Proof. Left as exercise.

Corollary 12.2.21. A polynomial of degree n over a field has at most n zeros, counting multiplicities.

Proof. We use induction over n. Clearly, a polynomial of degree 0 over a field has no zeros. Now, let f(x) is
a polynomial of degree n over a field and a is a zero of f(x) of multiplicity k. Then

f(x) = (x− a)kq(x) and

q(a) ̸= 0

and since

n = deg f(x)

= (x− a)kq(x)

= k + deg q(x)

we have k ≤ n. If f(x) has no zeros other than a, we are done. On the other hand, if b ̸= a and b is a zero of
f(x), then

0 = f(b) = (b− a)kq(b)

so that b is also a zero of q(x) with the same multiplicity as it has for f(x). By the Second Principle of
Induction, we know that q(x) has at most deg q(x) = n − k zeros, counting multiplicity. Thus f(x) has at
most k + n− k = n zeros, counting multiplicity.

Exercise 12.2.22. 1. If R and R′ are two isomorphic rings, show that R[x] and R′[x] are isomorphic.

2. Show that for any R, R[x] can never be a field.
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Sample Questions

1. If R is an integral domain, show that R[x] is also so.

2. For a commutative ring R, show that deg(fg) ≤ deg f + deg g, for f(x), g(x) ∈ R[x]. Can we write
equality in the given inequation? Justify your answer.

3. In an integral domain R, show that deg(f + g) ≤ max{deg f, deg g}, for f(x), g(x) ∈ R[x].

4. Show that the units in an integral domain are precisely those in R[x].

5. State and prove the division algorithm in F [x], for a field F .



Unit 13

Course Structure

• Domains in rings

• Classification of domains

• Irreducible Polynomials and Eisenstein’s Criterion for irreducibility

13.1 Introduction

This unit is dedicated to the study of different kinds of rings. We have come across integral domains and
fields in our preceding units. A field is an integral domain (inclusion is shown in figure 13.1.1). The converse
is not true as Z is an integral domain without being a field. There are however certain types of domain that

Figure 13.1.1: Basic Inclusion in domains

comes in between these two extremes. They are the Euclidean domains (ED), Principal Ideal Domains (PID)
and Unique Factorisation Domains (UFD). We will explore the inclusions of these domains and their basic
properties. Having equipped with the basic idea on domains, we will discuss the irreducibility of polynomials
under certain conditions.

Objectives

After reading this unit, you will be able to
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• define various types of domains and explore their characteristics

• define irreducibility of polynomials and learn certain criteria to check for the irreducibility of polyno-
mials in a given polynomial ring

13.2 Euclidean Domain

Definition 13.2.1. A Euclidean domain is an integral domain R in which there exists an integer valued func-
tion d on the non-zero elements of R, satisfying the following conditions:

1. d(a) ≥ 0 for all non-zero a ∈ R.

2. d(ab) ≥ d(a), a, b ∈ R

3. For a, b ∈ R, b ̸= 0 there exists q, r ∈ R such that a = bq + r with either r = 0 or d(r) < d(b).

Example 13.2.2. 1. If R = Z, then d can be defined on R as d(a) = |a|. Then check that d satisfies all
the conditions of an Euclidean domain.

2. LetR = {a+ib : a, b ∈ Z} be the ring of Gaussian Integers. The if d is defined as d(z) = |z|2 = a2+b2,
where, z = a+ ib, then R forms a Euclidean Domain.

3. Let R be a field. Then, d can be defined as, d(a) = a.a−1. This definition is well defined since each
element a has an inverse. d satisfies all the properties of an integral domain.

Theorem 13.2.3. Let R be an Euclidean Domain. Then, every ideal I of R is of the form I = Ra for some
a ∈ R.

Proof. If I = 0, then a = 0 and we are done. So, we take I ̸= 0. Choose some a ̸= 0 such that d(a) is the
least in R. Such an a exists by well-ordeing principle of real numbers. We claim that I = Ra. Since a ∈ R,
so Ra ⊂ I . Let b ∈ I . By the third condition of the definition of Euclidean domain, there exists q and r in R
such that b = aq + r, where, either r = 0 or d(r) < d(a). Now, r = b − aq is in R. If d(r) < d(a), then
this contradicts the fact that a is the element with the least value of d. Then obviously r = 0. Thus, we get
b = aq. Hence, I ⊂ Ra. Combining. we get I = Ra.

Theorem 13.2.4. Let R be a Euclidean Domain. Then any two elements a, b in R, have a gcd.

Proof. Let I = Ra and J = Rb. Then I + J is also an ideal of R. By the previous theorem, we have
I + J = Rd for some d in R. We claim that d is the gcd of a and b. We can see that I = Ra ⊂ Rd and
J = Rb ⊂ Rd. Hence, d|a and d|b. Let d′ be another element in R such that d′|a and d′|b. So, Ra ⊂ Rd′ and
Rb ⊂ Rd′. This implies that Rd = I+J ⊂ Rd′. Hence, d′|d. Hence, by definition, d is the required gcd.

Theorem 13.2.5. Let R be a Euclidean domain. Then, a ∈ R is a unit if and only if d(a) = d(1).

Proof. Let a be a unit in R. Then, a.a−1 = 1. By the second condition of d, d(1) = d(a.a−1) ≥ d(a).
Also, d(a) = d(a.1) ≥ d(1). So, combining, we get d(a) = d(1). Conversely, let d(a) = d(1). By the third
condition of d, we have 1 = qa+ r, with either r = 0 or d(r) < d(a) = d(1). But, d(r) < d(1) is impossible
since d(r) = d(r.1) ≥ d(1). Hence, r = 0. Thus, aq = 1. Hence, a is a unit in R.

Theorem 13.2.6. Let R be a Euclidean Domain and a, b be two elements in R. If a is a proper divisor of b,
then d(a) < d(b).
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Proof. Since a|b, there exists some c ∈ R such that b = ac. So we have, d(b) ≥ d(a). We will show that
d(b) ̸= d(a). If possible, d(a) = d(b). Then, for any x ∈ Ra we have d(x) ≥ d(a) = d(b) which means
that d(b) is least in Ra. This implies that, Ra = Rb, which implies that a and b are associates which is a
contradiction. Hence the result.

Theorem 13.2.7. Let R be an Euclidean Domain. Then any a ∈ R which is not a unit can be expressed as a
product of irreducible elements.

Proof. If a is irreducible, then there is nothing to prove. Otherwise, it has a proper divisor b, that is, a = bc.
Then, d(b) < d(a) and d(c) < d(a). If b and c are irreducible, then we are done. If b(or c) is irreducible,
then we can write b = ef , where d(e) < d(b) and d(f) < d(b). If this process is continued, then after a
finite number of stages all the factors will be irreducible since the values of d is strictly reducing at each stage.
Thus, after a finite number of steps, all the factors will be irreducible and a will be expressible as the product
of irreducible elements.

Example 13.2.8. Let R be an Euclidean Domain and let

I = {a : d(a) > d(1)} ∪ {0}

Then I does not form an ideal in R. In fact, if we consider the ring Z, the only units in Z are ±1. Now, 2, 3
belong to I but 2− 3 does not belong to I . Hence, I is not an ideal in this case.

Example 13.2.9. Let R be a Euclidean Domain. If d′ be another function defined as d′(a) = d(a) +m , for
some positive integerm, with d(1)+m ≥ 0. Check thatR is a Euclidean Domain with respect to the function
d′.

Example 13.2.10. If R is a Euclidean Domain and for a, b in R, if a|b and d(a) = d(b), then, a and b are
associates.

Exercise 13.2.11. 1. Show that the units in the ring of Gaussian integers, that is, R = {a+ ib | a, b ∈ Z}
are ±1, ±i.

2. Show that the ring of even integers is not an Euclidean domain.

3. Show that every field in an ED.

4. If a is an irreducible element in an ED R, show that Ra is a maximal ideal.

13.3 Principal Ideal Domain

Definition 13.3.1. An integral domain R is called a Principal Ideal Domain (PID) if every ideal of R is a
principal ideal, that is, for any ideal I in R, there exists an element a in R such that I = ⟨a⟩ = Ra.

It is clear from theorem 13.2.7, we can say that every Euclidean Domain is a Principal Ideal Domain. But

the converse is not necessarily true. For example, the ringR =

{
a+

b

2
(1 +

√
−19) : a, b ∈ Z

}
is a Principal

ideal domain, but not a Euclidean domain.

Theorem 13.3.2. Any two elements in a PID R have gcd.

Proof. Similar as before.

Theorem 13.3.3. Let R be a PID. Then every a ∈ R can be expressed as a product of irreducible elements.
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Proof. If a ∈ R is irreducible, then there is nothing to prove. Otherwise, let a = bc, where b, c are proper
divisors of a. If both b, c are irreducible, then we are done. Suppose, b is irreducible . Then we have

b = ef

where e, f are proper divisors of b. If we continue in this way, after a finite number of steps, all the factors
will be irreducible for otherwise, there will be an infinite sequence of elements,

a0 = a, a1 = b, a2 = e, · · · , an, . . .

such that an+1 is a proper divisor of an. We will show that this is impossible.
Let such a sequence exists. Let In = Ran, so that we have an increasing sequence of ideals

I0 ⊂ I1 ⊂ I2 · · · In....

Since an+1 is a proper divisor of an, In ̸= In+1. Let

I =

∞⋃
k=0

Ik.

Then I is an ideal of R, because if a, b ∈ I , then a ∈ I and b ∈ I , where either Ir ⊂ Is or Is ⊂ Ir, so that
a − b ∈ Ir ∪ Is ⊂ I , and xa ∈ Ir ⊂ I for all x ∈ R. Since R is a principal ideal domain, I = ⟨d⟩ for some
d ∈ R. Now, d ∈ Im for some m, so that I = ⟨d⟩ ⊂ Im ⊂ Im+1 ⊂ · · · ⊂ I , i.e., Im = Im+1 = · · · = I , a
contradiction. Hence proved.

Example 13.3.4. The ring R = {m/n : m,n ∈ Z, n odd} is a principal ideal domain.

Exercise 13.3.5. 1. Show that a subring of a PID need not be a PID.

2. If R is a PID, and p ∈ R, p ̸= 0. Show that the following conditions are equivalent:

a) p is a prime

b) p is an irreducible element

c) Rp is a prime ideal

d) Rp is a maximal ideal

3. Show that in a PID, every non-zero prime ideal is maximal.

4. Show that every ideal in a PID is contained in a maximal ideal.

13.4 Unique Factorisation Domain

Definition 13.4.1. An integral domain R is called a Factorisation Domain (FD) if every element a ∈ R,
which is not a unit can be expressed as a product of irreducible elements.

Thus, the Euclidean domain and principal ideal domains are factorisation domains.

Definition 13.4.2. a ∈ R is said to be expressible uniquely as a product of irreducible elements if whenever
a = p1p2 . . . pm = q1q2 . . . qn, where pi, qj are irreducible, then m = n and each pi = uiqi, where ui is a
unit in some order.
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If a ∈ R be expressed as a product of irreducible elements, the expression need not be unique.

Example 13.4.3. Let R = {a + b
√
−5 | a, b ∈ Z}. Then the only units in R are ±1. Also, 1 + 2

√
−5 is an

irreducible element. Similarly, we can show that 3 and 7 are irreducible elements in R.Then

21 = 3.7 = (1 + 2
√
−5)(1− 2

√
−5).

Hence there are two distinct factorisations of 21 into irreducible elements of R since 1 ± 2
√
−5 are not

associates of 3 or 7.

Definition 13.4.4. An integral domain R is said to be a Unique Factorisation Domain (UFD) if every a ∈ R
which is not a unit can be expressed uniquely as a product of irreducible elements.

Theorem 13.4.5. Let R be an integral domain in which

1. Every a ∈ R which is non-unit can be expressed as a product of irreducible elements.

2. Every irreducible element is prime.

Then R is a ufd.

Proof. It is sufficient to show that factorisation is unique. Let a = p1p2 . . . pm = q1q2 . . . qn, where pi, qj are
irreducible, and hence prime. Since p1|a, we have, p1|q1q2 . . . qn. So, p1|qj for some j. Without any loss of
generality, let us assume that p1|q1. Since q1 is irreducible,and p1 is not a unit, p1 is an associate of q1, that is,
q1 = u1p1, where u1 is a unit. Thus, p1p2 . . . pm = (u1p1)q2 . . . qn. Since R is an integral domain, we have,
p2p3 . . . pm = u1q2q3 . . . qn. Repeating the same process for p2, we have, q2 = u2p2, where u2 is a unit.
Continuing this process we must have neither pt not qt left after a finite number of steps, for otherwise, in
either case, a unit will be expressible as a product of irreducible elements, which is impossible. Thus, m = n,
and each pt = uiqi, where ui is a unit.

Corollary 13.4.6. Let R be a Euclidean domain or a PID. Then, R is a ufd.

Proof. It is sufficient to show that every irreducible element is prime. Let p be an irreducible element and
p|ab. Consider the gcd(p, a) of p and a. It is either p or 1, and if gcd(p, a) = p, then p|a. If gcd(p, a) = 1,
then λp + µa = 1 for some λ, µ ∈ R. Multiplying both sides by b, we have, λpb + µab = b. Since p|ab, it
follows that p|b. Hence p is a prime.

There exists ufd’s which are not PID’s (or ED’s).

Theorem 13.4.7. If R is a ufd, then any two elements of R has a gcd.

Exercise 13.4.8. 1. Show that in a UFD, a|c, b|c and gcd(a, b) = 1 implies ab|c.

2. Show that in a UFD, gcd(a, c) = 1, gcd(b, c) = 1 implies gcd(ab, c) = 1.

3. In a FD R, if any two elements have a gcd, show that R is a UFD.
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13.5 Irreducible Polynomials

Let us use the idea of domains in the context of polynomial rings and try to establish new results in this
direction.

Theorem 13.5.1. If F is a field, then F [x] is a Euclidean domain.

Proof. By discussions in previous units, F [x] is an integral domain. Define d : F [x] → Z as d(f(x)) =
deg f(x), for all f(x) ∈ F [x]. It is easy to check that d satisfies all the properties of definition 13.2.1 and
hence is an ED (verify!).

Theorem 13.5.2. If F is a field, then F [x] is a principal ideal domain.

Proof. We know that F [x] is an integral domain. Let I be an ideal in F [x]. If I ̸= {0}, then among all the
elements of I , let g(x) be one of minimum degree. We will show that I = ⟨g(x)⟩. Since g(x) ∈ I , we have
⟨g(x)⟩ ⊆ I . Now, let f(x) ∈ I . Then by division algorithm, we may write,

f(x) = g(x)q(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x). Since r(x0 = f(x)− g(x)q(x) ∈ I , the minimality of deg g(x)
implies that the latter condition cannot hold. So, r(x) = 0 and hence f(x) ∈ ⟨g(x)⟩. This shows that
I ⊆ ⟨g(x)⟩.

The converse of the above theorem is not true in general. For example, Z[x] is a PID (how?) but Z is not a
field.

Theorem 13.5.3. Let F be a field, I a non-zero ideal in F [x], and g(x) an element of F [x]. Then I = ⟨g(x)⟩
if and only if g(x) is a nonzero polynomial of minimum degree in I .

Recollect all that we have learnt in the preceding units concerning polynomial rings. We will be defining
an irreducible element in R[x] for an integral domain R.

Definition 13.5.4. Let R be an integral domain. A polynomial f(x) ∈ R[x] which is neither the zero polyno-
mial nor a unit in R[x] is said to be irreducible over R if, whenever f(x) is expressed as f(x) = g(x)h(x),
where h(x), g(x) ∈ R[x], then g(x) and h(x) are units in R[x]. A nonzero, nonunit element in R[x] that is
not irreducible over R is said to be reducible over R.

When R is a field, then it can be more conveniently said that a polynomial f(x) is irreducible if it can’t be
expressed as the product of two polynomials of lower degree.

Example 13.5.5. The polynomial f(x) = 2x2+4 is irreducible over Q but reducible over Z, since 2x2+4 =
2(x2 + 2) and neither 2 nor x2 + 2 is a unit in Z.

In fact, we will soon see that any polynomial reducible over Q is reducible over Z but the converse is not
true as we have seen in the above example.

Example 13.5.6. The polynomial f(x) = 2x2 + 4 is irreducible over Rbut reducible over C.

Example 13.5.7. The polynomial f(x) = x2 − 2 is irreducible over Q but reducible over R since x2 − 2 =
(x−

√
2)(x+

√
2).

In general it is not a very easy job to decide whether a given polynomial is irreducible over some given
integral domain. So, we have certain theorems to help us decide that. Our first such theorem is
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Theorem 13.5.8. Let F be a field. If f(x) ∈ F [x] and degf(x) = 2, or 3, then f(x) is reducible over F if
and only if f(x) has a zero in F .

Proof. Let f(x) = g(x)h(x), where h(x), g(x) ∈ F [x] and have degrees less than that of f(x). Since
degf(x) =degg(x)+degh(x), and degf(x) is 2 or 3, at least one of g(x) and h(x) has degree 1. Say g(x) =
ax+ b. Then of course −a−1b is a root of g(x) and hence a zero of f(x) too.

Conversely, suppose that f(a) = 0, where a ∈ F . Then, by the Factor Theorem, we know that x − a is a
factor of f(x) and therefore f(x) is reducible over F .

One may think whether the theorem is true for polynomials over degree 3. For this, let us consider the
following example:

Example 13.5.9. Consider f(x) = x4 + 2x2 + 1 over Q[x]. Then clearly, x4 + 2x2 + 1 = (x2 + 1)(x2 + 1).
Hence f(x) is reducible without having zeros in Q.

Of course if f(x) has a root in R[x] then it is reducible. But the converse is true only if the conditions in
the above theorem hold.

We have another powerful theorem fo checking irreducibility of polynomials in a UFD called the Eisen-
stein’s Criterion. Lets check that out.

13.5.1 Eisenstein’s criterion for irreducibility

Definition 13.5.10. The content of a nonzero polynomial anxn + · · · + a0, where the a’s are the integers, is
the greatest common divisor of the integers an, · · · , a0.

A primitive polynomial is an element of Z[x] with content 1.

The product of two primitive polynomials is primitive.

Theorem 13.5.11. Let f(x)∈ Z[x]. If f(x) is reducible over Q, then it is reducible over Z

Proof. Let f(x) = g(x)h(x), where g(x) and h(x) ∈ Q[x]. Clearly, we assume that f(x) is a primitive
because we can divide both f(x) and g(x) by the content of f(x). Let a be the least common multiple of
the denominators of the coefficients of g(x), and b be the least common multiple of the denominators of the
coefficients of h(x). Then

abf(x) = ag(x).bh(x),

where ag(x) and bh(x) in Z[x]. Let c1 be the content of ag(x) and c2 be the content of bh(x). Then

ag(x) = c1g1(x) and

bh(x) = c2h1(x)

where both g1(x) and h1(x) are primitive, and

abf(x) = c1c2g1(x)h1(x)

Since, f(x) is primitive, the content of abf(x) is ab. Also, since the product of two primitives is primitive, it
follows that the content of c1c2g1(x)h1(x) is c1c2. Thus, ab− c1c2 and f(x) = g1(x)h1(x), where g1(x) and
h1(x) ∈ Z[x] and deg g1(x) = deg g(x) and deg h1(x) = deg h(x).

Theorem 13.5.12. Let
f(x) = anx

n + an−1x
n−1 + · · ·+ a0 ∈ Z[x]

If there is a prime p such that p does not divide an, p|an−1, · · · , p|a0 and p2 does not divide a0, then f(x) is
irreducible over Q.
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This is Eisenstein’s Criterion. This theorem can also be stated for any arbitrary UFD.

Proof. If f(x) is reducible over Q then there exists g(x) and h(x) in Z[x] such that

f(x) = g(x)h(x)

1 ≤ deg g(x) and 1 ≤ deg h(x) < n. Say

g(x) = brx
r + · · ·+ b0 and

h(x) = csx
s + · · ·+ c0.

Then, since p|a0, and p2 does not divide a0, and a0 = b0c0, it follows that p divides one of b0 and c0, but not
the other. Let p|b0 and not c0. Also, since p does not divides an = brcs, we know that p does not divide br.
So, there is a least integer t such that p does not divide bt. Now, consider

at = btc0 + bt−1c1 + · · ·+ b0ct.

By assumption, p divides at and by choice of t, every summand on the right after the first one is divisible by
p. Clearly, this forces p to divide btc0 as well. This is impossible, however, since p is prime and p divides
neither bt nor c0.

Corollary 13.5.13. For any prime p, the p-th cyclotomic polynomial

ϕp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q.

Example 13.5.14. The polynomial 3x5 + 15x4 − 20x3 + 10x+ 20 is irreducible over Q because 5 does not
divide 3 and 25 does not divide 20 but 5 divides 15, −20, 10 and 20.

Theorem 13.5.15. Let F be a field and p(x)∈ F [x]. Then ⟨p(x)⟩ is maximal ideal in F [x] if and only if p(x)
is irreducible over F.

Proof. Let ⟨p(x)⟩ be maximal ideal in F [x]. Clearly, p(x) is neither zero nor unit in F [x], because neither
{0} nor F [x] is a maximal ideal in F [x]. If p(x) = g(x)h(x) is a factorization of p(x) over F , then ⟨p(x)⟩ ⊆
⟨g(x)⟩ ⊆ F [x]. Thus, ⟨p(x)⟩ = ⟨g(x)⟩ or F [x] = ⟨g(x)⟩ . In the first case, we must have deg p(x) =
deg g(x). In the second case, it follows that deg g(x) = 0 and consequently, deg h(x) = deg p(x). Thus p(x)
cannot be written as product of two polynomials in F [x] of lower degree.
Now, let p(x) is irreducible over F . Let I be any ideal of F [x] such that ⟨p(x)⟩ ⊆ I ⊆ F [x]. Since
F [x] is a principal ideal domain, we know that I = ⟨g(x)⟩ for some g(x) ∈ F [x]. So, p(x) ∈ ⟨g(x)⟩
and thus p(x) = g(x)h(x), where h(x) ∈ F [x]. Since, p(x) is irreducible over F , it follows that either
g(x) is a constant or h(x) is a constant. In the first case, we have I = F [x]; in the second case, we have
⟨p(x)⟩ = ⟨g(x)⟩ = I . So, ⟨p(x)⟩ is maximal in F [x].

Corollary 13.5.16. Let F be a field and p(x) be an irreducible polynomial over F . Then, F [x]/⟨p(x)⟩ is a
field.

Proof. This easily follows.

Corollary 13.5.17. Let F be a field and let p(x), a(x), b(x) ∈ F [x]. If p(x) is irreducible over F and
p(x)|a(x)b(x), then p(x)|a(x) or p(x)|b(x).
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Proof. Since, p(x) is irreducible, F [x]/⟨p(x)⟩ is a field and, therefore, an integral domain. From one of the
previous theorems, we know that ⟨p(x)⟩ is a prime ideal, and since p(x) divides a(x)bx), we have a(x)b(x) ∈
⟨p(x)⟩. Thus, a(x) ∈ ⟨p(x)⟩ or b(x) ∈ ⟨p(x)⟩. This means that p(x)|a(x) or p(x)|b(x).

Exercise 13.5.18. 1. Show that every polynomial with real coefficients of odd degree is reducible.

2. Find all roots of f(x) = x3 + x2 + x+ 1 in Z5.

3. Let f(x) = x2 + 8x− 2. Show that it is irreducible over Q. Is is irreducible over R?

4. Test for irreducibility of the following polynomial over Q:

a) 8x3 + 6x2 − 9x+ 24

b) x4 + 9x+ 3

c) x5 + 9x4 + 12x2 + 6

5. Show that x2 + x+ 4 is irreducible over Z11.

Sample Questions

1. Show that every ED is a PID. Is the converse true? Justify your answer.

2. Show that every PID is a UFD.

3. Show that any two elements in an ED have a gcd.

4. If F is a field, show that F [x] is a PID.

5. Let f(x) ∈ F [x], where deg f(x) = 2 or 3 and F is a field. Show that then f(x) is reducible over F if
and only if f(x) has a zero in F .

6. State the Eisenstein’s criteion. Hence check for the irreducibility of the x7 + 48x− 24 over Q.



Unit 14

Course Structure

• Extension of fields: Simple extension, Algebraic and transcendental extensions

• Splitting fields, normal extensions

• Separable extensions.

14.1 Introduction

Consider the expression x2 + 1. It is a polynomial with real coefficients. Hence, if we name it as f(x),
then f(x) ∈ R[x]. But, this polynomial clearly has no root in the underlying field R. However, if we adjoin
the number i =

√
−1 to the field R and consider a new field containing R and i, then that new field can be

identified with the complex field C. C can be thought of as some sort of “extension" to the field of real numbers
which contains both the roots of f(x), that is ±i. Thus, in order to find the roots of a general polynomial over
a certain field F , we may be required to go to some higher field, say K containing F . This K gives a clearer
picture of the roots of the polynomial in question. The nature of the roots, such as whether they are simple or
multiple; the nature of the polynomial, for example f(x) as defined above, is irreducible in R, whereas, it is
reducible in C; etc. can be studied having a systematic introduction to the idea of field extensions.

Objectives

After reading this unit, you will be able to

• learn the basic idea of extension of fields and related terminologies

• get an idea of the roots of a given polynomial by the application of appropriate extension to a given field

• find a certain extension that contains all the roots of a given polynomial

141
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14.2 Field extensions

Definition 14.2.1. Let F be a field and K be another field containing F . Then K is called an extension of F
and is denoted by the symbol K/F .

Example 14.2.2. 1. Let F = Q, K = R and L = C, the fields of rational, real, and complex numbers.
Then, K and L are extensions of F .

2. Let K be a field of Char p ≥ 0. If p = 0, K contains a field F isomorphic to Q, that is, K is an
extension of F . If p > 0, K contains a field F isomorphic to Zp, that is, K is an extension of F .

Definition 14.2.3. Let K/F be an extension, a1, a2, · · · , an ∈ K. The smallest subfield of K containing F
and a1, a2, · · · , an is called the field generated by a1, a2, · · · , an over F and is denoted by F (a1, a2, · · · , an).

Theorem 14.2.4.

F (a1, a2, · · · , an) =
{
f(a1, a2, · · · , an)
g(a1, a2, · · · , an)

: f, g ∈ F [x1, x2, · · · , xn], g(a1, a2, · · · , an) ̸= 0

}
Proof. Let

L =

{
f(a1, a2, · · · , an)
g(a1, a2, · · · , an)

: f, g ∈ F [x1, x2, · · · , xn], g(a1, a2, · · · , an) ̸= 0

}
Then L is evidently a field for addition and multiplication induced from K. Also, L ⊃ F as a ∈ F can
be represented as a = a/1 ∈ L. Let K be some other field containing F and a1, a2, · · · , an, then K

contains f(a1, a2, · · · , an) and also
f(a1, a2, · · · , an)
g(a1, a2, · · · , an)

, if g(a1, a2, · · · , an) ̸= 0. Hence, L ⊂ K. Hence the

result.

Definition 14.2.5. K/F is called a simple extension if K = F (a).

Example 14.2.6. Let F = Q and

K =

{
a+ b

√
2

c+ d
√
2
| a, b, c, d ∈ Q, c or d ̸= 0

}
.

Then K is a field and K = Q(
√
2) is a simple extension of Q.

Theorem 14.2.7. Let K/F be a simple extension with K = F (a). The, either

1. there does not exist any non-zero polynomial g(x) ∈ F [x] with g(a) = 0, or

2. there exists a unique monic polynomial f(x) of least degree with f(a) = 0.

Proof. Let ϕ : F [x] → F [a] be defined by ϕ(f(x)) = f(a), f(x) ∈ F [x]. Then ϕ is a ring homomorphism
which is onto. Then we have two cases:

1. If Ker ϕ = {0}, there does not exist any non-zero polynomial g(x) ∈ F [x] such that g(a) = 0.

2. If Ker ϕ ̸= {0}, then since F [x] is a PID, so there exists a polynomial h(x) ∈ F [x] such that Ker ϕ =
⟨h(x)⟩, h(x) is unique if chosen to be monic. Now, since h(x) ∈ Ker ϕ, so h(a) = 0. Let f(x) ∈ F [x]
with f(a) = 0. Then f(x) ∈ Ker ϕ and f(x) is a multiple of h(x), that is, degree of f ≥ deg h. Hence
the second part is proved.
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We further see that Ker ϕ is a non-zero prime ideal, since F [a] is a PID, hence Ker ϕ is a maximal ideal,
that is, F [x]/(Ker ϕ) is isomorphic to F [a], a field. This shows that F [a] = F (a).

Definition 14.2.8. Let K/F be an extension of a ∈ K. Then a is called transcendental over F if there does
not exist any non-zero f(x) ∈ F [x] with f(a) = 0. Otherwise, a is called algebraic over F and the unique
monic polynomial f(x) ∈ F [x] of least degree with f(a) = 0 is called the minimum polynomial of a. And, if
every element of K is algebraic, then K/F is called an algebraic extension.

Example 14.2.9. 1. Let F = R. Then a = i =
√
−1 is algebraic over F with minimal polynomial x2+1.

2. F = Q. Then a = e or π. Then a is transcendental over F .

3. F = Q and a =
√
3. Then a is algebraic over F since the minimum polynomial is x2 − 3 ∈ Q[x].

Theorem 14.2.10. Let a ∈ K be algebraic over F and f(x) be the minimum polynomial of a with degree n.
Then F (a) forms a vector space over F with dimension n.

Proof. We have,

F (a) =
F [x]

⟨f(x)⟩
= F [a]

where
f(x) = xn + c1x

n−1 + · · ·+ cn,

where, ci ∈ F . We claim that 1, a, a2, . . . , an−1 is a basis of F (a). They are linearly independent since
otherwise a will satisfy a polynomial of degree less than n over F contradicting that f(x) is the minimum
polynomial of a. Now,

an = −(c1a
n + c2a

n−1 + · · ·+ cna).

This is an F -linear combination of 1, a, · · · , an−1 by substituting for an. Similarly, any power of a can be
expressed as a linear combination of 1, a, a2, . . . , an−1. Thus, 1, a, a2, . . . , an−1 generates F [a] = F (a) over
F . Hence, the result.

Definition 14.2.11. LetK/F be an extension. It is called a finite extension if dimension ofK over F , denoted
as dimF K <∞, or [K : F ] <∞.

Example 14.2.12. If a is algebraic over F with minimum polynomial of degree n, then [F (a) : F ] = n.

Theorem 14.2.13. Let K/F be a finite extension. Then K/F is an algebraic extension.

Proof. Let [K : F ] = n. Then, by the previous theorem, 1, a, a2, . . . , an are linearly dependent over F . In
particular, there exists c0, c1, . . . , cn, not all zero, such that,

c0 + c1a+ c2a
2 + · · ·+ cna

n = 0

Hence, if we define f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n ̸≡ 0, then f(a) = 0. Hence, a is algebraic over F .
Since every a ∈ K is algebraic over F , K/F is an algebraic extension.

Theorem 14.2.14. Let F ⊂ K ⊂ L be extensions such that K/F and L/K are finite. Then L/F is finite and

[L : F ] = [L : K][K : F ].
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Proof. Let {e1, e2, · · · , en} be a basis ofK/F and {f1, f2, · · · , fm} be a basis ofL/K. We claim that {eifj},
1 ≤ i ≤ n and 1 ≤ j ≤ m is a basis of L/F . Let a ∈ L. Then,

a =

m∑
j=1

bjfj

where, bj ∈ K. Now, for bj ∈ K, we have

bj =

n∑
i=1

cijei

where, cij ∈ F . Then,

a =

m∑
j=1

n∑
i=1

cijeifj

Thus showing that {eifj} generates L over F . In order to prove the linear independence, let∑
i,j

µijeifj = 0,

where, µij ∈ F . Then, ∑
j

(∑
i

µijei

)
fj = 0.

Owing to the linear independence of {fj} over K,∑
i

µijei = 0

for all j. Since {ei} are linearly independent over F , so µij = 0 for all i, j. Hence, {eifj} is a basis of L over
F . Hence the result.

Corollary 14.2.15. Let K/F be a finite extension and a ∈ K with minimum polynomial of degree n. Then
n divides [K : F ].

Proof. Follows directly from the above theorem.

Corollary 14.2.16. LetK/F be an extension, a1, a2, . . . , an ∈ K are algebraic overF . ThenF (a1, a2, . . . , an)/F
is a finite extension.

Proof. The proof is by induction on n. For n = 1, the result follows from theorem 14.2.10. By induction
hypothesis, F ′ = F (a1, a2, . . . , an−1)/F is a finite extension. Since an is algebraic over F , it is also so over
F ′. Hence, F ′(an)/F

′ is a finite extension. By the previous theorem, F ′(an)/F is a finite extension, that is,
F (a1, a2, . . . , an)/F is a finite extension.

Corollary 14.2.17. Let K/F be an extension and a, b ∈ K are algebraic over F . Then a± b, ab, a/b, b ̸= 0
are all algebraic over F .

Proof. Follows from the previous corollary.

Theorem 14.2.18. Let K/F and L/K are algebraic extensions. Then L/F is an algebraic extension.
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Proof. Since L/K is algebraic, every a ∈ L satisfies the relation an + c1a
n−1 + · · ·+ cn = 0, ai ∈ K. Then

a is also algebraic over F ′ = F (c1, c2, . . . , cn) as the above relation is also a relation over the field F ′. Since
ci ∈ K, they are all algebraic over F . Hence, F/F ′ is a finite extension . Now, F ′(a)/F ′ is a finite extension
and hence F ′(a)/F is finite. In particular, a is algebraic over F . Hence, L/F is an algebraic extension.

Definition 14.2.19. A field F is called algebraically closed if it has no proper algebraic extension, that is, if
K/F is an algebraic extension of F , then K = F .

The complex field C is algebraically closed.

Exercise 14.2.20. 1. Find the degree of the following field extensions

i) Q( 3
√
2,
√
3)/Q

ii) Q(
√
2,
√
3,
√
5)/Q

2. Show that a finite extension of prime degree is a simple extension.

3. Let K/F be an extension and a, b ∈ K are algebraic over F with degrees m and n respectively. Show
that if gcd(m,n) = 1, then [F (a, b) : F ] = mn.

14.3 Normal Extensions

We have seen that a polynomial f(x) ∈ F [x] may not always have a root in F , but we can obtain a root of
f(x) in an extension field K/F . We see the following theorem:

Theorem 14.3.1. Let f(x) ∈ F [x] be an irreducible polynomial. Then there exists an extension K/F which
contains a root of f(x).

Proof. Since f(x) is irreducible, the ideal I = ⟨f(x)⟩ in F [x] is a maximal ideal and hence K = F [x]/I is
a field. The map F → K given by a 7→ a + I is an isomorphism of F onto its image F ′ ⊂ K. Identifying
F with F ′ ⊂ K, we can consider K as an extension of F . Also, α = x + I ∈ K is a root of f(x) since
f(α) = f(x+ I) = f(x) + I = 0 as f(x) ∈ I . Hence the result.

Corollary 14.3.2. Let g(x) ∈ F [x] be any non-constant polynomial. Then there exists an extension K/F
which contains a root of g(x).

Proof. Consider an irreducible factor f(x) of g(x) and take the extension K/F which contains a root α of
f(x). Then α is a root of g(x).

Now, if g(x) ∈ F [x] is of degree n, then we know that g(x) can have at most n roots in any extension
K/F , counting a root of multiplicity k, as k roots. We now show that there exists a field K/F which contains
all the n roots of f(x) and in fact we can obtain a smallest extension which contains all the n roots.

Definition 14.3.3. Let f(x) ∈ F [x] be of degree n. An extension K/F is called a splitting field of f(x) if

1. K contains all the n roots a1, a2, . . . , an of f(x), and

2. K = F (a1, a2, . . . , an).

Theorem 14.3.4. Let f(x) ∈ F [x] be of degree n. Then f(x) has a splitting field.
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Proof. The proof is by induction on n. If n = 1, f(x) = cx + d, where c ̸= 0. Then a1 = −d/c ∈ F is
clearly a root of f(x) and K = F . Let n > 1. Let f1(x) be an irreducible factor of f(x) and let L = F (a1)
be an extension such that f1(a1) = 0. Then f(a1) = 0 and hence f(x) = (x− a1)g(x), g(x) ∈ L[x]. Since
degg(x) = n − 1, by induction, there exists an extension K/L which contains n − 1 roots a2, a3, . . . , an
of g(x) such that K = L(a2, a3, . . . , an). Then K = F (a1, a2, . . . , an) is the required splitting field of
f(x).

Let f(x) ∈ F [x] andK/F be a splitting field of f(x) with roots a1, a2, . . . , an. Then f(x) = (x−a1)(x−
a2) . . . (x− an) over K[x]. This means that a polynomial completely splits over its splitting field.

Example 14.3.5. 1. The splitting filed of x2 − 3 is Q(
√
3).

2. The splitting filed of x3 − 2 is Q(ω, 3
√
2), where ω is a cube root of unity.

Definition 14.3.6. Let K/F and K ′/F be extension fields. An isomorphism σ : K → K ′ of K onto K ′ is
called an F -isomorphism if σ|F = Id, where, Id is the identity mapping.

Theorem 14.3.7. Let σ : F → F ′ be an isomorphism of F onto F ′, f(x) ∈ F [x] an irreducible polyno-
mial, f(x) =

∑
aix

i, f(x) =
∑

aix
i, where ai = σ(ai), the image polynomial over F ′[x]. Let a, a′ be

respectively roots of f(x) and f(x). Then σ can be extended to an isomorphism σ : F (a) → F ′(a′) such that
σ|F = σ.

Proof. Since σ is an isomorphism and f(x) ∈ F [x] is irreducible, f(x) ∈ F ′[x] is also irreducible, σ can be
extended to an isomorphism σ1 : F [x] → F ′[x], where σ1

(∑
bix

i
)
=
∑

bix
i. Then σ1(f(x)) = f(x) and

this induces an isomorphism of the quotient rings

σ1 :
F [x]

⟨f(x)⟩
→ F ′[x]

⟨f(x)⟩

with σ1(x+ ⟨f(x)⟩) = x+ ⟨f ′(x)⟩. Since for any root α of f(x), F (α) ≃ F [x]

⟨f(x)⟩
, we have an isomorphism

σ : F (α) → F ′(α′). Clearly σ(α) = α′ and σ|F = σ.

Corollary 14.3.8. Let f(x) ∈ F [x] be an irreducible polynomial and α, α′ be roots of f(x) in some extension.
Then there exists an F -isomorphism σ : F (α) → F (α′) such that σ(α) = α′.

Proof. Take F = F ′ and σ = Id.

Theorem 14.3.9. Let σ : F → F ′ be an isomorphism from F onto F ′, f(x) ∈ F [x], f(x) =
∑
aix

i,
f(x) = σ(f(x)) =

∑
aix

i, where ai = σ(ai).

Proof. The proof is by induction on n = degf . If n = 0, there is nothing to prove. Assume n ≥ 1. Let f1(x)
be an irreducible factor of f(x), α a root of f1(x) and α′ a root of σ(f1). By the previous theorem, σ can be
extended to an isomorphism σ1 : F (α) → F ′(α′) with σ1|F = σ.

Let f(x) = (x − α)g(x), g(x) ∈ F (α)[x], so that σ(f(x)) = (x − α′)σ1(g). Then K(respectively K ′)
is a splitting field of g(x) over F (x)(respectively σ1(g) over F ′(α′)). By induction, σ1 can be extended to an
isomorphism σ : K → K ′ of K onto K ′. Clearly, σ|F = σ1|F = σ.

Corollary 14.3.10. Any two splitting fields of f(x) ∈ F [x] are isomorphic.

Proof. Take F = F ′ and σ = Id.
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We have seen earlier that an extension K/F of F may contain some roots of f(x) but not all. We will now
deal with those extensions which have that property.

Definition 14.3.11. An extension K/F is called a normal extension if it is algebraic and for any irreducible
polynomial f(x) ∈ F [x] which has a root in K, f(x) has all its roots in K.

Example 14.3.12. Let K/F be an extension of degree 2. Then it is normal. Let α ∈ K with minimum
polynomial f(x). Then degf(x) ≤ 2and if degf(x) = 1, α ∈ F . If degf(x) = 2, then f(x) = x2 + ax +
b, a, b ∈ F . Then the other root is α − a as the sum of the roots is −a. Hence α − a ∈ K, thus K/F is
normal.

Definition 14.3.13. Two algebraic elements α and α′ are said to be conjugate over F if there exists an F -
isomorphism σ : F (α) → F (α′) with σ(α) = α′.

Theorem 14.3.14. Two elements α and α′ are conjugate over F iff they have the same minimum polynomial
over F .

Proof. Let α and α′ are conjugate over F and let σ : F (α) → F (α′) with σ(α) = α′. If f(x) is the minimum
polynomial of α, then σ(f(x)) = f(x) is the minimum polynomial of σ(α) = α′.

Conversely, assume that α and α′ have the same minimum polynomial. Then using a previous theorem,
taking F = F ′ and σ = Id, we have an F -isomorphism σ : F (α) → F (α′) with σ(α) = α′. Hence α and
α′.

Exercise 14.3.15. 1. Show that Q(
√
2,
√
3) = Q(

√
2 +

√
3).

2. Find the degree of the splitting field of x4 + 1 ∈ Q[x] over Q.

3. Fine the splitting field of x4 − x2 − 2 over Q.

4. Find all the conjugates of the following elements over Q

i)
√

1 +
√
2

ii)
√
2 + i

5. Show that if n is not an integer which is not a perfect square and α = a + b
√
n, a b ∈ Q is a root of a

polynomial f(x) ∈ Q[x], then a+ b
√
n is also a root of f(x).

14.4 Separable Extensions

Definition 14.4.1. Let f(x) ∈ F [x] be an irreducible polynomial. f(x) is called a separable polynomial if
all its roots in its splitting field are simple. A polynomial g(x) ∈ F [x] is called separable if all its irreducible
factors are separable. A polynomial which is not separable is called an inseparable polynomial.

Example 14.4.2. x3 − 2 ∈ Q[x] is a separable polynomial as its roots 3
√
2, ω

3
√
2, ω2 3

√
2 are distinct, ω =

e2πi/3.

Theorem 14.4.3. Let f(x) ∈ F [x] be a non-constant polynomial. A root a of f(x) in some extension field is
a multiple root if and only if f ′(a) = 0.

Proof. If f(x) =
∑
i

aix
i, f ′(x) =

∑
i

iaix
i−1. Since a ∈ K/F is a root of f(x), f(x) = (x − a)g(x),

g(x) ∈ K[x]. a is a multiple root if and only if it is a root of g(x). Now, f ′(x) = g(x) + (x− a)g′(x). Thus,
a is a root of g(x) if and only if it is a root of f ′(x), that is, f ′(a) = 0. Hence the result.
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Corollary 14.4.4. Let f(x) ∈ F [x] be a monic irreducible polynomial. Then f has a multiple root if and only
if f ′ ≡ 0.

Proof. If a is a multiple root of f(x) in some extension, then f ′(a) = 0. Since f(x) is the minimum polyno-
mial of a, f(x) divides f ′(x). But deg f ′(x) < deg f(x) so that f ′(x) ≡ 0.

Corollary 14.4.5. Let CharF = 0 and f(x) ∈ F [x] be a monic irreducible polynomial. Then f(x) is
separable.

Proof. Let f(x) =
∑
i

aix
i be inseparable. Then f ′(x) =

∑
i

iaix
i−1 ≡ 0, by the previous corollary. In

particular, iai = 0 for all i ≥ 1, that is, f(x) = a0, a constant polynomial, which is a contradiction since f(x)
is irreducible. Hence, f(x) is separable.

Corollary 14.4.6. Let CharF = p > 0 and f(x) ∈ F [x] be a monic irreducible polynomial. Then f(x) is
inseparable if and only if f(x) is a polynomial in xp.

Proof. Let f(x) =
∑
i

aix
i. Then f(x) is inseparable if and only if f ′(x) ≡ 0, that is, iai = 0, i ≥ 1. Thus

implies ai = 0 if gcd(i, p) = 1, that is, f(x) is a polynomial in xp and conversely.

Definition 14.4.7. Let K/F be an extension. a ∈ K is called separable over F if it is algebraic and its
minimum polynomial over F is a separable polynomial. Otherwise, a is called inseparable.

Definition 14.4.8. An extension K/F is called separable if it is algebraic and every a ∈ K is separable over
F .

Example 14.4.9. 1. If CharF = 0, any algebraic extension is separable.

2. Let CharF = p > 0 and f(x) = xp − a ∈ F [x] with no root in F . Then f(x) is an inseparable
polynomial for let a1, a2 be two roots of f(x) in some extension field. Then ap1 = a = ap2. Now,
(a1 − a2)

p = ap1 − ap2, as all the other terms in the binomial expansion are zero, the coefficients being
divisible by p. Hence, (a1−a2)p = ap1−a

p
2 = a−a = 0, that is, a1 = a2. Thus, all the roots of f(x) are

the same and there is only one root of f , say α of multiplicity p. We claim that f(x) is irreducible over
F . Let g(x) be an irreducible factor of f(s) so that g(α) = 0, that is, g(x) is the minimum polynomial
of α. Thus, the only irreducible factor of f(x) is the minimum polynomial g(x) of α, that is, f = gm.
In particular, deg f = p = m deg g, that is, deg g divides p. But deg g > 1, as f(x) has no root in F .
Hence m = 1, that is, f = g is irreducible.

Certain types of fields do not admit any inseparable extensions. These are called perfect fields.

Definition 14.4.10. F is called a perfect field if every algebraic extension K/F is separable.

By the previous example, every field F having characteristic 0 is perfect.

Exercise 14.4.11. 1. Examine whether x4 + x+ 1 ∈ Q[x] is a separable polynomial.

2. Let CharF = p > 0 and K/F be a finite extension. If it is inseparable, show that p divides [K : F ].
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Sample Questions

1. Define algebraic extension. If a ∈ K is algebraic over F with minimum polynomial of degree n, show
that F (a) forms a vector space over F with dimension n.

2. Show that every finite extension is algebraic.

3. If F ⊂ K ⊂ L be fields such that K/F and L/K are finite. Show that [K : F ] divides [L : F ].

4. For every irreducible polynomial f(x) ∈ F [x], show that there exists an extension which contains a
root of f(x).

5. Define splitting field. Every polynomial has a splitting field. Comment with justifications.

6. For every non-constant polynomial f(x) show that a is a multiple root if and only if f ′(a) = 0.

7. If F has characteristic 0, show that any algebraic extension of F is separable.



Unit 15

Course Structure

• Sensitivity Analysis: Changes in price vector of objective function, changes in resource requirement
vector, addition of decision variable, addition of a constraint.

15.1 Introduction

Once the optimal solution to a linear programming problem has been attained, it may be desirable to study
how the current solution changes when the parameters of the problem get changed. The study of the effect
of discrete changes in the values of the parameters on the optimal solution is called sensitivity analysis or
post-optimality analysis. The objective is to determine how sensitive is the optimal solution is to the changes
in the values of these parameters.

In general, once the optimal solution to a linear programming problem has been attained, two situations
may arise which require additional computations :

1. During the formulation it is assumed that the parameters such as market demand, equipment capacity,
resource consumption, resource availability, the relevant costs or profits are all known with certainty
and do not change over time. In actual practice the markets fluctuate, material and labour costs go up
or down, production times change and equipment availability varies from time to time. It is, therefore,
desirable to study how the current optimal solution changes when the parameters of the problem get
changed. In these problems this information may be more important than the single result provided by
the optimal solution. Such an analysis converts the static linear programming solution into a dynamic
tool to study the effect of changing conditions such as in business and industry.

2. The second situation is rather unpleasant, yet one may be encountered with it quite often. After attaining
the optimal solution, one may discover that a wrong value of a cost coefficient was used or a particular
variable or constraint was omitted or one or more of right-hand constants used were wrong.

The changes in parameters of the problem may be discrete or continuous. The study of the effect of discrete
changes in parameters on the optimal solution is called the sensitivity analysis or the post optimality analysis,
while that of continuous changes in parameters is called parametric programming. One way to determine the
effects of parameter changes is to solve the problem anew, which may be computationally inefficient. Alterna-
tively, the current optimal solution may be investigated, making use of the properties of the simplex criterion.

150
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The second method reduces additional computations considerably and hence forms the subject of the present
discussion.

The changes in the parameters of a linear programming problem include:

1. Changes in the cost/profit coefficients or cost/profit contribution per unit of decision variables (cj).

2. Changes in the right-hand side of the constraints or availability of resources (bi).

3. Addition of new variables.

4. Changes in the coefficients of constraints or consumption of resources per unit of decision variables
(aij).

5. Addition of new constraints.

Generally, these parameter changes result in one of the following three cases :

1. The optimal solution remains unchanged i.e., the basic variables and their values remain unchanged.

2. The basic variables remain unchanged but their values change.

3. The basic variables as well as their values are changed.

While dealing with these changes, one important objective is to find the maximum extent to which a parameter
or a set of parameters can be changed so that the current optimal solution remains optimal. In other words,
the objective is to determine how sensitive is the optimal solution to the changes in those parameters. Such an
analysis is called sensitivity analysis.

In this topic we shall see how to minimize the additional computations necessary to study the changes
in various parameters. In many cases it may not be necessary to solve the problem all over again. A small
amount of computational work applied to the optimal solution will suffice. However, when large modifications
in parameters are made, the post-optimal computations may become so tedious that there is no alternative but
to go back to the beginning and resolve the problem.

15.2 Changes in the Cost/Profit Coefficient cj
Changes in the coefficients of the objective function may take place due to a change in cost or profit of
either basic variables or non-basic variables. Each of these two cases will first be considered separately. The
discussion, will then, be followed by a combined case. All the three cases will be studied by considering a
few examples.

Example 15.2.1. A company wants to produce three products A,B and C. The unit profits on these products
are Rs. 4, Rs. 6 and Rs. 2 respectively. These products require two types of resources: man-power and
material. The following L.P. model is formulated for determining the optimal product mix:

maximize Z = 4x1 + 6x2 + 2x3,
subject to x1 + x2 + x3 ≤ 3, (manpower)

x1 + 4x2 + 7x3 ≤ 9, (material)
x1, x2, x3 ≥ 0,

where x1, x2, x3 are the number of products A,B and C produced.
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(a) Find the optimal product mix and the corresponding profit to the company.

(b) (i) Find the range on the values of non-basic variable coefficient c3 such that the current optimal
product mix remains optimal.

(ii) What happens if c3 is increased to Rs. 12? What is the new optimal product mix in this case?

(c) (i) Find the range on basic variable coefficient c1 such that the current optimal product mix remains
optimal.

(ii) Find the effect when c1 = Rs. 8 on the optimal product mix.

(d) Find the effect of changing the objective function to Z = 2x1 + 8x2 + 4x3 on the current optimal
product mix.

Solution. The standard form of the problem is

maximize Z = 4x1 + 6x2 + 2x3 + 0x4 + 0x5,
subject to x1 + x2 + x3 + x4 = 3,

x1 + 4x2 + 7x3 + x5 = 9,
x1, x2, x3, x4, x5 ≥ 0,

Putting x1 = x2 = x3 = 0 in the constraint equations, we get x4 = 3 and x5 = 9 as the initial basic feasible
solution which can be expressed in the form of a simple matrix or table as shown below. Performing iterations
we get the remaining tables.

Table 1

Table 2

Therefore, the optimal solution is x1 = 1, x2 = 2, x3 = 0 andZmax = Rs. (4×1+6×2+2×0) = Rs. 16.



15.2. CHANGES IN THE COST/PROFIT COEFFICIENT CJ 153

Table 3

Effect of changing the objective function coefficient of a non-basic variable

(b) (i) The coefficient c3 corresponds to the non-basic variable x3 for product C. In the optimal product
mix shown in Table 3, product C is not produced because of the low associated profit of Rs. 2 per unit (c3).
Clearly, if c3 further decreases, it will have no effect on the current optimal product mix. However, if c3 is
increased beyond a certain value, it may become profitable to produce the product C.

Table 4

Table 5

As a rule, the sensitivity of the current optimal solution is determined by studying how the current optimal
solution given in Table 3 changes as a result of changes in the input data. When value of c3 changes, the value
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of net evaluation (relative profit coefficient) of the non-basic variable x3 i.e., c̄3 in Table 3 also changes. The
table will remain optimal, as long as c̄3 remains non-positive.

Therefore, for Table 3 to remain optimal,

c3 ≤ 0 ⇒ c3 − (4, 6)

[
−1
2

]
≤ 0 ⇒ c3 − (−4 + 12) ≤ 0 ⇒ c3 ≤ 8.

This means that as long as the unit profit of product C is less than Rs. 8, it is not profitable to produce it. The
current optimal solution remains optimal.

(ii) If c3 = 12, then

c̄3 = c3 − (4, 6)

[
−1
2

]
= 12− (−4 + 12) = 12− 8 = 4.

As c̄3 becomes positive, the current product mix given by Table 3 does not remain optimal. The optimal profit
can be increased further by producing product C. Non-basic variable x3 can enter the solution to increase Z.
This is shown in Table 4 and Table 5.

Therefore, new optimal product mix is x1 = 2, x2 = 0, x3 = 1 and Zmax = Rs. (4×2+6×0+12×1) =
Rs. 20.

Effect of changing the objective function coefficient of a basic variable

(c) (i) Clearly, when c1 decreases below a certain level, it may no longer remain profitable to produce prod-
uct A. On the other hand, if c1 increases beyond a certain value, it may becomes so profitable that it is most
paying to produce only productA. In either case the optimal product mix will change and hence there is lower
as well as upper limit on c1 within which the optimal product mix will not be affected.

Referring again to Table 3, it can be seen that any variation in c1 (and/or in c2 also) will not change c̄1 and c̄2
(i.e., they remain zero), while c̄3, c̄4, c̄5 will change. However, as long as c̄j(j = 3, 4, 5) remain non-positive,
Table 3 will remain optimal. c̄3, c̄4 and c̄5 can be expressed as functions of c1 as follows :

c̄3 = 2− (c1, 6)

[
−1
2

]
= 2− (−c1 + 12) = c1 − 10

c̄4 = 0− (c1, 6)

[
4
3
−1

3

]
= 0−

(
4

3
c1 − 2

)
= −4

3
c1 + 2

c̄5 = 0− (c1, 6)

[
−1

3
1
3

]
= 0−

(
−1

3
c1 + 2

)
=

1

3
c1 − 2

For c̄3 to be ≤ 0, c1 − 10 ≤ 0 ⇒ c1 ≤ 10,

for c̄4 to be ≤ 0,−4

3
c1 + 2 ≤ 0 ⇒ c1 ≥

3

2
,

for c̄5 to be ≤ 0,
1

3
c1 − 2 ≤ 0 ⇒ c1 ≤ 6.

Therefore, range on c1 for the optimal product mix to remain optimal is
3

2
≤ c1 ≤ 6. Thus so long as

c1 lies within these limits, the optimal solution in Table 3 viz., x1 = 1, x2 = 2, x3 = 0 remains optimal.
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However, within this range, as the value of c1 is changed, Zmax undergoes a change. For example, when
c1 = 3, Zmax = Rs. (3× 1 + 6× 2) = Rs. 15.

(ii) When c1 = 8,

c̄3 = c1 − 10 = 8− 10 = −2, c̄4 = −4

3
c1 + 2 = −4

3
× 8 + 2 = −26

3
,

c̄5 =
1

3
c1 − 2 =

8

3
− 2 = +

2

3
, c̄1 = c̄2 = 0.

As c̄5 becomes positive, the solution given in Table 3 no longer remains optimal. Slack variable x5 enters the
solution. This shown in Table 6 and Table 7.

Table 6

Table 7

Thus the optimal product mix changes to x1 = 3, x2 = 0 and x3 = 0 units with Zmax = Rs. 24.

Effect of changing the objective function coefficients of basic as well as non-basic variables

(d) The effect on the optimal product mix can be determined by checking whether the c̄j row in Table 3
remains non-positive.

c̄1 = 0, c̄2 = 0,

c̄3 = 4− (2, 8)

[
−1
2

]
= 4− (−2 + 16) = −10 ≤ 0,

c̄4 = 0− (2, 8)

[
4/3
−1/3

]
= 0−

(
8

3
− 8

3

)
= 0,

c̄5 = 0− (2, 8)

[
−1/3
1/3

]
= 0− (−2/3 + 8/3) = −2 < 0.
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Hence the optimal solution does not change. The optimal product mix remains x1 = 1, x2 = 2, x3 = 0 and
Zmax = (1× 2 + 2× 8 + 0× 4) = 18. There is indication of an alternate optimal solution since c̄4 = 0.

15.3 Changes in the Right-Hand Side of the Constraints bi
Suppose that an optimal solution to a linear programming problem has already been found and it is desired
to find the effect of increasing or decreasing some resource. Clearly, this will affect not only the objective
function but also the solution. Large changes in the limiting resources may even change the variables in the
solution since one or more current basic variables becomes negative. Dual simplex method is used to remove
infeasibility and to get a feasible optimal solution.

Example 15.3.1. (a) Solve the problem

maximize Z = 5x1 + 12x2 + 4x3,
subject to x1 + 2x2 + x3 ≤ 5,

2x1 − x2 + 3x3 = 2,
x1, x2, x3 ≥ 0,

(b) Discuss the effect of changing the requirement vector from
[
5
2

]
to
[
7
2

]
on the optimum solution.

(c) Discuss the effect of changing the requirement vector from
[
5
2

]
to
[
3
9

]
on the optimum solution.

(d) Which resource should be increased and how much to achieve the best marginal increase in the value of
the objective function?

Solution. (a) The standard form of this problem is

maximize Z = 5x1 + 12x2 + 4x3 + 0x4 −Mx5,
subject to x1 + 2x2 + x3 + x4 = 5,

2x1 − x2 + 3x3 + x5 = 2,
x1, x2, x3, x4, x5 ≥ 0,

Putting x1 = x2 = x3 = 0 in the constraint equations, we get x4 = 5 and x5 = 2 as the initial basic solution
which can be expressed in the form of a simple matrix or table. Performing iterations yields the table given
below.

Table 1
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Table 2

Table 3

Table 4

Thus the optimal solution is x1 = 9/5, x2 = 8/5, x3 = 0, and Zmax = 5× 9/5 + 12× 8/5 + 0 = 141/5.

(b) New values of the current basic variables are given by[
x2
x1

]
= B−1b =

[
2/5 −1/5
1/5 2/5

] [
7
2

]
=

[
14/5− 2/5
7/5 + 4/5

]
=

[
12/5
11/5

]
Since both x1 and x2 are non-negative, the current basic solution consisting of x1 and x2 remains feasi-
ble and optimal at the new values x1 = 11/5, x2 = 12/5 and x3 = 0. The new optimum value of Z is



158 UNIT 15.

5× 11/5 + 12× 12/5 + 4× 0 = 199/5.

(c) New values of the current basic variables are

[
x2
x1

]
= B−1b =

25 −1

5
1

5

2

5

[3
9

]
=

 6

5
− 9

5
3

5
+

18

5

 =

−3

5
21

5


Since x2 become −ve, the current optimal solution becomes infeasible. Dual simplex method may be used

to clear infeasibility of the problem. Table 4 is modified and written in Table 5.

Table 5

As b1 = −3/5, the first row is the key row and x2 is the outgoing variable. Find the ratios of non-basic
elements of c̄j row to the elements of key row. Neglect the ratios corresponding to positive or zero elements of

key row and choose the lowest ratio. The desired ratio is
−3/5

−1/5
= 3. Hence ‘x3’-column is the key column,

x3 is the incoming variable and −1/5 is the key element. Replace x2 by x3. This is shown in Table 6.

Table 6

As all elements in c̄j-row are negative or zero and all bi are positive, the solution given by Table 6 is optimal.
The optimal solution is

x1 = 0, x2 = 0, x3 = 3,

Zmax = 5(0) + 12(0) + 4× 3 = 12.

(d) In order to find the resource that should be increased (or decreased), we shall write the dual objective
function, which is

G = 5y1 + 2y2,

where y1 = 29/5 and y2 = 2/5 are the optimal dual variables. Thus the first resource should be increased
as each additional unit of the first resource increases the objective function by 29/5. Next we are to find how
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much the first resource should be increased so that each additional unit continues to increase the objective
function by 29/5. This requirement will be met so long as the primal problem remains feasible. If ∆ be
increase in the first resource, it can be determined from the condition

[
x2
x1

]
= B−1b =

[
2/5 −1/5
1/5 2/5

] [
5 + ∆

2

]
=

[
10/5 + 2∆/5− 2/5
5/5 + ∆/5 + 4/5

]
=

 8 + 2∆

5
9 +∆

5

 ≥
[
0
0

]

As x1 and x2 remain feasible ( ≥ 0 ) for all values of ∆ ≥ 0, the first resource can be increased indefinitely
while maintaining the condition that each additional unit will increase the objective function by 29/5.

The second resource should be decreased as each additional unit of the second resource decreases the
objective function by 2/5. Let ∆ be the decrease in the second resource. To find its extent, we make use of
the condition that the current solution remains feasible so long as

[
x2
x1

]
=B−1b =

[
2/5 −1/5
1/5 2/5

] [
5

2−∆

]
=

[
10/5− 2/5 + ∆/5
5/5 + 4/5− 2∆/5

]
=

 8 + ∆

5
9− 2∆

5

 ≥
[
0
0

]

Evidently x1 remains positive only so long as
9− 2∆

5
≥ 0 or ∆ ≤ 9/2. If ∆ > 9/2, x1 becomes negative

and must leave the solution.

15.4 Addition of a New Variable

Addition of a new variable in physical sense means introduction of a new product to the current product mix.
Intuitively, it is desirable only if it is profitable i.e., if it improves the optimal value of the objective function.

Example 15.4.1. Consider the L.P. problem

maximize Z = 45x1 + 100x2 + 30x3 + 50x4,
subject to 7x1 + 10x2 + 4x3 + 9x4 ≤ 1200,

3x1 + 40x2 + x3 + x4 ≤ 800,
x1, x2, x3, x4 ≥ 0,

The optimal table is given below.

Table 1

If a new variable x7 is added to this problem with a column
[
10
10

]
and c7 = 120, find the change in the

optimal solution.
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Solution. From the Revised Simplex method, we know that

c̄7 = c7 − cBP 7 = c7 − cB ·B−1 · P7 = c7 − πP7,

where c7 = 120, P7 =

[
10
10

]
and π, the simplex multiplier corresponding to the original optimal solution in

Table 1 is given by

π = (π1, π2) = cBB
−1 = (30, 100)

[
4/15 −1/15

−1/150 2/75

]
=

(
22

3
,
2

3

)
.

∴ c̄7 = c7 − πP7 = 120−
(
22

3
,
2

3

)[
10
10

]
= 120−

(
220

3
+

20

3

)
= 40.

Since c̄7 is positive, the existing optimal solution can be improved. Now

P 7 = B−1P7 =

[
4/15 −1/15

−1/150 2/75

] [
10
10

]
=

[
2

1/5

]
.

Now we start with the original optimal (Table 1) and add entries corresponding to variable x7 as follows :

Table 2

Table 3

Since c̄j is negative Table 3 gives the optimal solution with x3 = 400/3, x7 = 200/3 (basic variable),
x1 = x2 = x4 = x5 = x6 = 0 (non-basic variables) and Zmax = 30×400/3+120×200/3 = 4000+8000 =
12000.
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15.5 Changes in the Coefficients of the Constraints (Resource requirement
vector) aij

When changes take place in the constraint coefficients of a non-basic variable in a current optimal solution,
feasibility of the solution is not affected. The only effect, if any, may be on the optimality of the solution. This
effect can be studied by following the steps given in §15.4.

However, if the constraint coefficients of a basic variable get changed, things become more complicated
since the feasibility of the current optimal solution may also be affected (lost). The basic matrix is affected,
which, in turn, may affect all the quantities given in the current optimal table. Under such circumstances, it
may be better to solve the problem all over again.

Example 15.5.1. Find the effect of the following changes in the original optimal Table 1 of Example 15.4.1.

(a) ‘x1’-column in the problem changes from
[
7
3

]
to
[
7
5

]
.

(b) ‘x1’-column changes from
[
7
3

]
to
[
5
8

]
.

Solution. (a) x1 is a non-basic variable in the optimal solution.

c1 = c1 − cBP 1 = c1 − cBB
−1P1

= c1 − πP1, where c1 = 45, P1 =

[
7
5

]
,

and π = cBB
−1 = (30, 100)

 4

15
− 1

15

− 1

150

2

75

 =

(
22

3
,
2

3

)
.

∴ c̄1 = 45−
(
22

3
,
2

3

)[
7
5

]
= 45−

(
154

3
,
10

3

)
= 45− 164

3
= −29

3
.

Since c̄1 remains non-positive, the original optimum solution remains optimum for the new problem also.

(b) c̄1 = c1 − cBP 1 = c1 − cBB
−1P1 = c1 − πP1 = 45−

(
22

3
,
2

3

)[
5
8

]
= 45−

(
110

3
+

16

3

)
= +3.

Table 1
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As c̄1 is positive, the existing optimum solution can be improved. Now

P 1 = B−1P1 =

 4

15
−1

5

− 1

150

2

75

[ 5
8

]
=

 4

5
27

150

 .
Now we start with the original optimal table and incorporate the changes due to variable x1.

Table 2

Since c̄j is non-positive, Table 2 gives the optimal solution with

x1 =
2000

27
, x3 =

5600

27
(basic variables)

x2 = x4 = x5 = x6 = 0 (non-basic variables),

Zmax =
2000

27
× 45 +

5600

27
× 30 =

10000

3
+

56000

9
=

86000

9
.

15.6 Addition of a New Constraint

Addition of a new constraint may or may not affect the feasibility of the current optimal solution. For this, it
is sufficient to check whether new constraint is satisfied by the current optimal solution or not. If it is satisfied,
the inclusion of the constraint has no effect on the current optimal solution i.e., it remains feasible as well
as optimal. If, however, the constraint is not satisfied, the current optimal solution becomes infeasible. Dual
simplex method is then used to find the new optimal solution.

Example 15.6.1. In problem 15.4.1 an administrative constraint is added. Products A,B and C require 2,
3 and 2 hours of administrative services, while the total available administrative hours are 10. How does the
optimal solution given by Table 3 of Example 15.2.1 change?

If the total available administrative time is 4 hours, find the new optimal solution.

Solution. The optimal feasible solution given by Table 3 of Example 15.2.1 is x1 = 1, x2 = 2, x3 = 0;
while the additional constraint is 2x1+3x2+2x3 ≤ 10. As this constraint is satisfied by the optimal solution,
the solution remains feasible and optimal for the modified problem.

As the additional constraint 2x1 + 3x2 + 2x3 ≤ 4 is not satisfied by the current optimal solution, Table 3
of Example 15.2.1 is no longer optimal for the modified problem. In order to find the new optimal solution,
we add the new constraint as the third row in Table 1 below. Using s3 as the slack variable for this constraint,
the (modified) optimal table may be written as
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Table 1

Since x1 and x2 are in the basic solution, their corresponding coefficients in the basic constraint must be
zero. To eliminate the coefficients of x1 and x2, we multiply the first row by −2, the second row by −3 and
add them to the third row. Table 2 below represents the new table after the row operations. Note that c̄j row is
not affected since the new basic variable x6 is the slack variable.

Table 2

In Table 2, c̄j row is optimal, but since b3 is negative, the current basic solution is infeasible. In other words,
Table 2 is dual feasible and, therefore, dual simplex method is applied to find the new optimal solution.

Evidently x6 is the variable that leaves the basis. The ratios for the non-basis. The ratios for the non-basic
variables are 1, 2, 2 respectively. The variable x3 which corresponds to the minimum ratio is the entering
variable. The key element, −6 has been shown bracketed. Regular simplex method is used to find the optimal
solution.

Table 3 is optimal and the optimal product mix is to produce 5/3 units of product A, 2/3 units of product
B and 2/3 units of product C with the new maximum profit = Rs. (4× 5/3 + 6× 2/3 + 2× 2/3) = Rs. 12.
Thus the addition of a new constraint decreases the optimum profit from Rs. 16 (Table 3 of Example 15.2.1)
to Rs. 12. This is true of every linear programming problem. In general, whenever a new constraint is added
to a linear programming problem, the old optimal value will always be better or at least equal to the new
optimal value. In other words, addition of a new constraint cannot improve the optimal value of any linear
programming problem.
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Table 3

Note 15.6.2. The idea of adding new constraints can sometimes be used to reduce the computational time
and hence cost of solving a linear programming problem. As the computational effort in solving a linear
programming problem increases with the number of constraints, it will be advantageous to identify and delete
the constraints that are not binding. Such constraints are called inactive or secondary constraints. These may
pertain to resources which can be obtained easily or can be directly controlled. The new problem with fewer
number of constraints is then solved. After the optimal solution is obtained, the secondary constraints are
added to verify whether the optimal solution satisfies them or not. If not, the dual simplex method is applied
to get the new optimal solution. No doubt, the overall saving in computational time and cost will depend on
how accurately the initial judgements were made while identifying the secondary constraints.

Exercise 15.6.3. 1. What do you understand by sensitivity analysis? Explain how it is carried out.

2. What is sensitivity analysis? Discuss the effect of (i) variation of bi, (ii) variation of cj .

3. Discuss sensitivity analysis with respect to (i) change in constraint matrix, (ii) Addition of a new con-
straint.

4. Explain the basic concepts of sensitivity analysis. What are the different factors affecting the given
solutions and how do we resolve them? Give a brief comment on each of them.

5. Referring to the Example 15.2.1, let us suppose that Research and Development department of the
company has proposed a fourth product D which requires 1 unit of manpower and 1 unit of material
and earns a unit profit of Rs. 3 when sold in the market. It is desired to find whether it is profitable to
produce product D.

6. Consider the L.P. problem

maximize Z = 3x1 + 5x2 + 4x3,
subject to 2x1 + 3x2 ≤ 8,

2x2 + 5x3 ≤ 10,
3x1 + 2x2 + 4x3 ≤ 15,
x1, x2, x3 ≥ 0,

The optimal table is given below.

(a) How much c3 and c4 can be increased till the optimal solution given by Table 1 ceases to be
optimal? Also find the new value of the objective function if possible.
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(b) Find the range over which b2 can be changed maintaining the feasibility of the solution.

7. Consider the L.P. problem

maximize Z = −x1 + 2x2 − x3,
subject to 3x1 + x2 − x3 ≤ 10,

−x1 + 4x2 + x3 ≥ 6,
x2 + x3 ≤ 4,
x1, x2, x3 ≥ 0,

and the optimal solution given by table below, find the separate ranges of b1, b2 and b3 consistent with
the optimal solution.

8 Consider the following table which represents an optimal solution to some L.P.P.: If the additional

constraint 2x1 + 3x2 − x3 + 2x4 + 4x5 ≤ 5 is annexed to the system, will there be any change in the
optimal solution? Justify your answer.



Unit 16

Course Structure

• Parametric Programming : Variation in price vector, Variation in requirement vector.

16.1 Introduction

The study of the effect of continuous changes in the values of the parameters on the optimal solution to a
linear programming problem is called parametric programming. It is an extension of sensitivity analysis and
aims at finding the various basic solutions that become optimal, one after the other, as the parameters of the
problem change continuously their values.

In general, parametric linear programming investigates the effect of predetermined continuous variations
of the input coefficients on the optimal solution. It is simply an extension of sensitivity analysis and aims at
finding the various basic solutions that become optimal, one after the other, as the coefficients of the problem
change continuously. The coefficients change as a linear function of a single parameter, hence the name
parametric linear programming for this computational technique. As in sensitivity analysis, the purpose of
this technique is to reduce the additional computations required to obtain the changes in the optimal solution.
The various types of parametric problem that one may come across are

1. Parametric cost problem, in which the cost coefficients cj vary linearly as a function of parameter λ.

2. Parametric right-hand side problem, in which the resources availability coefficients bi vary linearly as a
function of parameter λ.

3. Parametric problem involving linear variations in the non-basic vector Pj of A.

4. Parametric problem involving simultaneous linear variations in cj , bi and Pj .

In this unit, we will cover type 1 and type 2 parametric problems in details.

166
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16.2 Parametric Cost Problem

Let the linear programming problem before parametrization be

minimize Z = CX,
subject to AX = b,

X ≥ 0,

where C is the given cost vector. Let this cost vector change to C + λC ′ so that the parametric cost problem
becomes

minimize Z = (C + λC ′)X,
subject to AX = b,

X ≥ 0,

where C ′ is the given predetermined cost variation vector and λ is an unknown (positive or negative) param-
eter. As λ changes, the cost coefficients of all variables also change. We wish to determine the family of
optimal solutions as λ changes from −∞ to +∞.

This problem is solved by using the simplex method and sensitivity analysis. When λ = 0, the parametric
cost problem reduces to the original L.P. problem; simplex method is used to find its optimal solution. Let B
and XB represent the optimal basis matrix and the optimal basic feasible solution respectively for λ = 0. The
net evaluations or relative cost coefficients are all non-negative (minimization problem) and are given by

c̄j = cj − Zj = cj −
∑

cBaij = cj − cBP j ,

where cB is the cost vector of the basic variables and P j is the j-th column (corresponding to the variable xj)
in the optimal table.

As λ changes from zero to a positive or negative value, the feasible region and values of the basic variables
XB remain unaltered, but the relative cost coefficients change. For any variable xj , the relative cost coefficient
is given by

c̄j(λ) =
(
cj + λc′j

)
−
(
cB + λc′B

)
P j

=
(
cj − cBP j

)
+ λ

(
c′j − c′BP j

)
= c̄j + λc̄′j .

Since vectors C and C ′ are known, c̄j and c̄′j can be determined. For the current minimization problem, c̄j(λ)
must be non-negative for the solution to be optimal [c̄j(λ) must be non-positive for a maximization problem].
Thus

c̄j(λ) ≥ 0, c̄j + λc̄′j ≥ 0

In other words, for a given solution we can determine the range for λ within which the solution remains
optimal.

Example 16.2.1. Consider the linear programming problem

maximize Z = 4x1 + 6x2 + 2x3,

subject to x1 + x2 + x3 ≤ 3,

x1 + 4x2 + 7x3 ≤ 9,

x1, x2, x3 ≥ 0.

The optimal solution to this problem is given by the following table: Solve this problem if the variation cost



168 UNIT 16.

Table 1

vector C ′ = (2,−2, 2, 0, 0). Identify all critical values of the parameter λ.

Solution. The given parametric cost problem is

maximize Z =(4 + 2λ)x1 + (6− 2λ)x2 + (2 + 2λ)x3 + 0x4 + 0x5,

subject to x1 + x2 + x3 + x4 = 3,

x1 + 4x2 + 7x3 + x5 = 9,

x1, x2, x3, x4, x5 ≥ 0.

When λ = 0, the problem reduces to the L.P. problem, whose optimal solution is given by Table 1. The relative
profit coefficients in this optimal table are all non-positive. For values of λ other than zero, the relative profit
coefficients become linear functions of λ. To compute them, we, first, add a new relative profit row called c̄′j
row to Table 1. This is shown in Table 2.

Table 2

In Table 2, c̄′j is calculated just as c̄j row except that vector C is replaced by C ′. For example,

c̄2 = c2 − Z2 = c2
∑

cBai2 = c2 − cBP 2 = 6− (4, 6)

[
0
1

]
= 6− 6 = 0.
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Therefore,

c̄′1 = c′1 − c′BP 1 = 2− (2,−2)

[
0
1

]
= 0,

c̄′2 = −2− (2,−2)

[
0
1

]
= 0,

c̄′3 = 2− (2,−2)

[
−1
2

]
= 2− (−2− 4) = 8,

c̄′4 = 0− (2,−2)

[
4/3
−1/3

]
= −

(
8

3
+

2

3

)
= −10

3
,

c̄′5 = 0− (2,−2)

[
−1/3
1/3

]
= −

(
−2

3
− 2

3

)
=

4

3
,

Z ′ = (1× 2)− (2× 2) = −2.

Table 2 represents a basic feasible solution for the given parametric cost problem. It is given by

x1 = 1, x2 = 2, x3 = x4 = x5 = 0.

Value of the objective function, Z(λ) = Z + λZ ′ = 16− 2λ.

The relative profit coefficients, which are linear functions of λ, are given by

c̄j(λ) = c̄j + λc̄′j , j = 1, 2, 3, 4, 5.

Table 2 will be optimal if c̄j(λ) ≤ 0 for j = 3, 4, 5. Thus we can determine the range of λ for which Table 2
remains optimal as follows:

c̄3(λ) = c̄3 + λc̄′3 = −6 + 8λ ≤ 0 ⇒ λ ≤ 3/4

c̄4(λ) = c̄4 + λc̄′4 = −10

3
− 10

3
λ ≤ 0 ⇒ λ ≥ −1

c̄5(λ) = c̄5 + λc̄′5 = −2

3
+

4

3
λ ≤ 0 ⇒ λ ≤ 1

2

Thus x1 = 1, x2 = 2, x3 = x4 = x5 = 0 is an optimal solution for the given parametric problem for all
values of λ between −1 and 1/2 and Zmax = 16− 2λ.

For λ > 1/2, the relative profit coefficient of the non-basic variable x5, namely c̄5(λ) becomes positive
and Table 2 no longer remains optimal. Regular simplex method is used to iterate towards optimality. x5 is
the entering variable and computation indicates x2 to be the variable that leaves the basis matrix so that the
key element is 1

3 . The key element is made unity and x2 is replaced by x5 in Table 3.

Table 3 will be optimal if c̄j(λ) ≤ 0, for j = 2, 3, 4. Now

c̄2(λ) = c̄2 + λc̄′2 = 2− 4λ ≤ 0 ∴ λ ≥ 1

2
c̄3(λ) = c̄3 + λc̄′3 = −2 ≤ 0, which is true

c̄4(λ) = c̄4 + λc̄′4 = −4− 2λ ≤ 0 ∴ λ ≥ −2

∴ For all λ ≥ 1

2
, the optimal solution is given by

x1 = 3, x2 = x3 = x4 = 0, x5 = 6 and Zmax = 12 + 6λ.
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Table 3

For λ < −1, the relative profit coefficient of the non-basic variable x4, namely c̄4(λ) becomes positive and
again Table 2 no longer remains optimal. x4 becomes the entering variable and x1 the leaving variable. Key
element is 4/3. This element is made unity and x1 is replaced by x4 in Table 4.

Table 4

Table 4 will be optimal if c̄′1(λ) ≤ 0 for j = 1, 3, 5. Now

c̄1(λ) = c̄1 + λc̄′1 =
5

2
+

5

2
λ ≤ 0 ∴ λ ≤ −1,

c̄3(λ) = c̄3 + λc̄′3 = −17

2
+

11

2
λ ≤ 0 ∴ λ ≤ 17

11
,

c̄5(λ) = c̄5 + λc̄′5 = −3

2
+

3

2
λ ≤ 0 ∴ λ ≤ 3.

∴ For all λ ≤ −1, the optimal solution is given by

x1 = 0, x2 =
9

4
, x3 = 0, x4 =

3

4
, x5 = 0 and Zmax =

27

2
− 9

2
λ.

Thus Tables 2, 3 and 4 give families of optimal solutions for −1 ≤ λ ≤ 1

2
, λ ≥ 1

2
and λ ≤ −1 respectively.

16.3 Parametric Right-Hand Side Problem

The right-hand side constants in a linear programming problem represent the limits in the resources and the
outputs. In some practical problems all the resources are not independent of one another. A shortage of one
resource may cause shortage of other resources at varying levels. Same is true for outputs also. For example,
consider a firm manufacturing electrical appliances. A shortage in electric power will decrease the demand
of all the electric items produced, in varying degrees depending upon the electric energy consumed by them.
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In all such problems, we are to consider simultaneous changes in the right-hand side constants, which are
functions of one parameter and study how the optimal solution is affected by these changes.

Let the linear programming problem before parameterization be

maximizeZ = cX,

subject to AX = b,

X ≥ 0,

where b is the known requirement (right-hand side) vector. Let this requirement vector b change to b+ λb′ so
that parametric right-hand side problem becomes

maximizeZ = cX,

subject to AX = b+ λb′,

X ≥ 0,

where b′ is the given and predetermined variation vector and λ is an unknown parameter. As λ changes, the
right-hand constants also change. We wish to determine the family of optimal solutions as λ changes from
−∞ to +∞.

When λ = 0, the parametric problem reduces to the original L.P. problem; simplex method is used to find
its optimal solution.

Let B and XB represent the optimal basis matrix and the optimal basic feasible solution respectively for
λ = 0. Then XB = B−1b. As λ changes from zero to a positive or negative value, the values of the basic
variables change and the new values are given by

XB = B−1
(
b+ λb′

)
= B−1b+ λB−1b′ = b+ λb

′
.

A change in λ has no effect on the values of relative profit coefficients c̄j i.e., c̄j values remain non-positive
(maximization problem). For a given basis matrix B, values of b and b

′
can be calculated. The solution

XB = b + λb
′

is feasible and optimal as long as b + λb
′ ≥ 0. In other words, for a given solution we can

determine the range for λ within which the solution remains optimal.

Example 16.3.1. Consider the linear programming problem

maximize Z = 4x1 + 6x2 + 2x3,
subject to x1 + x2 + x3 ≤ 3,

x1 + 4x2 + 7x3 ≤ 9,
x1, x2, x3 ≥ 0.

The optimal solution to this problem is given by

Solve the problem if the variation right-hand side vector b′ =
[

3
−3

]
. Perform complete parametric anal-

ysis and identify all critical values of parameter λ.

Solution. The given parametric right-hand side problem is

maximize Z = 4x1 + 6x2 + 2x3 + 0x4 + 0x5,
subject to x1 + x2 + x3 + x4 = 3 + 3λ,

x1 + 4x2 + 7x3 + x5 = 9− 3λ,
x1, x2, x3, x4, x5 ≥ 0.
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Table 1

When λ = 0, the problem reduces to the L.P. problem whose optimal solution is given by Table 1. For values
of λ other than zero, the values of right-hand constants change because of the variation vector b′. This is
shown in the expanded Table 2.

Table 2

The vectors b and b
′

are computed as follows :

b = B−1b =

[
4/3 1/3
1/3 1/3

] [
3
9

]
=

[
1
2

]
,

b
′
= B−1b′ =

[
4/3 −1/3
−1/3 1/3

] [
3
−3

]
=

[
5
−2

]
.

For a fixed λ, the value of basic variables in Table 2 are given by

x1 = b̄1 + λb̄′1 = 1 + 5λ, x2 = b̄2 + λb̄′2 = 2− 2λ.

c̄j values are not affected as long as the basis consists of variables x1 and x2. As λ changes, values of basic
variables x1 and x2 change and Table 2 remains optimal as long as the basis (x1, x2) remains feasible. In
other words, Table 2 remains optimal as long as

x1 = 1 + 5λ ≥ 0 ⇒ λ ≥ −1

5
,

x2 = 2− 2λ ≥ 0 ⇒ λ ≤ 1.

Therefore, Table 2 remains optimal as λ varies from −1/5 to 1 . Thus for all −1/5 ≤ λ ≤ 1, the optimal
solution is given by

x1 = 1 + 5λ, x2 = 2− 2λ, x3 = x4 = x5 = 0, Zmax = 16 + 8λ.
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For λ > 1, the basic variable x2 becomes negative. Although this makes Table 2 infeasible for the primal, it
remains feasible for the dual since all c̄j coefficients are non-positive. Dual simplex method can, therefore,
be applied to find the new optimal solution for λ > 1. Evidently x2 is the variable that leaves the basis. The
ratios of the non-basic variables are −3, 10, − 2. Thus variable x4 is the entering variable. The key element
−1/3 has been shown bracketed. Regular simplex method is now used to find the new optimal solution. In
Table 3, the key element has been made unity and x2 is replaced by x4.

Table 3

The basic solution given by Table 3 is

x1 = 9− 3λ, x2 = 0, x3 = 0, x4 = −6 + 6λ, x5 = 0, Zmax = 36− 12λ.

This solution is optimal as long as the basic variables x1 and x4 remain non-negative i.e., as long as

x1 = 9− 3λ ≥ 0 ⇒ λ ≤ 3,

x4 = −6 + 6λ ≥ 0 ⇒ λ ≥ 1.

Thus the above solution is optimal for all 1 ≤ λ ≤ 3.

For λ > 3, the basic variable x1 becomes negative. As there is no negative coefficient in the first row, the
primal solution is infeasible. Hence there exists no optimal solution to the problem for all λ > 3.

For λ ≤ −1/5, the basic variable x1 in Table 2 becomes negative. Although this makes Table 2 infeasible
for the primal, it remains feasible for the dual, since all c̄j coefficients are non-positive. Dual simplex method
can, therefore, be applied to find the new optimal solution for λ ≤ −1/5. Evidently x1 is the variable that
leaves the basis. The ratios of non-basic variables are 6, − 5/2, 2. Thus variable x5 is the entering variable
and −1/3 is the key element. This element is made unity in Table 4. Also x1 is replaced by x5. The basic

Table 4

solution given by Table 4 is and

x1 = 0, x2 = 3 + 3λ, x3 = 0, x4 = 0, x5 = −3− 15λ and Zmax = 18 + 18λ.
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This solution is optimal so long as

x2 = 3 + 3λ ≥ 0 ⇒ λ ≥ −1,

x5 = −3− 15λ ≥ 0 ⇒ λ ≤ −1/5

Thus the above solution is optimal for all −1 ≤ λ ≤ −1/5.

For λ < −1, the basic variable x2 in Table 4 becomes negative. As there is no negative coefficient in
the second row, the primal solution is infeasible. Hence there exists no optimal solution to the problem for

all λ < −1. Thus Tables 2, 3 and 4 give families of optimal solutions for −1

5
≤ λ ≤ 1, 1 ≤ λ ≤ 3 and

−1 ≤ λ ≤ −1

5
respectively.

Exercise 16.3.2. 1 Explain parametric linear programming. How does it differ from sensitivity analysis?

2 What are different types of parametric linear programming problems? Explain their solution procedures.

3 Consider the parametric problem

maximize Z = (θ − 1)x1 + x2,

subject to x1 + 2x2 ≤ 10,

2x1 + x2 ≤ 11,

x1 − 2x2 ≤ 3,

x1, x2, x3 ≥ 0.

Perform a complete parametric analysis. Identify all the critical values of the parameter θ and the
optimal basic solutions.

4 Consider the parametric problem

maximize Z = (3− 6λ)x1 + (2− 2λ)x2 + (5 + 5λ)x3,

subject to x1 + 2x2 + x3 ≤ 430,

3x1 + 2x3 ≤ 460,

x1 + 4x2 ≤ 420,

x1, x2, x3 ≥ 0.

Perform a complete parametric analysis and identify all the critical values of the parameter λ.

5 Consider the parametric problem

maximize Z = 3x1 + 2x2 + 5x3,

subject to x1 + 2x2 + x3 ≤ 430 + θ,

3x1 + 2x3 ≤ 460− 4θ,

x1 + 4x2 ≤ 420− 4θ,

x1, x2, x3 ≥ 0.

Determine the critical values (range) of θ for which the solution remains optimal basic feasible.



Unit 17

Course Structure

• Replacement and Maintenance Models: Failure mechanism of items, General replacement policies for
gradual failure of items with constant money value and change of money value at a constant rate over
the time period, Selection of best item.

17.1 Introduction

Replacement models find applications in the following situations:

1. All industrial and military equipment gets worn with time and usage and it functions with decreasing
efficiency. For example, a machine requires higher operating cost, a transport vehicle such as a car or
airplane requires more and more maintenance cost, a railway timetable becomes more and more out of
date with the passage of time. The ever increasing repair, maintenance and operating cost necessitates
the replacement of the equipment. However, there is no sharp, clearly defined time which indicates the
need for this replacement. The replacement policy, in this case, consists of calculating the increased
operating cost, maintenance cost, forced idle time cost together with cost of the new equipment and
scrap value of the old.

2. A separate but similar problem involves the replacement of items such as electric bulbs, radio tubes,
television parts, etc. which do not deteriorate with time but suddenly fail. The problem, in this case,
is of finding which items to replace and whether or not to replace them in a group and, if so, when.
The objective is to minimize the sum of the cost of the item, cost of replacing the item and the cost
associated with failure of item.

3. Another situation in which replacement becomes necessary is obsolescence due to new discoveries and
better design of the equipment. The equipment needs replacement not because it no longer performs to
the designed standards, but because more modern equipment performs higher standards. For example,
an equipment may have an economic life of 20 years, yet it may become obsolete after 10 years because
of better technical developments.

4. Still another situation involving replacement is the staff in an organisation that gradually decreases due
to death, retrenchment and other reasons.

Thus in these situations there is need to formulate a replacement policy to determine the time or age at which
the replacement of the given equipment is most economical, taking into consideration all the alternatives.

175
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17.2 Types of Failures

There are two types of failures: 1. Gradual failure and 2. Sudden failure.

1. Gradual Failure: Gradual failure is progressive in nature. As the life of the equipment increases, its
operational efficiency decreases. This results in

(i) increased running (repair, maintenance and operating) costs.

(ii) decreased productivity.

(iii) decreased resale or scrap value.

Machines, vehicles, tyres, tubes, pistons, piston rings, bearings, etc. fall in this category.

2. Sudden Failure: Some items do not deteriorate with time. They give the desired level of service for
some period, after which they fail. The period of desired service is not constant but follows some
frequency distribution which may be progressive, retrogressive or random in nature.

(i) Progressive failure: If the probability of failure of an item increases with increase in its life, then
such a failure is called a progressive failure [Fig. 17.2.1 (a)]. Electric bulbs and tubes fall under
this category of failure.

Figure 17.2.1: Sudden Failure

(ii) Retrogressive failure: If the probability of failure of an item is more in the beginning but decreases
with the life of an item, then such a failure is called a retrogressive failure [Fig. 17.2.1 (b]).
Automobile engines fall under this category.

(iii) Random failure: If the probability of failure of the item is due to random causes such as physical
shock, irrespective of its age, then such a failure is called a random failure [Fig. 17.2.1 (c) ].
Failure of vacuum tubes and electronic items is generally random in nature.

17.3 Replacement of items that deteriorate

(Maintenance costs increase with time

Quite often the repair, maintenance and operating costs of items increase with time and a stage may come
when these costs become so high that it is more economical to replace the item by a new one. Since these
costs tend to increase with time, they are grouped while analysing a problem. If these costs decrease or remain
constant with time, the best policy is never to replace the item. However, this condition is hardly met with
in practice. If these costs fluctuate with time, the item should be replaced only when they are increasing, of
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course, the analysis becomes more involved.

Generally, all costs that depend upon the choice or age of the equipment must be taken into account while
analysing the decision of its replacement. However, in special situations, certain costs may not be considered.
For example, costs (such as labour cost, electric cost, etc.) that do not change with the age of the equipment
may not be included in calculations. Now we shall consider a few cases of items that deteriorate with time
and it will be assumed that suitable expressions for maintenance costs are available.

17.3.1 Replacement of items whose maintenance and repair costs increase with time, ignoring
changes in the value of money during the period

Let us first consider a simple situation which consists of minimizing the average annual cost of an equipment
whose maintenance cost is a function increasing with time and whose scrap value is constant. As the time
value of money is not to be considered, the interest rate is zero and the calculations can be based on average
annual cost.

Case 1. When time ‘t’ is a continuous variable

Let

C = Capital cost of the item,

S = Scrap value of the item,

Tave = Average annual total cost of the item,

n = Number of years the item is to be in use,

f(t) = Operating and maintenance cost of the item at time t.

Annual cost of the item at any time t = capital cost − scrap value + maintenance cost at time t.

Now total maintenance cost incurred during n years =

n∫
0

f(t) dt.

∴ Total cost incurred during n years, TC = C − S +

n∫
0

f(t) dt.

∴ Average annual cost incurred on the item,

ATCn =
1

n

C − S +

n∫
0

f(t) dt

 .
It is desired to find the value of n for which ATCn is minimum. Differentiating ATCn w.r.t. n we get

d

dn
(ATCn) = − 1

n2
(C − S)− 1

n2

n∫
0

f(t) dt+
1

n
f(n). (17.3.1)

For
d

dn
(ATCn)− 0, we have

f(n) =
1

n

[
C − S +

∫ n

0
f(t) dt

]
= ATCn (17.3.2)
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Thus the item should be replaced when the average annual cost to date becomes equal to the current mainte-
nance cost. Using this result we can decide when to replace an item provided an explicit expression is given
for the maintenance and repair costs.

Case 2: When time ’ t ’ is a discrete variable

In this case, the total cost incurred during n years,

TC = C − S +
n∑
t=0

f(t). (17.3.3)

∴ Average annual cost incurred on the item,

ATCn =
1

n

[
C − S +

n∑
t=0

f(t)

]
. (17.3.4)

We want to find the value of n for which ATCn is minimum.

Thus we have the inequalities ATCn−1 > ATCn < ATCn+1, which gives

ATCn−1 − ATCn > 0 and ATCn−1 − ATCn > 0.

Rewriting Eq. (17.3.4) for period n+ 1, we get

ATCn+1 =
1

n+ 1

[
C − S +

n+1∑
t=1

f(t)

]
=

1

n+ 1

[
C − S +

n∑
t=1

f(t) + f(n+ 1)

]

=
n

n+ 1

[
1

n

{
c− s+

n∑
t=1

f(t)

}]
+
f(n+ 1)

n+ 1
=

n

n+ 1
· ATCn +

f(n+ 1)

n+ 1
.

∴ ATCn+1 − ATCn =
n

n+ 1
· ATCn +

f(n+ 1)

n+ 1
− ATCn

=
f(n+ 1)

n+ 1
+ ATCn

(
n

n+ 1
− 1

)
=
f(n+ 1)

n+ 1
− ATCn
n+ 1

.

Since ATCn+1 − ATCn > 0, we get

f(n+ 1)

n+ 1
− ATCn
n+ 1

> 0 or f(n+ 1)− ATCn > 0 or f(n+ 1) > ATCn.

Similarly, ATCn−1 − ATCn > 0 yields f(n) < ATCn−1. These results provide the following replacement
policy:

(i) If the running cost (operating and maintenance cost) for the next year, f(n+1) is more than the average
annual cost of nth year, ATCn then replace at the end of n years. That is

f(n+ 1) >
1

n

[
C − S +

n∑
t=0

f(t)

]
.
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(ii) If the running cost of the present year is less than the previous year’s average annual cost, ATCn−1, then
do not replace. That is

f(n) <
1

n− 1

[
C − S +

n−1∑
t=0

f(t)

]
.

The above policy implies that n is optimal at the minimum average annual cost. Tabular method is used in
this case. It has the advantage of being a simpler method. The examples that follow explain this method.

Example 17.3.1. The cost of a machine is Rs. 6100 and its scrap value is Rs. 100. The maintenance costs
found from experience are as follows:[

Year : 1 2 3 4 5 6 7 8
Maintenance Cost : 100 250 400 600 900 1200 1600 2000

]
When should the machine be replaced?

Solution. Let is be profitable to replace the machine after n years. Then n is determined by the minimum
value of Tave. Values of Tave for various years are computed in Table 17.1.

Table 17.1

Table 17.1 shows that the average annual cost is minimum (Rs. 1575) during sixth year then rises. Hence
the machine should be replaced after 6 years of its use.

Example 17.3.2. The maintenance cost and resale value per year of a machine whose purchase price is Rs.
7000 is given below. Year : 1 2 3 4 5 6 7 8

Maintenance Cost : 900 1200 1600 2100 2800 3700 4700 5900
Resale value : 4000 2000 1200 600 500 400 400 400


When should the machine be replaced?

Solution. Capital cost C = Rs. 7000. Let it be profitable to replace the machine after n years. Then n
should be determined by the minimum value of Tave. Values of Tave for various years are computed in Table
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Table 17.2

17.2.

We observe form the table that average annual cost is minimum (Rs. 3020) in the 5th year. Hence the
machine should be replaced at the end of 5 years of service.

Example 17.3.3. (a) Machine A costs Rs. 9, 000. Annual operating costs are Rs. 200 for the first year, and
then increase by Rs. 2, 000 every year. Determine the best age at which to replace the machine. If the
optimum replacement policy is followed, what will be the average yearly cost of owning and operating
the machine? Assume that the machine has no resale value when replaced and that future costs are not
discounted.

(b) Machine B costs Rs. 10, 000. Annual operating costs are Rs. 400 for the first year and then increase by
Rs. 800 every year. You have now a machine of type A which is one year old. Should you replace it
with B, and if so, when?

(c) Suppose you are just ready to replace machine A with another machine of the same type, when you hear
that machine B will become available in a year. What would you do?

Solution. (a) It is given that the machine A has no resale value when replaced. The average annual cost is
computed in Table 17.3. From Table 17.3 we find that machine A should be replaced at the end of 3 years and
the average yearly cost of owning and operating the machine at this time of replacement if Rs. 5200.

(b) The average annual cost for machine B is computed in Table 17.4

Table 17.4 indicates that machine B should be replaced at the end of 5 years. Moreover, since the lowest
average cost of Rs. 4000 for machine B is less than the lowest average cost of Rs. 5200 for machine A,
machine A should be replaced by machine B.

Now we have to determine as to when machine A should be replaced. Machine A should be replaced when
the cost for next year of running this machine becomes more than the average yearly cost for machine B.
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Table 17.3

Table 17.4

Now, Total cost of machine A in the first year Rs. = 9, 200,
total cost of machine A in the second year Rs. = 11, 400− 9, 200 = Rs. 2,200,
total cost of machine A in the third year Rs. = 4, 200,
total cost of machine A in the fourth year Rs. = 6, 200.

As the cost of running machineA in third year (Rs. 4, 200) is more than the average yearly cost for machine
B (Rs. 4, 000); machine A should be replaced at the end of two years i.e., one year after it is one year old (one
year hence).

(c) As seen from part (b), machine A should be replaced one year hence and machine B will also be
available at that time. Therefore, machine A should be replaced by machine B after one year from now.

17.3.2 Replacement of items whose maintenance costs increase with time and value of money
also changes with time

As the money value changes with time, we must calculate the present value or present worth of the money to
be spent a few years hence. If it is the interest rate (i may also be considered as the rate of inflation or the
sum of the rates of interest and inflation) per year, a rupee invested at present will be equivalent to (1 + i) a
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year hence, (1 + i)2 two years hence, and (1 + i)n in n years time. In other words, making a payment of one
rupee after n years is equivalent to paying (1 + i)−n now. The quantity (1 + i)−n is called the present worth
or present value of one rupee spent n years from now.

Present value of a rupee spent n years hence = (1 + i)−n = νn, where, ν = (1 + i)−1 = 1
1+i is called

discount rate or discount factor or present worth factor (pwf) and is always less than unity.

In order to find the optimal policy of replacement i.e., when a manufacturer should replace a machine on
which he is working, let us assume that the machine is replaced after n years. Let C be the purchase price of
the machine and R1, R2, . . . , Rn be the running costs is 1st, 2nd, . . ., n-th year respectively. Assuming that
scrap value of the machine is zero and that all payments (cash outflows) are made at the beginning of each
year, the present worth of expenditure in n years is

Pn = C +R1 + νR2 + ν2R3 + · · ·+ νn−1Rn (17.3.5)

Thus Pn is the amount of money required now to pay all future costs of acquiring and operating the machine
assuming that it is to be replaced after n years.

Now Pn increases as n increases which means that the present worth, if the machine is replaced after n+1
years is greater than if it is replaced after n years. Thus for any additional amount spent we get an extra year’s
service. We are, therefore, interested in finding some function of the replacement interval which allows for
this.

In order to do so, let us assume that the manufacturer invests the amount Pn by borrowing money at the
interest rate i and repays it off in fixed annual payments, each of value x, throughout the life of the machine.
Thus after n years he will have paid off the total cost Pn of the machine.

The present worth of fixed annual payments, each of value x, for n years is

x+ νx+ ν2x+ · · ·+ νn−1x =
1− νn

1− ν
x.

Since this is equal to the sum Pn borrowed,

Pn =
1− νn

1− ν
x ⇒ x =

1− ν

1− νn
Pn. (17.3.6)

Thus the best period to replace the machine is the period n which minimizes x =
1− ν

1− νn
Pn. However, since

(1− ν) is a positive constant, the period at which to replace the machine is the period n which minimizes the

function Fn =
Pn

1− νn
.

Since n can have only discrete values, method of finite differences can be used to calculate its optimal
value. By this method, n will be optimal i.e., Fn will be minimum if

∆Fn−1 < 0 < ∆Fn. (17.3.7)

Now

∆Fn = Fn+1 − Fn =
Pn+1

1− νn+1
− Pn

1− νn
=

(1− νn)Pn+1 −
(
1− νn+1

)
Pn

(1− νn+1) (1− νn)

=
1

(1− νn+1) (1− νn)

[
(Pn+1 − Pn) +

(
νn+1Pn − νnPn+1

)]
. (17.3.8)
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Further,
Pn+1 =

(
C +R1 + νR2 + · · ·+ νn−1Rn

)
+ νnRn+1 = Pn + νnRn+1.

From equation (17.3.8) we get

∆Fn =
1

(1− νn+1) (1− νn)

[
(νnRn+1) + νn+1Pn − νn {Pn + νnRn+1}

]
=

1

(1− νn+1) (1− νn)
[νnRn+1 (1− νn)− νnPn(1− ν)] (17.3.9)

=
νn(1− ν)

(1− νn+1) (1− νn)

[
1− νn

1− ν
Rn+1 − Pn

]
= a positive constant

[
1− νn

1− ν
Rn+1 − Pn

]
Therefore, Fn has always the same sign as the quantity in brackets. Hence, from inequation (17.3.7), n will
be optimal if

1− νn−1

1− ν
Rn − Pn−1 < 0 <

1− νn

1− ν
Rn+1 − Pn. (17.3.10)

From inequation (17.3.10) we have,

1− νn

1− ν
Rn+1 − Pn > 0 ⇒ Rn+1 > Pn ·

1− ν

1− νn
⇒ Rn+1 > Pn

/
1− νn

1− ν

⇒ Rn+1 >
C +R1 + νR2 + ν2R3 + · · ·+ νn−1Rn

1 + ν + ν2 + · · ·+ νn−1
(17.3.11)

⇒ Next periods cost > Weighted average of previous costs.

Since the expression on the R.H.S. of inequation (17.3.11) is the weighted average of all costs upto and in-
cluding period n−1. The weights 1, ν, ν2, . . . , νn−1 are the discount factors applied to the costs in each period.

The other part of inequation (17.3.10) can, similarly, be expressed as

Rn <
C +R1 + νR2 + ν2R3 + · · ·+ νn−2Rn−1

1 + ν + ν2 + · · ·+ νn−2
. (17.3.12)

From expressions (17.3.11) and (17.3.12) we conclude that

(a) The machine should be replaced if the next period’s cost is greater than the weighted average of previous
costs.

(b) The machine should not be replaced if the next period’s cost is less than the weighted average of previous
costs.

The corresponding value of the minimum annual payment x is obtained from equation (17.3.6) as

x =
1− v

1− vn
Pn.

Further, if x1 and x2 are the minimum annual payments for two machines A and B, A will be preferred if
x1 < x2 and vice versa.



184 UNIT 17.

It may be noted that the replacement policy of §17.3.1 which money value is ignored is a special case of
this section. As interest rate i→ 0, the discount rate ν → 1 and expression (17.3.11) reduces to

Rn+1 >
C +R1 +R2 + · · ·+Rn
1 + 1 + 1 + · · ·+ n times

⇒ Rn+1 >
Pn
n

which is identical to equation (17.3.2). In actual practice, this type of replacement problem may be further
complicated by the prevailing tax laws. A discussion of tax laws is beyond the scope of this book, but in any
real problem the effect of taxes has got to be taken into account.

Example 17.3.4. The yearly cost of two machines A and B, when money value is neglected is shown in table
below. Find their cost patterns if money is 10% per year and hence find which machine is more economical. Year 1 2 3

Machine A 1800 1200 1400
Machine B 2800 200 1400


Solution. The total expenditure for each machine in three years when money value is not considered is Rs.
4400. Thus the two machines are equally good if the money has no value over time. When the value of money
10% per year, the discount rate

ν =
1

1 + 0.10
=

1

1.1
= 0.9091

The discounted cost patterns for machines A and B are shown in table below.

Year 1 2 3 Total cost (Rs.)
Machine A 1800 1200× 0.9091 1400× 0.90912 404794
(Discounted cost in Rupees) = 1090.90 1157.04

Machine B 2800 200× 0.9091 1400× 0.90912 4138.86
(Discounted cost in Rupees) = 181.82 = 1157.04

As total cost for machine A is less than that for machine B, machine A is more economical.

Example 17.3.5. A machine costs Rs. 500. Operation and maintenance costs are zero for the first year and
increase by Rs. 100 every year. If money is worth 5% every year, determine the best age at which the machine
should be replaced. The resale value of the machine is negligibly small. What is the weighted average cost of
owning and operating the machine?

Solution. Discount rate,

v =
1

1 + r
=

1

1 + 0.05
= 0.9524

To find the best replacement age, we enter the calculations in a table. Table 17.5 represents these calculations.
From this table we find that

200 < 217.61 < 300,

where 200 is the running cost of 3rd year and 300 is that of 4th year. Therefore, the machine should be
replaced after third year. The weighted average cost of owning and operating the machine is Rs. 217.61.
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Table 17.5

Example 17.3.6. The cost of a new machine is Rs. 5000. The maintenance cost during the n-th year is given
by Mn = Rs. 500(n− 1), where n = 1, 2, 3, . . . . If the discount rate per year is 0.05, after how many years
will it be economical to replace the machine by a new one?

Solution. Since the discount rate of money is 0.05 per year, the present worth of the money to be spent after
a year is

ν =
1

1 + 0.05
= 0.9523

From Table 17.6 it is clear that it will be economical to replace the machine at the end of 5th year.

Table 17.6
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Exercise 17.3.7. 1. Explain how the theory of replacement is used in replacement of items whose mainte-
nance cost varies with time.

2. For an equipment the maintenance cost is a function increasing with time and scrap value is constant.
Ignoring time value of money and considering interest rate as zero, find at what time it is advisable to
replace the equipment?

3. The cost of a new machine is Rs. 5000. The maintenance cost of n-th year is given by Rn = 500(n −
1); n = 1, 2, . . . . Assuming that the money value will not change with time, after how many years will
it be economical to replace the machine by new one?

4. Madras Cola Inc. uses a bottling machine that costs Rs. 50000 when new. Table below gives the
expected operating costs per year, the annual expected production per year and the salvage value of the
machine. The wholesale price for a bottle of drink is Rs. 1.00.

Table 17.6

When should the machine be replaced?

5. Derive the expression for the condition to replace the equipment whose maintenance costs increase with
time and the value of money also changes with time.

6. Derive the following rule for minimizing costs in case of replacement of item whose maintenance costs
increase with time:

(i) Replace if the next period’s cost is greater than the weighted average of the previous costs.

(ii) Do not replace if the next period’s cost is less than the weighted average of the previous costs.

7. Purchase price of a machine is Rs. 3000 and its running cost is given in the table below. If the discount
rate is 0.90, find at what age the machine should be replaced.[

Year 1 2 3 4 5 6 7
Running cost 500 600 800 1000 1300 1600 2000

]
8. A company has the option to buy one of the minicomputers: MINICOMP and CHIPCOMP. MINI-

COMP costs Rs. 5 lakhs, and running and maintenance costs are Rs. 60, 000 for each of the first five
years, increasing by Rs. 20, 000 in the sixth and subsequent years. CHIPCOMP has the same capac-
ity as MINICOMP but costs only Rs. 2, 50, 000. However, its running and maintenance costs are Rs.
1, 20, 000 per year in the first five years and increase by Rs. 20, 000 per year thereafter. If the money is
worth 10% per year, which computer should be purchased? What are the optimal replacement periods
for each computer? Assume that there is no salvage value for either computer. Explain your analysis.



Unit 18

Course Structure

• Dynamic Programming (DP): Basic features of DP problems, Bellman’s principle of optimality, Mul-
tistage decision process with Forward and Backward recursive relations, DP approach to stage-coach
problems.

18.1 Introduction

In optimization problems involving a large number of decision variables or the inequality constraints, it may
not be possible to use the methods of calculus for obtaining a solution. Classical mathematics handles the
problems in a way to find the optimal values for all the decision variables simultaneously which for large
problems rapidly increases the computations that become uneconomical or difficult to handle even by the
available computers. The obvious solution is to split up the original large problem into small subproblems in-
volving a few variables and that is precisely what the dynamic programming does. It uses recursive equations
to solve a large, complex problem, broken into a series of interrelated decision stages (subproblems) wherein
the outcome of the decision at one stage affects the decisions at the remaining stages.

Dynamic programming is a mathematical technique dealing with the optimization of multistage decision
problems. The technique was originated in 1952 by Richard Bellman and G.B. Dantzig, and was initially
referred to as the stochastic linear programming. Today dynamic programming has been developed as a
mathematical technique to solve a wide range of decision problems and it forms an important part of every
operation researcher’s tool kit.

18.2 Characteristics of dynamic programming

The important features of dynamic programming which distinguish it from other quantitative techniques of
decision-making can be summarized as follows:

1. Dynamic programming splits the original large problem into smaller subproblems (also called stages)
involving only a few variables, wherein the outcome of decision at one stage affects the decisions at the
remaining stages.

187
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2. It involves a multistage process of decision-making. The points at which decisions are called for are
called stages. The stages may be certain time intervals or certain subdivisions of the problems, for
which independent feasible decisions are possible. Each stage can be thought of having a beginning and
an end. The stages come in a sequence, the end of a stage forming the beginning of the next stage.

3. In dynamic programming, the variable that links up two stages is called a state variable. At any stage,
the status of the problem can be described by the values the state variable can take. These values are
referred to as states. Each stage may have, associated with it, a certain number of states. It is not
essential to know about the previous decisions and how the states arise. This enables us to consider
decisions one at a time.

4. In dynamic programming the outcome of decisions depends upon a small number of variables; that is, at
any stage only a few variables should define the problem. For example, in the production smoothening
problem, all that one needs to know at any stage is the production capacity, cost of production in regular
and overtime, storage costs and the time remaining to the last decision.

5. A stage decision does not alter the number of variables on which the outcome depends, but only changes
the numerical value of these variables. For the production smoothening problem, the number of vari-
ables which describe the problem i.e., production capacity, production costs, storage costs and time to
the last decision, remain the same at all stages. No variable is added or dropped. The effect to deci-
sion at any stage will be to alter the used production capacity, storage cost, production cost and time
remaining to the last decision.

6. Principle of Optimality. Dynamic programming is based on Bellman’s Principle of Optimality, which
states, "An optimal policy (a sequence of decisions) has the property that whatever the initial state and
decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision". This principle implies that a wrong decision taken at one stage does not prevent
from taking of optimum decisions for the remaining stages. For example, in a production scheduling
problem, wrong decisions made during first and second months do not prevent taking correct decisions
during third, fourth month, etc. Using this principle of optimality, we find the best policy by solving one
stage at a time, and then adding a series of one-stage-problems until the overall optimum of the original
problem is attained.

7. Bellman’s principle of optimality forms the basis of dynamic programming technique. With this prin-
ciple in mind, recursive equations are developed to take optimal decision at each stage. A recursive
equation expresses subsequent state conditions and it is based on the fact that a policy is ’optimal’ if the
decision made at each stage results in overall optimality over all the stages and not only for the current
stage.

8. Dynamic programming provides a systematic procedure wherein starting with the last stage of the prob-
lem and working backwards one makes an optimal decision for each stage of the problem. The infor-
mation for the last stage is the information derived from the previous stages. It may be noted that D.P.
problems can also be solved by working forward i.e., starting with the first stage and then working
forward upto the last stage.

18.3 Dynamic programming approach

Before discussing the solutions to numerical problems, it will be worthwhile to know a little more about some
fundamental concepts of dynamic programming. The first concept is stage. As already discussed, the problem
is broken down into sub-problems and each sub-problem is referred to as a stage. A stage signifies a portion
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of decision problem for which a separate decision can be made. At each stage there are a number of alterna-
tives and the decision-making process involves the selection of one feasible alternative which may be called
as stage decision. The stage decision may not be optimal for the considered stage, but contributes to make an
overall optimal decision for the entire problem.

The other important concept is state. A state represents the status of the problem at a particular stage. The
variables which specify the condition of decision process and summarize the current ’status’ of the system are
called state variables. For example, in the capital budgeting problem, the capital is the state variable. The
amount of capital allocated to the present stage and the preceding stages (or the capital remaining) defines
the status of the problem. The number of state variables should be as small as possible. With the increase in
number of state variables, increases the difficulty of problem solving.

The procedure adopted in the analysis of dynamic programming problems can be summarized as follows:

1. Define the problem variables, determine the objective function and specify the constraints.

2. Define the stages of the problem. Determine the state variables whose values constitute the state at each
stage and the decision required at each stage. Specify the relationship by which the state at one stage
can be expressed as a function of the state and decisions at the next stage.

3. Develop the recursive relationship for the optimal return function which permits computation of the
optimal policy at any stage. Decide whether to follow the forward or the backward method to solve the
problem. Specify the optimal return function at stage 1 , since it is generally a bit different from the
general optimal return function for the other stages.

4. Make a tabular representation to show the required values and calculations for each stage.

5. Find the optimal decision at each stage and then the overall optimal policy. There may be more than
one such optimal policy.

18.4 Formulation of dynamic programming problems

Consider a situation wherein a certain quantity ‘R’ of a resource (such as men, machines, money, materials,
etc.) is to be distributed among ‘n’ number of different activities. The return ‘P ’ depends upon the activities
and the quantities of resource allotted to them and the objective is to maximize the total return.

If pi (Ri) denotes the return form the i-th activity with the resource Ri, then the total return may be ex-
pressed as

P (R1, R2, . . . , Rn) = p1 (R1) + p2 (R2) + · · ·+ pn (Rn) . (18.4.1)

The quantity of resource R is limited, which gives rise to the constraint

R = R1 +R2 + · · ·+Rn, Ri ≥ 0, i = 1, 2, . . . , n. (18.4.2)

The problem is to maximize the total return given by equation (18.4.1) subject to constraint (18.4.2). If

fn(R) = max
0≤Ri≤R

[P (R1, R2, · · · , Rn)] = max
0≤Ri≤R

[p1 (R1) + p2 (R2) + · · ·+ pn (Rn)] , (18.4.3)

then fn(R) is the maximum return from the distribution of the resource R to the n activities. Let us now
allocate the resource to the activities, one by one, starting from the last i.e., n-th activity. An expression



190 UNIT 18.

connecting fn(R) and fn−1(R) for arbitrary values ofR and nmay now be obtained with the help of principle
of optimality. If Rn is the quantity of resource allocated to the n-th activity such that 0 ≤ Rn ≤ R, then
regardless of the values of Rn, a quantity (R−Rn) of the resource will be distributed among the remaining
(n− 1) activities. Let fn−1 (R−Rn) denote the return from the (n− 1) activities, then the total return from
all the n activities will be

pn (Rn) + fn−1 (R−Rn) .

An optimal choice of Rn will maximize the above function and thus the fundamental dynamic programming
model may be expressed as

fn(R) = max
0≤Rn≤R

[pn (Rn) + fn−1 (R−Rn)] , n = 2, 3, . . . , (18.4.4)

where f1(R), when n = 1 is obtained from equation (18.4.3) as

f1(R) = p1(R). (18.4.5)

Equation (18.4.5) gives the return from the first activity when whole of the resource R is allotted to it. Once
f1(R) is known, equation (18.4.4) provides a relation to evaluate f2(R), f3(R), . . .. This recursive process
ultimately leads to the value of fn−1(R) and finally fn(R) at which the process stops.

Example 18.4.1. A firm has divided its marketing area into three zones. The amount of sales depends upon
the number of salesman in each zone. The firm has been collecting the data regarding sales and salesmen in
each area over number of past years. The information is summarized in Table 18.1. For the next year firm has
only 9 salesmen and the problem is to allocate these salesmen to three different zones so that the total sales are
maximum. Solution. In this problem the three zones represent the three stages and the number of salesmen

Table 18.1

represent the state variables.

Stage 1: We start with zone 1. The amount of sales corresponding to different number of salesmen allocated
to zone 1 are given in Table 18.1 and are reproduced in Table 18.2.
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Table 18.2
Zone 1

No. of salesmen: 0 1 2 3 4 5 6 7 8 9
Profit: 30 45 60 70 79 90 98 105 100 90

Stage 2: Now consider the first two zones, zone 1 and 2. Nine salesmen can be divided among two zones
in 10 different ways : as 9 in zone 1 and 0 in zone 2,8 in zone 1 and 1 in zone 2,7 in zone 1 and 2 in zone
2, etc. Each combination will have associated with it certain returns. The returns for all number of salesmen
(total) 9, 8, 7, . . . , 0 are shown in Table 18.3. For a particular number of salesmen, the profits for all possible
combinations can be read along the diagonal. Maximum profits are marked by *.

Table 18.3

Stage 3: Now consider the distribution of 9 salesmen in three zones 1, 2 and 3. The decision at this stage
will result in allocating certain number of salesmen to zone 3 and the remaining to zone 2 and 1 combined;
and then by following the backward process, they will be distributed to zones 2 and 1. For total of 9 salesmen
to be allocated to the three zones, the returns are shown in Table 18.4 below. From Table 18.4, the maximum

Table 18.4

profit for 9 salesmen is Rs. 210000 if 5 salesmen are allotted to zone 3 and from the remaining four, 1 is
allotted to zone 2 and 3 to zone 1.
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Example 18.4.2. An oil company has 8 units of money available for exploration of three sites. If oil is present
at a site, the probability of finding it depends upon the amount allocated for exploiting the site, as given below.

Table 18.5

The probability that the oil exists at sites 1, 2 and 3 is 0.4, 0.3 and 0.2 respectively. Find the optimal allo-
cation of money.

Solution. In this oil exploration problem, the objective is to maximize the probability of finding oil by allo-
cating the available amount of money to the three potential oil sites. Let x1, x2 and x3 be the units of money
allocated to the sites 1,2 and 3 respectively, and p1 (x1) , p2 (x2) and p3 (x3) be the corresponding probabilities
of finding oil, if it exists. Then actual probabilities of finding oil at the three sites are p1 (x1)×0.4, p2 (x2)×0.3
and p3 (x3)× 0.2.

Thus the objective function can be written as

maximize Z = 0.4p1 (x1) + 0.3p2 (x2) + 0.2p3 (x3) ,

subject to constraint x1 + x2 + x3 ≤ 8,

where x1, x2, x3 are non-negative integers.

The probabilities of finding the oil, taking into consideration the availabilities of oil at different sites, in the
percentage form can be expressed as below.

Table 18.6

Here the three sites are regarded as the three stages and the money allocated is the state variable.

Stage 1: We start with site 1. The actual probabilities of finding the oil when expressed as percentages are
shown in Table 18.7.

Table 18.7
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Stage 2: Now consider the first two sites 1 and 2. Eight units of money can be divided among the two sites
in 9 different ways as shown in Table 18.8.

Table 18.8

The optimal values of f2(x2) + f1(x1) are given in Table 18.9.

Table 18.9

State 3: Now consider the allocation of 8 units of money to the three sites. The corresponding probabilities
expressed as percentages are shown in Table 18.9.

Table 18.9

Thus the maximum probability is 40%, which is obtained if x3 = 0, x2 = 0, and x1 = 8, i.e., if entire 8
units of money are allocated to site 1 only.
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18.5 Dynamic programming approach to stage-coach problems

Example 18.5.1. A salesman is planning a business tour from Mumbai to Kolkata in the course of which he
proposes to cover one city from each of the company’s different marketing zones route. As has limited time at

his disposal, he has to complete his tour in the shortest possible time. The network in the above figure shows
the number of days’ time involved for covering any of the various intermediate cities (time includes travel as
well as working time). Determine the optimum tour plan.

Solution. Starting from A, the cities of various marketing zones may be considered as distinct stages.

Stage1 : B or C ?
Stage2 : D,E,F or G ?
Stage3 : H, I, J or K ?
Stage4 : L,M or N ?
Stage5 : Best route to O.

Stage 1: At this stage it is not known whether B lies on the overall shortest route; but if it does, the shortest
route from A to B is AB.

A to B = 6
A to C = 11

}
the only routes.

Stage 2: It is not known whether D lies on the overall shortest route; but if it does, the only route from A is
ABD = 10 + 8 = 18.

Similarly,
ABE = 10 + 9 = 19
ACE = 11 + 7 = 18
ACF = 11 + 8 = 19
ACG = 11 + 9 = 20.


From the above, shortest routes are :

A to D = 18
A to E = 18
A to F = 19
A to G = 20.
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Stage 3: It is not known whether H lies on the overall shortest route; but if it does, is it through D or E ?

Both D and E are reached in 18 days by the quickest route from A (from the optimal result from stage 2).

Therefore
ADH = 18 + 5 = 23
AEH = 18 + 6 = 24

}
Similarly,

ADI = 18 + 6 = 24

AEI = 18 + 5 = 23

AFI = 19 + 7 = 26

AEJ = 18 + 6 = 24

AFJ = 19 + 5 = 24

AGJ = 20 + 6 = 26

AFK = 19 + 7 = 26

AGK = 20 + 6 = 26.

From the above, shortest routes from A are

A to H = 23
A to I = 23
A to J = 24
A to K = 26.


Stage 4: Proceeding in the same way as for stage 3 , we have

AHL = 23 + 5 = 28

AIL = 23 + 6 = 29

AJL = 24 + 7 = 31

AIM = 23 + 6 = 29

AJM = 24 + 7 = 31

AKM = 26 + 5 = 31

AJN = 24 + 4 = 28

AKN = 26 + 5 = 31.

∴ The shortest routes from A are
A to L = 28

A to M = 29
and A to N = 28.


Final stage: There are three alternatives to reach O from the 4th stage viz. LO, MO and NO. Using the
optimal times at 4th stage,

ALO = 28 + 3 = 31
AMO = 29 + 4 = 33
ANO = 28 + 4 = 32
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Thus the shortest time from A to O = 31. Now we retrace the steps backwards along the network to identify
the intermediate cities along the shortest route.

A−O− Final

A− L−O− Stage 4

A−H− L−O− Stage 3

A−D−H− L−O− Stage 2

A− B−D−H− L−O− Optimal route.

The problem of finding the shortest route is known as the stage coach problem.

18.6 Application of dynamic programming

We have discussed some over-simplified examples from the various fields of applications of dynamic program-
ming. Many more applications are found for this decision-making technique. Whereas the linear programming
has found its applications in large-scale complex situations, dynamic programming has more applications in
smaller-scale systems. Following are a few of the large number of fields in which dynamic programming has
ben successfully applied:

1. Production: In the production area, this technique has been employed for production, scheduling and
employment smoothening, in the face of widely fluctuating demand requirements.

2. Inventory Control: This technique has been used to determine the optimum inventory level and for
formulating the inventory reordering rules, indicating when to replenish an item and by what amount.

3. Allocation of Resources: It has been employed for allocating the scarce resources to different alternative
uses, such as allocating salesmen to different sales zones and capital budgeting procedures.

4. Spare part level determination to guarantee high efficiency utilisation of expensive equipment.

5. Scheduling methods for routine and major overhauls on complex machinery.

6. Systematic plan or search to discover the whereabouts of a valuable resource.

These are only a few of the wide range of situations to which dynamic programming has been successfully
applied. Many real operating systems call for thousands of such decisions. The dynamic programming models
make it possible to make all these decisions, of course with the help of computers. These decisions individ-
ually may not appear to be of much economic benefit, but in aggregate they exert a major influence on the
economy of a firm.

Exercise 18.6.1. 1. What is dynamic programming and what sort of problems can be solved by it? State
Bellman’s principle of optimality and explain why it holds.

2. What is the need of dynamic programming and how is it differ from linear programming? Write some
applications of dynamic programming.

3. Explain the following in the context of dynamic programming:

(i) Principle of optimality, (ii) State, (iii) Stage

4. Write short note on characteristics of dynamic programming?
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5. Find the shortest path from 1 to 12 through the network given in figure above. Also find the longest
path connecting 1 and 12.

6. (a) What do you mean by forward and backward recursion in dynamic programming?

(b) Suppose that a person wants to select the shortest highway route between two cities. The network
shown below provides the possible routes between the starting city at node 1 and the destination
city at node 7. The routes pass through intermediate cities designated by nodes 2 to 6. Solve the
problem of finding the shortest route using dynamic programming.
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Course Structure

• Non-Linear Programming (NLP): Lagrange Function and Multipliers, Lagrange Multipliers methods
for nonlinear programs with equality and inequality constraints.

19.1 Constrained Extremal Problem for non-linear programming

The optimization problems having continuous objective function and equality or inequality type constraints
are called constrained extremal problems. The solution of such problems, having differentiable objective
function and equality type constraints can be obtained by a number of methods, but the most common is the
Lagrange multipliers method.

19.1.1 Problem with one Equality Constraint

The use of Lagrange function can best be understood with the help of an example. Let us consider a simple
two-variable problem having a single equality type constraint.

Maximize or minimize Z = f (x1, x2) ,

subject to g (x1, x2) = b,

x1, x2 ≥ 0,

where the objective function as well as the constraint are differentiable w.r.t. x1 and x2 and f (x1, x2) or
g (x1, x2) or both are non-linear. The constraint function can be replaced by another differentiable function
h (x1, x2) such that

h (x1, x2) = g (x1, x2)− b = 0.

The problem, then, reduces to

maximize or minimize z = f (x1,

subject to h (x1, x2) = 0,

x1, x2 ≥ 0. (19.1.1)

The Lagrangian function can now be formulated as

L (x1, x2, λ) = f (x1, x2)− λh (x1, x2)

198



19.1. CONSTRAINED EXTREMAL PROBLEM FOR NON-LINEAR PROGRAMMING 199

where λ is the Lagrange multiplier. The necessary conditions for the maximum or minimum of f (x1, x2),
subject to the constraint h (x1, x2) = 0, can be obtained as

∂L

∂x1
= 0,

∂L

∂x2
= 0,

and
∂L

∂λ
= 0,

where L = L(x1, x2, λ). If f = f (x1, x2) and h = h (x1, x2), the above three necessary conditions for
optimization are given by

∂L

∂x1
=

∂f

∂x1
− λ

∂h

∂x1
= 0 or

∂f

∂x1
= λ

∂h

∂x1
,

∂L

∂x2
=

∂f

∂x2
− λ

∂h

∂x2
= 0 or

∂f

∂x2
= λ

∂h

∂x2
,

and
∂L

∂λ
= 0− h = 0 or −h = 0.

The necessary conditions for optima of f (x1, x2), subject to h (x1, x2) = 0, are thus given by

f1 = λh1,

f2 = λh2,

and − h = 0.

These necessary conditions are also the sufficient conditions for a maximum if the objective function is
concave and for a minimum if the objective function is convex.

19.1.2 Necessary and Sufficient Conditions for a General NLPP

A general NLPP having n variables and m constraints (n ≥ m), can be expressed as

maximize or minimize Z = f(X), X = (x1, x2, . . . , xn) ,

subject to gi(X) = bi, i = 1, 2, . . . ,m,

X ≥ 0.

The constraint can also be written as

hi(X) = gi(X)− bi = 0, i = 1, 2, . . . ,m.

By introducing the Lagrange multipliers, λ = (λ1, λ2, . . . , λm), the Lagrange function is formed as

L(X,λ) = f(X)−
m∑
i=1

λih
i(X)

Assuming that all the functionsL, f and hi are differentiable partially w.r.t. x1, x2, . . . , xn and λ1, λ2, . . . , λm,
the necessary conditions for the objective function to be a maximum or a minimum are

∂L

∂xj
=

∂f

∂xj
−

m∑
i=1

λi
∂hi

∂xj
= 0 or

∂f

∂xj
=

m∑
i=1

λi
∂hi

∂xj

and
∂L

∂λi
= 0− hi = 0 or −hi = 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

These (m + n) necessary conditions also become the sufficient conditions for a maximum if the objective
function is concave and for a minimum if the objective function is convex.
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19.1.3 When concavity (convexity) is not known

As discussed in §19.1.2, for an n-variable non-linear programming problem having one equality type con-
straint, the necessary conditions for a stationary point to be a maximum or minimum are

∂L

∂xj
=

∂f

∂xj
− λ

∂h

∂xj
= 0, j = 1, 2, . . . , n,

and
∂L

∂λ
= −h(X) = 0.

From the first condition, λ =
∂f

∂xj
/
∂h

∂xj
, for j = 1, 2, . . . , n.

These necessary conditions provide an optimal solution to the problem. The sufficient conditions for de-
termining whether the solution results in maximization or minimization of the objective function involve the
solution of (n− 1) principal minors of the following determinant: If the signs of minors ∆3,∆4,∆5, etc. are

alternatively +ve and −ve, the stationary point is a local maximum, and if all the minors are negative, the
local stationary point is a minimum.

Example 19.1.1. Solve the NLPP:

Maximize Z = 4x1 − x21 + 8x2 − x22,

subject to x1 + x2 = 2,

x1, x2 ≥ 0.

Solution. The objective function as well as the constraint are differentiable w.r.t. x1 and x2. The constraint
can be replaced by another differentiable function such as

x1 + x2 − 2 = 0.

The Lagrangian function can be written as

L (x1, x2, λ) = 4x1 − x21 + 8x2 − x22 − λ (x1 + x2 − 2)

The necessary conditions for a maxima or minima of the objective function are and
∂L

∂x1
= 4− 2x1 − λ = 0 (19.1.2)

∂L

∂x2
= 8− 2x2 − λ = 0 (19.1.3)

∂L

∂λ
= − (x1 + x2 − 2) = 0 (19.1.4)
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From (19.1.2) and (19.1.3), 4− 2x1 = 8− 2x2 ⇒ x2 − x1 = 2, and from (19.1.4), x2 + x1 = 2, which give
x1 = 0, x2 = 2 and λ = 4.

The sufficient conditions for determining whether the above solution results in maximization or minimiza-
tion of the objective function involve the solution of (n − 1) = 2 − 1 = 1 principal minor of the following
determinant of order 3 :

D3 =

∣∣∣∣∣∣
0 1 1
1 −2 0
1 0 −2

∣∣∣∣∣∣ = −1(−2) + 1(2) = 2 + 2 = 4

Since D3 is positive, the solution x1 = 0, x2 = 2 maximizes the objective function and

Zmax = 0− 0 + 16− 4 = 12.

Example 19.1.2. Obtain the necessary and sufficient conditions for the optimal solution of the following
problem. What is the optimal solution?

Minimize Z = 2e3x1+1 + e2x2+3,

subject to x1 + 2x2 = 5,

x1, x2 ≥ 0.

Solution. The objective function as well as the constraint are differentiable with respect to x1 and x2 and the
Lagrangian function for the above problem can be formed as

L(X,λ) = 2e3x1+1 + e2x2+3 − λ (x1 + x2 − 5) .

The necessary and sufficient conditions for maximization or minimization of Z = f (x1, x2) can be obtained
as

∂L

∂x1
= 6e3x1+1 − λ = 0 (19.1.5)

∂L

∂x2
= 2e2x2+3 − λ = 0 (19.1.6)

∂L

∂λ
= − (x1 + x2 − 5) = 0. (19.1.7)

From (19.1.5) and (19.1.6), 6e3x1+1 = 2e2x2+3 and from (19.1.7) x1 + x2 = 5.

Therefore,

6e3x1+1 = 2e2(5−x1)+3 = 2e13−2x1

⇒ 3e3x1+1 = e13−2x1

⇒ loge 3 + 3x1 + 1 =13-2 x1

⇒ x1 =
1

5
(12− loge 3) ,

and

x2 = 5− 1

5
(12− loge 3) =

1

5
(13 + loge 3) .
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Now

D3 =

∣∣∣∣∣∣
0 1 1
1 18e3x1+1 0
1 0 4e2x2+3

∣∣∣∣∣∣
= −1

(
4e2x2+3

)
+ 1

(
−18e3x1+1

)
= −2

(
9e2x1+3 + 2e2x2+3

)
Since the expression within parenthesis is positive for all values of x1 and x2, hence D3 is negative. Thus, the
above solution minimizes the objective function and

Zmin = 2e3{
1
5
(12−loge 3)}+1 + e2{

1
5
(13−loge 3)}+3

= 2e
1
5
(41−3 loge 3) + e

1
5
(41+2 loge 3)

Example 19.1.3. Determine the optimal solution for the following NLPP and check whether it maximizes or
minimizes the objective function:

Optimize Z = x21 − 10x1 + x22 − 6x2 + x23 − 4x3,

subject to x1 + x2 + x3 = 7,

x1, x2, x3 ≥ 0.

Solution. The objective function as well as the constraint are differentiable with respect to x1, x2 and x3 and
the Lagrangian function can be formed as

L(X,λ) = x21 − 10x1 + x22 − 6x2 + x23 − 4x3 − λ(x1 + x2 + x3 − 7).

The necessary conditions for Z to be maximum or minimum are

∂L

∂x1
= 2x1 − 10− λ = 0,

∂L

∂x2
= 2x2 − 6− λ = 0,

∂L

∂x3
= 2x3 − 4− λ = 0,

∂L

∂λ
= − (x1 + x2 + x3 − 7) = 0.

The resulting solution is x1 = 4, x2 = 2, x3 = 1 and λ = −2. To determine whether this solution results in
maximization or minimization, (n− 1) = 3− 1 = 2 principal minors D3 and D4 of the determinants of order
3 and 4 are solved.

D3 =


0

∂h

∂x1

∂h

∂x2
∂h

∂x1

∂2f

∂x21
− λ

∂2h

∂x21

∂2f

∂x1∂x2
− λ

∂2h

∂x1∂x2
∂h

∂x2

∂2f

∂x2∂x1
− λ

∂2h

∂x2∂x1

∂2f

∂x22
− λ

∂2h

∂x22

 =

 0 1 1
1 2 0
1 0 2

 = −1(2)+1(−2) = −4,

D4 =


0 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

 = −1

∣∣∣∣∣∣
1 0 0
1 2 0
1 0 2

∣∣∣∣∣∣+ 1

∣∣∣∣∣∣
1 2 0
1 0 0
1 0 2

∣∣∣∣∣∣− 1

∣∣∣∣∣∣
1 2 0
1 0 2
1 0 0

∣∣∣∣∣∣



19.2. CONSTRAINED EXTREMAL PROBLEM WITH MORE THAN ONE EQUALITY CONSTANT203

= −1{1(4)}+ 1{1(0)− 2(2)} − 1{1(0)− 2(−2)} = −4− 4− 4 = −12.

Since the principal minors D3 and D4 are negative, the solution x1 = 4, x2 = 2, x3 = 1 minimizes the
objective function, and

Zmin = 16− 40 + 4− 12 + 1− 4 = −35.

19.2 Constrained extremal problem with more than one equality constant

The non-linear programming problem having n variables and m equality constraints (m < n ), can be ex-
pressed in the general form as

maximize (or minimize) Z = f(X),

subject to hi(X) = 0, i = 1, 2, . . . ,m,

X ≥ 0.

The Lagrangian function can be formed as

L(X,λ) = f(X)−
m∑
i=1

λih
i(X),

where λi, (i = 1, 2, . . . ,m) are the Lagrangian multipliers. As in the previous cases, here again it is assumed
that the functions L(X,λ), f(X) and hi(X) are partially differentiable w.r.t. X and λ.

The necessary conditions for the optimum solution are

∂L

∂xj
= 0, j = 1, 2, . . . , n

∂L

∂λi
= 0, i = 1, 2, . . . ,m.

The sufficient conditions for the stationary point to be a maxima or minima are obtained by solving the
principal minors of the bordered Hessian matrix,

HB =

(
O P
P T Q

)
(m+n)×(m+n)

where O is an m×m null matrix,

P =



∂h1
∂x1

∂h1
∂x2

∂h1
∂x3

· · · ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

∂h2
∂x3

· · · ∂h2
∂xn

...
∂hm
∂x1

∂hm
∂x2

∂hm
∂x3

· · · ∂hm
∂xn


(m×n)

Q =



∂2L

∂x21

∂2L

∂x1∂x2
. . .

∂2L

∂x1∂xn
∂2L

∂x2∂x1
∂2L
∂x22

. . .
∂2L

∂x2∂xn
...

∂2L

∂xn∂x1

∂2L

∂xn∂x2
. . .

∂2L

∂x2n


If (X∗, λ∗) is the stationary point for the function L(X,λ) and HB∗

is the corresponding bordered Hessian
matrix, the sufficient but not necessary condition for the maxima and minima is determined by the signs of
the last (n−m) principal minors of HB∗

, starting with the principal minor of the order (2m+ 1).

X∗ maximizes the function if the signs alternate, starting with (−1)m+n and X∗ minimizes the function if
all the signs are same and of the (−1)m type.
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Example 19.2.1. Solve the non-linear programming problem given below:

Optimize Z = x21 + x22 + x23,
subject to x1 + x2 + 3x3 = 2,

5x1 + 2x2 + x3 = 5,
x1, x2, x3 ≥ 0.

Solution. The objective function as well as constraints are differentiable with respect of x1, x2 and x3 and
the Lagrangian function is formed as

L(X,λ) = x21 + x22 + x23 − λ1 (x1 + x2 + 3x3 − 2)− λ2 (5x1 + 2x2 + x3 − 5)

The necessary conditions for the maxima or minima of the objective function are obtained as

∂L

∂x1
= 2x1 − λ1 − 5λ2 = 0 (19.2.1)

∂L

∂x2
= 2x2 − λ1 − 2λ2 = 0, (19.2.2)

∂L

∂x3
= 2x3 − 3λ1 − λ2 = 0, (19.2.3)

∂L

∂λ1
= − (x1 + x2 + 3x3 − 2) = 0, (19.2.4)

∂L

∂λ2
= − (5x1 + 2x2 + x3 − 5) = 0. (19.2.5)

Substituting the values of x1, x2, x3 from , and in and , we get

λ1 + 5λ2
2

+
λ1 + 2λ2

2
+ 3

(
3λ1 + λ2

2

)
− 2 = 0 or 11λ1 + 10λ2 = 4, (19.2.6)

and
5 · (λ1 + 5λ2)

2
+

2 (λ1 + 2λ2)

2
+

3λ1 + λ2
2

− 5 = 0 or, λ1 + 3λ2 = 1. (19.2.7)

Solving (19.2.6) and (19.2.7), we have λ1 = 0.087 and λ2 = 0.304. Equations (19.2.1), (19.2.1) and (19.2.1)
yield x1 = 0.804, x2 = 0.348 and x3 = 0.283 as the solution.

To determine whether this solution point is a maxima or minima, the following bordered Hessian matrix is
constructed:

HB =

[
O P
P T Q

]
(m+n)×(m+n)

where

O =

[
0 0
0 0

]
, P =

[
1 1 3
5 2 1

]
, P T =

 1 5
1 2
3 1

 , and Q =

 2 0 0
0 2 0
0 0 2

 .
Therefore,

HB =


0 0 1 1 3
0 0 5 2 1

1 5 2 0 0
1 2 0 2 0
3 1 0 0 2

 .
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Since n = 3,m = 2;n−m = 1 and 2m+ 1 = 5. This means that only one principal minor of HB of order
5 needs to be solved. For maximization, the sign should be (−1)m+n = (−1)5 = −ve and for minimization,
the sign should be (−1)m = (−1)2 = +ve. Now the determinant of HB of order 5 is∣∣∣∣∣∣∣∣∣∣

0 0 1 1 3
0 0 5 2 1
1 5 2 0 0
1 2 0 2 0
3 1 0 0 2

∣∣∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣∣∣
0 0 2 1
1 5 0 0
1 2 2 0
3 1 0 2

∣∣∣∣∣∣∣∣− 1

∣∣∣∣∣∣∣∣
0 0 5 1
1 5 2 0
1 2 0 0
3 1 0 2

∣∣∣∣∣∣∣∣+ 3

∣∣∣∣∣∣∣∣
0 0 5 2
1 5 2 0
1 2 0 2
3 1 0 0

∣∣∣∣∣∣∣∣
= 1

2
∣∣∣∣∣∣
1 5 0
1 2 0
3 1 2

∣∣∣∣∣∣− 1

∣∣∣∣∣∣
1 5 0
1 2 2
3 1 0

∣∣∣∣∣∣
− 1

5
∣∣∣∣∣∣
1 5 0
1 2 0
3 1 2

∣∣∣∣∣∣− 1

∣∣∣∣∣∣
1 5 2
1 2 0
3 1 0

∣∣∣∣∣∣


+3

5
∣∣∣∣∣∣
1 5 0
1 2 2
3 1 0

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
1 5 2
1 2 0
3 1 0

∣∣∣∣∣∣


= 1[2{1(4− 0)− 5(2− 0)} − 1{1(0− 2)− 5(0− 6)}]
−1[5{1(4− 0)− 5(2− 0)} − 1{1(0− 0)− 5(0− 0) + 2(1− 6)}]
+3[5{1(0− 2)− 5(0− 6)} − 2{1(0− 0)− 5(0− 0) + 2(1− 6)}]

= 1[2(4− 10)− 1(−2 + 30)]− 1[5(4− 10)− 1(0− 0− 10)]

+3[5(−2 + 30)− 2(0− 0− 10)]

= 1[−12− 28]− 1[−30 + 10] + 3[140 + 20] = −40 + 20 + 480 = 460

Since the value is +ve, the above solution minimizes the objective function and

Zmin = (0.804)2 + (0.348)2 + (0.283)2 = 0.847.

19.3 Non-linear programming problem with one inequality constraint

Consider a general non-linear programming problem having one inequality constraint of the type

Maximize Z = f(X),
subject to g(X) ≤ b,

X ≥ 0, X = x1, x2, . . . , xn.

Introducing a slack variable S in the form of S2 so as to ensure that it is always non-negative, the constraint
equation can be modified to h(X) + S2 = 0, where h(X) = g(X)− b ≤ 0.

The problem can now be expressed as

Maximize Z = f(X),

subject to h(X) + S2 = 0,

X ≥ 0,

which is an (n+1) variable, single equality constraint problem of constrained optimization and can be solved
by the method of Lagrange multipliers. The Lagrangian function can be constructed as

L(X,S, λ) = f(X)− λ
[
h(X) + S2

]
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The necessary conditions for the stationary point are

∂L

∂xj
=

∂f

∂xj
− λ

∂h

∂xj
= 0, j = 1, 2, . . . , n

∂L

∂λ
= −

[
h(X) + S2

]
= 0,

and
∂L

∂S
= −2Sλ = 0.

The condition
∂L

∂S
= 0 implies that either S = 0 or λ = 0. If S = 0, then condition ∂L

∂λ = 0 gives h(X) = 0.

Thus either λ or h(X) = 0, i.e., λ · h · (X) = 0.

Since S2 has been taken to be a non-negative slack variable, h(X) ≤ 0. This implies that when h(X) <
0, λ = 0; and when λ > 0, h(X) = 0. The necessary conditions for maximization problem can thus be
summarized as

∂f

∂xj
− λ

∂h

∂xj
= 0,

λh(X) = 0,

h(X) ≤ 0,

λ ≥ 0.

These necessary conditions are also called Kuhn-Tucker conditions. A similar argument holds for the mini-
mization non-linear programming problem :

Minimize Z = f(X)
subject to g(X) ≥ b

X ≥ 0

Introduction of h(X) = g(X) − b, reduces the constraint to h(X) ≥ 0. The surplus variable S2 can be
introduced so that the constraint becomes h(X)− S2 = 0. The appropriate Lagrangian functions is

L(X,S, λ) = f(X)− λ
[
h(X)− S2

]
.

Following an analysis similar to the one for maximization problem, the Kuhn-Tucker conditions for the mini-
mization non-linear programming problem can be obtained as:

∂f

∂xj
− λ

∂h

∂xj
= 0,

λh(X) = 0,

h(X) ≥ 0,

λ ≤ 0.

For a single constraint non-linear programming problem, the necessary Kuhn-Tucker conditions are also the
sufficient conditions for

1. the maximization problem, when f(X) is concave and h(X) is convex.

2. the minimization problem, when both f(X) and h(X) are convex.
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Example 19.3.1. Solve the following non-linear programming problem:

Maximize Z = 4x1 − x31 + 2x2,

subject to x1 + x2 ≤ 1,

x1, x2 ≥ 0.

Solution. The problem can be put as
f(X) = 4x1 − x31 + 2x2,

h(X) = x1 + x2 − 1.

The problem is of maximization, and Kuhn-Tucker conditions are

∂f(X)

∂xj
− λ

∂h(X)

∂xj
= 0,

λh(X) =

h(X) ≤ 0,

λ ≥ 0.

Applying these conditions, we get

4− 3x21 − λ = 0, (19.3.1)

2− λ = 0, (19.3.2)

λ(x1 + x2 − 1) = 0, (19.3.3)

x1 + x2 − 1 ≤ 0, (19.3.4)

λ ≥ 0. (19.3.5)

From (19.3.2) λ = 2, therefore from (19.3.3) x1 + x2 − 1 = 0. These results satisfy the conditions (19.3.4)
and (19.3.5). Solution of (19.3.1), (19.3.2) and (19.3.3) yields

x1 =
√

2/3 = 0.8165 and x2 = 1−
√
2/3 = 0.1835

It can be easily observed that f(X) is concave in X , while h(X) is a convex function. Hence, the solution
X∗ = (0.8165, 0.1835) maximizes the objective function which comes to Zmax = 3.0887.

19.4 Non-linear programming problem with more than one inequality con-
straint

Let us consider a general non-linear programming problem of the maximization type.

Maximize Z = f(X),
subject to gi(X) ≤ bi,

X ≥ 0; i = 1, 2, . . . ,m.

The constraint equation can be written in the form

hi(X) = gi(X)− bi ≤ 0,

which can be further modified to equality constraint by introducing slack variables.

∴ hi(X) + S2
i = 0, i = 1, 2, . . . ,m.
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The Lagrangian function is constructed as

L(X,S, λ) = f(X)−
m∑
i=1

λi
[
hi(X) + S2

i

]
.

The necessary conditions for maximization are

∂L

∂xj
=
∂f(X)

∂xj
−

m∑
i=1

λi
∂hiX

∂xj
= 0, (19.4.1)

∂L

∂λi
= −

[
hi(X) + S2

i

]
= 0, (19.4.2)

∂L

∂Si
= −2Siλi = 0, (19.4.3)

i = 1, 2, . . . ,m,

j = 1, 2, . . . , n.

The conditions (19.4.2) and (19.4.3) can be replaced by the following set of conditions, by carrying out
analysis similar to the one done in case of single inequality constraint.

λih
i(X) = 0 (19.4.4)

hi(X) ≤ 0 (19.4.5)

λi ≥ 0. (19.4.6)

Thus the Kuhn-Tucker conditions for a non-linear programming problem of maximizing f(X) subject to the
constraints hi(X) ≤ 0, can be summarized as

fj(X)−
m∑
i=1

λih
i
j(X) = 0

λih
i(X) = 0,

hi(X) ≤ 0,

λi ≥ 0,

i = 1, 2, . . . ,m,

j = 1, 2, . . . , n.

It can be shown that the Kuhn-Tucker conditions for a minimization non-linear programming problem are

fj(X)−
m∑
i=1

λih
i
j(X) = 0

λih
i(X) = 0

hi(X) ≥ 0

λi ≥ 0

The Kuhn-Tucker conditions are also the sufficient conditions.

1. for a maximum, if f(X) is concave and all hi(X) are convex in X .

2. for a minimum, if f(X) is convex and all hi(X) are concave in X.
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In both the maximization and minimization problems, the Lagrange’s multipliers corresponding to the equality
constraints must be unrestricted in sign. In maximization problems all constraints should be of ≤ type, while
in minimization, the constraints should be of ≥ type. These conditions can be obtained by performing the
necessary transformations as discussed in linear programming.

Example 19.4.1. Solve the following NLPP:

Maximize Z = 7x21 + 6x1 + 5x22
subject to x1 + 2x2 ≤ 10

x1 − 3x2 ≤ 9
x1, x2 ≥ 0

Solution. We have
f(X) = 7x21 + 6x1 + 5x22

h1(X) = x1 + 2x2 − 10

h2(X) = x1 − 3x2 − 9

The Kuhn-Tucker conditions for a maximization problem are

fj(X)−
m∑
i=1

λih
i
j(X) = 0

λih
i(X) = 0

hi(X) ≤ 0

Applying these conditions, we get

14x1 + 6− λ1 − λ2 = 0, (19.4.7)

10x2 − 2λ1 − 3λ2 = 0, (19.4.8)

λ1(x1 + 2x2 − 10) = 0, (19.4.9)

λ2(x1 − 3x2 − 9) = 0, (19.4.10)

x1 + 2x2 − 10 ≤ 0,

x1 − 3x2 − 9 ≤ 0,

λ1, λ2 ≥ 0.

Here we have two Lagrange’s multipliers λ1 and λ2 which can take zero or non-zero positive values. Thus
four solutions corresponding to the following four combinations of λi(i = 1, 2) values can be obtained:

(i) λ1 = 0, λ2 = 0;

(ii) λ1 = 0, λ2 ̸= 0;

(iii) λ1 ̸= 0, λ2 = 0;

(iv) λ1 ̸= 0, λ2 ̸= 0;

Solution 1: λ1 = 0 and λ2 = 0 result in x1 = − 6
14 and x2 = 0, which is an infeasible solution.

Solution 2: λ1 = 0, λ2 ̸= 0. Since λ2 ̸= 0, from (19.4.10) x1−3x2−9 = 0, from (19.4.7) and (19.4.8),
14x1 + 6− λ2 = 0, and 10x2 + 3λ2 = 0. Solution of these equations yields

x1 =
19

119
, x2 = −1, 052

357
, λ1 = 0, λ2 =

980

119
.
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This again is an infeasible solution.

Solution 3: λ1 ̸= 0, λ2 = 0. From (19.4.7), (19.4.8) and (19.4.9) we have

14x1 + 6− λ1 = 0,

10x2 − 2λ1 = 0

x1 + 2x2 − 10 = 0

The solution of these equations yields

x1 =
38

33
, x2 =

146

33
, λ1 =

730

33
, λ2 = 0.

This is a feasible solution giving Z = 114.061.

Solution 4: λ1 ̸= 0, λ2 ̸= 0 From (19.4.7), (19.4.8), (19.4.9) and (19.4.10), we have

14x1 + 6− λ1 − λ2 = 0,

10x2 − 2λ1 + 3λ2 = 0,

x1 + 2x2 − 10 = 0,

and x1 − 3x2 − 9 = 0.

The solution of these four equations yields

x1 =
48

5
, x2 =

1

5
, λ1 =

2, 116

25
, λ2 =

1, 394

25
.

This also is a feasible solution giving Z = 702.92. Since the maximum value of Z is obtained for solution 4 ,
where λ1 ̸= 0 and λ2 ̸= 0, the optimal solution is

x1
∗ =

48

5
, x2

∗ =
1

5
and Zmax = 702.92.

Exercise 19.4.2. 1. Solve the NLPP:

Maximize Z = 4x1 + 6x2 − 2x21 − 2x1x2 − 2x22,

subject to x1 + 2x2 = 2,

x1, x2 ≥ 0.

2. Solve the following NLPP by using Lagrange multipliers method:

Maximize Z = x21 + x22 + x23,

subject to 4x1 + x22 + 2x3 = 14,

x1, x2 ≥ 0.

3. Use the method of Lagrangian multipliers to solve the following NLPP. Does the solution maximize or
minimize the objective function?

Optimize Z = 2x21 + x22 + 3x23 + 10x1 + 8x2 + 6x3 − 100,

subject to x1 + x22 + x3 = 20,

x1, x2, x3 ≥ 0.
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4. Solve the following non-linear programming problem, using the Lagrange multipliers:

Optimize Z = 4x21 + 2x22 + x23 − 4x1x2,

subject to x1 + x22 + x3 = 15,

2x1 − x2 + 2x3 = 20,

x1, x2, x3 ≥ 0.

5. Solve the following non-linear programming problem:

Optimize Z = 4x1 + 9x2 − x21 − x22,

subject to 4x1 + 3x2 = 15,

3x1 + 5x2 = 14,

x1, x2 ≥ 0.

6. Solve the following non-linear programming problem using the Kuhn-Tucker conditions:

Maximize Z = 10x1 + 4x2 − 2x21 − x22,

subject to 2x1 + x2 ≤ 5,

x1, x2 ≥ 0.

7. Solve the following NLPP using the Kuhn-Tucker conditions:

Maximize Z = 2x21 − 7x22 + 12x1x2,

subject to 2x1 + 5x2 ≤ 98,

x1, x2 ≥ 0.

8. Use the Kuhn-Tucker conditions to solve the following non-linear programming problem:

Maximize Z = 7x21 − 6x1 + 5x22,

subject to x1 + 2x2 ≤ 10,

x1 − 3x2 ≤ 9,

x1, x2 ≥ 0.

9. Use the Kuhn-Tucker conditions to solve the following non-linear programming problem:

Optimize Z = 2x1 + 3x2 − (x21 + x22 + x23),

subject to x1 + x2 ≤ 1,

2x1 + 3x2 ≤ 6,

x1, x2 ≥ 0.



Unit 20

Course Structure

• Separable programming, Piecewise linear approximation solution approach, Linear fractional program-
ming.

20.1 Introduction

Separable programming is one of the indirect methods used to solve a non-linear programming problem. In-
direct methods solve an NLP problem by dealing with one or more linear problems that are extracted from the
original problem.

Separable programming is useful in solving those NLP problems in which the objective function and con-
straints are separable. Sometimes, functions that are not separable can be made separable by using simplified
approximation. Such approximation reduces the single variable non-linear function into piece-wise linear
functions, as shown in Fig 20.1.1.

Figure 20.1.1: Linear approximation of a function
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There is no particular method to determine the exact number of such piece-wise linear segments. Efforts
should be made to have large number of linear functions (or segments) to reduce the chance of error in the
approximation. However, such a number will increase the size of the problem and more computational time
would obviously be required to obtain the optimal solution.

In this unit we shall discuss to obtain an approximate solution for any separable problem by linear approx-
imation and the simplex method of linear programming.

20.2 Separable Functions

A function f(x1, x2, . . . , xn) that can be expressed as the sum of n single-variable functions, f1(x1), f2(x2), . . . , fn(xn)
such that:

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)

is said to be a separable function. For example, the linear function

h(x1, x2, . . . , xn) = c1x1 + c2x2 + . . .+ cnxn

(where c’s are constants) is a separable function. But the function

h(x1, x2, . . . , xn) = x21 + x1 cos(x2 + x3) + x32
x2

is not a separable function.

20.2.1 Reduction to separable form

A few non-linear functions are not directly separable, but can be separated by applying suitable substitutions.
For example, in the function y = x1 · x2, the non-separable term x1 · x2 can be expressed in terms of two
linear separable functions by taking log on both sides:

log y = log x1 + log x2

The problem can then be stated as:

Maximize Z = y

subject to the constraint

log y = log x1 + log x2

This problem is separable. Since logarithmic function is undefined for non-positive values, substitution as-
sumes that both x1 and x2 are positive.

If x1 and x2 assume zero values (i.e. x1, x2 ≥ 0), then two new variables u1 and u2 are defined as follows:

u1 = x1 + a1 and u2 = x2 + a2

or x1 = u1 − a1 and x2 = u2 − a2

where a1 and a2 are positive constants. This implies that both u1 and u2 are strictly positive. Now:

x1x2 = (u1 − a1)(u2 − a2) = u1u2 − a1u2 − a2u1 + a1a2
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Let y = u1u2. The original problem is then stated as:

Maximize Z = y − a1u2 − a2u1 + a1a2

subject to the constraint

log y = log u1 + log u2; u1 ≥ a1, u2 ≥ a2

This problem is also separable. Few other functions that can also be expressed as separable functions using
suitable substitution are:

ex1+x2 , xx21 , (x1)
1/2(x22 + ex2)−2 etc.

Definition 20.2.1. Separable programming problem: If the objective function of an NLP problem can be
expressed as a linear combination of several different one-variable functions, of which some or all are non-
linear, then such an NLP problem is called a separable programming problem.

Definition 20.2.2. Separable convex programming: It is the special case of separable programming in
which separate functions are convex. Also, the non-linear function f(x) is convex in case of minimization
and concave in case of maximization.

For example, if f(x) is the non-linear objective function, then for separable convex programming, it is
expressed as:

f(x) =

n∑
j=1

fj(xj)

where all fj(xj) are convex.

Illustration: Let f(x) = 9x21 + 5x22 − 5x1 + 2x2. Then f(x) is separated as:

f1(x1) = 9x21 − 5x1 and f2(x2) = 5x22 + 2x2

where both f1(x1) and f2(x2) are convex functions, such that f(x) = f1(x1) + f2(x2).

20.3 Piece-Wise Linear Approximation of Non-linear Functions

In this section, we shall discuss piece-wise linear approximation method to reduce a separable convex (or
concave) non-linear programming problem to a linear programming problem. Consider the following NLP
problem:

Optimize (Max or Min) Z =

n∑
j=1

fj(xj)

subject to the constraints
n∑
j=1

aijxj = bi; i = 1, 2, . . . ,m

and xj ≥ 0 for all j

where fj(xj) is the j-th separable function to be approximated over a defined interval.

Define (ak, bk) for all k = 1, 2, . . . ,K as the k-th breaking point joining a linear segment, which approx-
imate the non-linear function f(x), as shown in Fig. 20.1.1. Further define Wk as the non-negative weight
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associated with the k-th breaking point such that
K∑
k=1

WK = 1.

Let us impose an additional condition (if necessary) so that all Wk and Wk + 1 are equated with zero
to determine the weighted average of breaking points. This means that Wk and Wk + 1 will represent the
weighted average of breaking point (ak, bk) and (ak+1, bk+1) respectively. Thus f(x) is approximated as
follows:

f(x) =

K∑
k=1

bkWk; x =

K∑
k=1

akWk

This approximation is valid, provided the following conditions hold good:

0 ≤W1 ≤ y1

0 ≤W2 ≤ y1 + y2

0 ≤W3 ≤ y2 + y3
...

0 ≤Wk˘1 ≤ yk˘2 + yk˘1

0 ≤Wk ≤ yk−1

and
K∑
k=1

Wk = 1;
K−1∑
k=1

yk = 1

yk = 0 or 1 for all k.

The variables for approximation are now Wk and yk. The last constraints implies that if yk = 1, then all other
yk = 0. Consequently immediately preceding constraints ensure that 0 ≤ Wk ≤ yk = 1 and 0 ≤ Wk+1 ≤
yk = 1. This means all other constraints should give Wk ≤ 0.

20.4 Mixed-Integer Approximation of Separable NLP Problem

The single-variable non-linear separable function f(x), as defined earlier, can also be approximated by a
piece-wise linear function, using mixed-integer programming. Let the number of breaking points for the j-th
variable, xj , be equal to Kj and gjk be its k-th breaking value. Also, let wjk be the weight associated with the
k-th breaking point of j-th variable, xj . Then the equivalent mixed integer programming problem is stated as:

Optimize (Max or Min) Z =
n∑
j=1

Kj∑
k=1

fj(ajk)wjk

subject to the constraints
n∑
j=1

Kj∑
k=1

gij(ajk)wjk ≤ bi; i = 1, 2, . . . ,m

0 ≤ wj1 ≤ yj1
...

0 ≤ wjk ≤ yjk−1 + yjk; k = 2, 3, . . . ,Kj − 1

and
Kj∑
k=1

wjk = 1;

Kj−1∑
k=1

yjk

yjk = 0 or 1 for all j and k.
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The approximation is valid only under following two conditions:

(i) For each j, no more than two wjk should appear in the basis. That is, no more than two wjk are positive
for each j.

(ii) Two wjk can be positive only if they are adjacent.

The simplex method can now be used to solve the above stated problem, along with additional constraints
involving yjk variables. Thus, the optimality criterion of the simplex method can be used to select the entering
variable wjk into the basis, only if it satisfies the above two conditions. Otherwise the variable wjk, having the
next best optimality indicator (cjk˘zjk), is considered for entering the basis. The process is repeated until the
optimality criterion is satisfied or until it is impossible to introduce a new wjk without violating the restricted
basis condition, whichever occurs first. The last simplex table provides the approximate optimal solution to
the given problem.

Remark 20.4.1. 1. It is important to note that the restricted basis method yields only a local optimum,
whereas mixed integer programming method guarantees a global optimum to the approximate problem.

2. The approximate solution obtained by using any of the two methods may not be feasible for the original
NLP problem.

3. The solution space of approximate problem may have additional extreme points that do not exist in the
solution space of the original problem. However, this depends on the degree of accuracy while obtaining
linear approximation.

The Procedure

Step 1: Convert minimization objective function of the given NLP problem into that of maximization, with
the usual method as discussed earlier.

Step 2: Examine whether the functions fj(xj) and gij(xj) satisfy the concavity (convexity) conditions
required for the maximization of NLP problem. If yes, then go to Step 3. Otherwise stop where f(x) is to be
approximated.

Step 3: Divide the interval 0 ≤ xj ≤ tj (j = 1, 2, . . . , n) into a number of breaking points ajk (k =
1, 2, . . . ,Kj) such that aj1 = 0, aj1 < aj2 < . . . < ajKj .

Step 4: For each point ajk, compute piece-wise linear approximation fj(xj) and gij(xj), for all i and j.

Step 5: Write down piece-wise linear approximation of the given NLP problem obtained from Step 4.

Step 6: Solve the resulting LP problem using two-phase simplex method treating wi1(i = 1, 2, . . . ,m) as
artificial variables. The coefficients associated with these variables are assumed to be zero. This assumption
yields optimal simplex table of Phase I and hence would be considered as the initial simplex table for Phase II.

Step 7: Obtain optimum solution of the original NLP problem by using the relations:

x∗j =

Kj∑
k=1

ajkwjk; j = 1, 2, . . . , n.
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Example : Solve the following non-linear programming problem using separable programming algorithm.

MaxZ = 3x1 + 2x2

subject to the constraints

g(x) = 4x21 + x22 ≤ 16

and x1, x2 ≥ 0

Solution : The objective function is already of maximization form. Consider the separable functions:

f1(x1) = 3x1; f2(x2) = 2x2

g11(x1) = 4x21; g12(x2) = x22

Since f1(x1) and f2(x2) are in linear form, can leave them in their present form. Further, it may be observed
that these functions satisfy the concavity (convexity) conditions.

By inspection, constraints of the problem suggest the values of variables as: x1 ≤ 2 and x2 ≤ 4. Therefore,
we take t1 = 4 and t2 = 4 as the upper limits for the variables x1 and x2 respectively. Thus, we divide the
closed interval [0, 4] into four subintervals of equal size for both x1 and x2. It is important to note that the
number of subintervals for x1 and x2 should be the same, but they need not be equal in size.

To obtain the approximate LP problem for the given NLP problem, divide the interval 0 ≤ xj ≤ 4 into five
breaking points ajk (j = 1, 2; k = 1, 2, 3, 4, 5) such that:

aj1 = 0, aj1 ≤ aj2 ≤ aj3 ≤ aj4 ≤ aj5 = 4

For each point ajk, compute the piece-wise linear approximation for each of fj(xj) and g1j(xj); j = 1, 2 as
follows:

Using this data, we have the following piece-wise linear approximation:

f1 (x1) = 0 w11 + 3 w12 + 6 w13 + 9w14 + 12 w15

f2 (x2) = 0 w21 + 2 w22 + 4 w23 + 6w24 + 8 w25

g11 (x1) = 0 w11 + 4 w12 + 16 w13 + 36 w14 + 64w15

g12 (x2) = 0 w21 + 1 w22 + 4 w23 + 9 w24 + 16w25

Using the data of Step 4, the approximating LP problem can now be stated as follows:

Max f(x) = (0 w11 + 3 w12 + 6 w13 + 9 w14 + 12 w15) + (0 w21 + 2 w22 + 4 w23 + 6 w24 + 8 w25)
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subject to the constraints

(0 w11 + 4 w12 + 16 w13 + 36 w14 + 64 w15)

+ (0 w21 + w22 + 4 w23 + 9 w24 + 16 w25) ≤ 16

w11 + w12 + w13 + w14 + w15 = 1

w21 + w22 + w23 + w24 + w25 = 1

and wjk ≥ 0 for j and k

with the additional two restricted basis conditions:

(i) for each j no more than two wjk are positive, and

(ii) if two wjk are positive, they must correspond to adjacent points.

To solve the LP problem formulated in Step 5 by using simplex method, introduce the slack variables si (≥ 0)
to convert inequality constraint into equation. For using Phase II of simplex method to solve the given LP
problem, treat w11 and w21 as artificial variables whose coefficients in the objective function of reduced LP
problem are zero. The initial simplex table for Phase II is shown in Table 20.1.

Table 20.1

In Table 20.1, the entries in cj − zj row indicate that variable w15 must enter into the new solution and
variable s1 should leave the current solution. But this does not satisfy the additional Conditions (i) and (ii).
The next best variable to enter the basis is therefore w25 and variable w21 leaves the basis. The new solution,
so obtained, is shown in Table 20.2.

Table 20.2
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In Table 20.2 out of eligible variables w12, w13, w14, w15 to enter the basis, we decide to enter variable w12

into the basis in view of the additional conditions. The new solution after introducing variable w12 into the
basis and dropping variable s1 from the basis is shown in Table 20.3.

Table 20.3

To get the next best solution, we need to introduce the variable w24 into the basis and drop variable w11

from the basis in the solution, as shown in Table 20.4. The new solution is shown in Table 20.4.

Table 20.4

Since all cj − zj ≤ 0, the optimal solution has been arrived at. The optimal solution shown in Table 20.4
is:

w12 = 1, w24 = 4/7, w25 = 3/7 and f(x) = 69/7

The optimal solution to the original NLP problem can be obtained by using the formula:

xj =

5∑
k=1

ajkwjk; j = 1, 2

This gives

x1 = a11w11 + a12w12 + a13w13 + a14w14 + a15w15

= 0(0) + 1(1) + 2(0) + 3(0) + 4(0) = 1

x2 = a21w21 + a22w22 + a23w23 + a24w24 + a25w25

= 0(0) + 1(0) + 2(0) + 3(4/7) + 4(3/7) = 24/7
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Hence, the optimal solution to the given NLP problem is:

x1 = 1, x2 = 24/7 and Max f(x) = 3 + 2(24/7) = 69/7.

Example 20.4.2. Use separable programming algorithm to solve the non-linear programming problem:

Max Z = x1 + x22

subject to the constraints

3x1 + 2x22 ≤ 9

x1, x2 ≥ 0.

Solution. The objective function is already of the maximization form. Consider the following separable
functions:

f1(x) = x1; f2 (x2) = x22

g11 (x1) = 3x1; g12 (x2) = 2x22

Since f1 (x1) and g11 (x1) are in linear form, therefore these functions are left in their present form. Further,
it may be observed that these functions satisfy concavity (convexity) conditions.

The constraints of the problem suggest the value of variables as: x1 ≤ 3 and x2 ≤
√

9/2 = 2.13. There-
fore, we consider t1 = 3 and t2 = 3 as the upper limits for the variables x1 and x2 respectively. Thus, we
divide the closed interval [0, 3] into four breaking points of equal intervals for both x1 and x2. That is, the
four breaking points ajk(j = 1, 2; k = 1, 2, 3, 4) will be aj1 = 0, aj1 < aj2 < aj3 < aj4 = 3.

We consider non-linear functions f2 (x2) and g12 (x2) and assume that there are four breaking points
(k = 4). Since the value of x2 ≤ 3, therefore the piece-wise linear approximations for f2 (x2) and g12 (x2)
are computed as follows:

k ajk f2 (x2 = ajk) g12 (x2 = ajk)

1 0 0 0
2 1 1 2
3 2 16 8
4 3 81 18

This gives
f2 (x2) = w21f2 (a21) + w22f2 (a22) + w23f2 (a23) + w24f2 (a24)

= w21(0) + w22(1) + w23(16) + w24(81) = w22 + 16w23 + 81w24

g12 (x2) = w21g12 (a21) + w22g12 (a22) + w23f12 (a23) + w24g12 (a24)

= w21(0) + w22(2) + w23(8) + w24(18) = 2w22 + 8w23 + 18w24

Using the above data, the approximating LP problem can now be stated as follows:

max f(x) = x1 + w22 + 16w23 + 81w24

subject to the constraints

2x1 + 2w22 + 8w23 + 18w24 ≤ 9

w21 + w22 + w23 + w24 = 1

and x1, w21, w22, w23, w24 ≥ 0

with the two additional restricted basis conditions:
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(i) for each j, no more than two wjk are positive, and

(ii) if two wjk are positive, they must correspond to adjacent points.

Treating w21 as the artificial variable (because coefficient in the objective function of reduced LP problem is
zero) the given LP problem can be solved by using Two-Phase simplex method. The initial simplex table for
Phase II is given in Table 20.5.

Table 20.5

From cj−zj row of Table 20.5, it appears that the variable w24 should enter the basis. Since w21 is artificial
basic variable, it must be dropped before w24 enters the basis (restricted basis condition). By the feasibility
conditions (minimum ratio rule), s1 is the leaving variable. This means that w24 cannot enter the basis. Thus,
we consider the next best entering variable w23 [c3 − z3 = 16(< 81)]. Again the artificial variable w21 must
be dropped first. From the feasibility condition, w21 is the leaving variable. The new solution is shown in
Table 20.6.
In Table 20.6, cj − zj row values indicate that w24 is the entering variable. Because w23 is already in the

Table 20.6

basis, w24 is an admissible entering variable. From the feasibility condition, s1 is the leaving variable. The
new solution, so obtained, is shown in Table 20.7.

Table 20.7 shows that w22 should enter into the basis. But this is not possible because w24 cannot be
dropped from the current solution. Thus, the procedure terminates at this point and the given solution is the
optimal solution for the approximate LP problem w23 = 9/10, w24 = 1/10 and Max f(x) = 22.5.
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Table 20.7

The optimal solution of the original non-linear programming problem in terms of x1 and x2 is obtained by
using the relationship:

xj =
4∑

k=1

ajkwjk; j = 1, 2.

Therefore
x2 = a21 w21 + a22 w22 + a23 w23 + a24 w24

= 0(0) + 1(0) + 2(9/10) + 3(1/10) = 2.1.

x1 = 0 and Max f(x) = 22.5

Exercise 20.4.3. 1. What do you mean by separable and/or nonlinear convex programming? How will
you solve the separable non-linear programming problem:

Minimize Z =
n∑
j=1

f0j(xj)

subject to the constraints
n∑
j=1

f0j(xj) ≥ bi; i = 1, 2, . . . ,m

2. Show that if f0j(xj) is strictly convex and fij(xj) is concave for i = 1, 2, . . . ,m, then we can discard
the additional restriction in the approximated separable non-linear programming problem of exercise 1
and solve the resulting LP problem to find an approximate solution to the given problem.

3. Show that the non-linear non-convex programming problem:

Minimize Z = a0 + b01x1 +

 5∑
j=2

b0jxj

x1

subject to the constraints

0 ≤ ai1x1 +
(∑

j = 25aijxj

)
x1 ≤ bi; i = 1, 2, . . . , 5

li ≤ xi ≤ ui; i = 1, 2, . . . , 5.

can be transformed into a concave LP problem by setting

yi = xix1 (i = 1, 2, . . . , 5) and y1 = x1

where a0, b0j , aij , bi, li and ui are real constants.



20.4. MIXED-INTEGER APPROXIMATION OF SEPARABLE NLP PROBLEM 223

4. Solve the following non-linear programming problem:

Max Z = (x1 + 1)2 + (x2 − 2)2

subject to the constraints

x1 − 2 ≤ 0; x2 − 1 ≤ 0

x1, x2 ≥ 0.

5. Solve the following non-linear programming problem:

Min Z = x21 + x22 + 5

subject to the constraints

3x41 + x2 ≤ 243; x1 + 2x22 ≤ 32

x1, x2 ≥ 0.
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Unit 1

Course Structure

• Errors: Floating-point approximation of a number, Loss of significance and error propagation, Stability
in numerical computation.

1.1 Introduction

In any numerical computation, we come across following types of errors, viz.,

1. Round-off Error 2. Floating Point Arithmetic and Propagated Error,

3. Truncation Error, 4. Loss of Significance: Condition and Stability

There are several potential sources of errors in numerical computation. But, round-off and truncation errors
can occur in any numerical computation.

1.2 Round-off Error

During the implementation of a numerical algorithm with computing devices mainly calculator and computer,
we have to work with a finite number of digits in representing a number. The number of digits depends on
the word length of the computing device and software. The scientific calculations are carried out in floating
point arithmetic. It is necessary to have knowledge of floating point representations of numbers and the basic
arithmetic operations performed by the computer (+,−, ∗, /) in these representations.

Floating Point Representation of Numbers

To understand the major sources of error during the implementation of numerical algorithms, it is neces-
sary to discuss how the computer stores the numbers.

An m-digits floating point number in the base β is of the following form

x = ±(.d1d2d3 · · · dm)ββ
n

1
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where (.d1d2d3 · · · dm)β is called as a mantissa and the integer n is called the exponent. A nonzero number is
said to be normalized if d1 ̸= 0.

All the real numbers are stored in normalized form in the computer to avoid wastage of computer memory
on storing useless non-significant zeroes. For example, 0.002345 can be represented in a wasteful man-
ner as (0.002345)100 which is wasting two important decimal points. However, the normalized form is
(0.2345)10−2, which eliminates these useless zeroes; also known as spurious zeroes.

If we want to enter the number 234.1205, then this number stored in the computer in normalized form,
i.e., (0.2341205)103. Similarly, the number 0.00008671213 stored in the computer in normalized form
(0.8671213)10−4.

The digits used in mantissa to express a number are called as significant digits or significant figures. More
precisely, digits in the normalized form mantissa of a number are significant digits.

a) All non-zero digits are significant. For examples, the numbers 3.1416, 4.7894 and 34.211 have five
significant digits each.

b) All zeroes between non-zero digits are significant. For examples, the numbers 3.0156 and 7.5608 have
five significant digits each.

c) Trailing zeroes following a decimal point are significant. So, the numbers 3.5070 and 76.500 have five
significant digits each.

d) Zeroes between the decimal point and preceding a non-zero digit are not significant.i.e., the numbers
0.0023401 and 0.00023401 have five significant digits each.

e) Trailing zeroes are significant if the decimal point is not present, i.e., the numbers 45067000 and 45000
have eight and five significant digits, respectively.

To compute the significant digits in a number, simply convert the number in the normalized form and then
compute the significant digits.

Rounding and Chopping

Rounding and chopping are two commonly used ways of converting a given real number x into its m-digits
floating point representation fl(x). In the case of chopping, the number x is retained up to m-digits, and
remaining digits are simply chopped off. For example, consider 6-digits floating point representation, then

x1 =
2
3 fl (x1) = 0.666666

x2 = 3456789 fl (x2) = (.345678)107

x3 = −0.0011223344 fl (x3) = −(.112233)10−2

In rounding, the normalized floating point number fl(x) is chosen such that it is nearest to the number x. In
the case of a tie, some special rules such as symmetric rounding can be used. Rules to round off a number to
m significant figures are as follows

i) Discard all digits to the right of m-th digit.

ii) If the last discarded number is

a) less than half of base β in the (m+ 1)-th place, leave the m-th digit unchanged;
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b) greater than half of base β in the (m+ 1)-th place, increase the m-th digit by unity;

c) exactly half of base β in the (m + 1)-th place, increase the m-th digit by unity if it is odd, oth-
erwise leave the m-th digit unchanged. It is known as symmetric rounding around even number.
Similarly, we can have symmetric rounding about odd number.

1.3 Floating Point Arithmetic and Error Propagation

We have discussed the errors in number representations. These errors further propagate while performing
basic arithmetic operations using a computer. The result of an arithmetic operation is usually not accurate to
the same length as the numbers used for the operations. The floating point numbers are first converted into the
normalized forms as soon as they enter in the computer.

Here we will explain the arithmetic operations with 6-significant digits numbers. For example, let us
take numbers x = 123.456 and y = 12.3456 with six significant digits. The various arithmetic operations
(+,−, ∗, /) on these two numbers are as follows

x+ y = (.123456)103 + (.123456)102 (Normalized form)

= (.123456)103 + (.012346)103 (Equal exponent using symmetric rounding)

= (.135802)103

x− y = (.123456)103 − (.123456)102

= (.123456)103 − (.012346)103 (Equal exponent using symmetric rounding)

= (.111110)103

x ∗ y = (.123456)103 ∗ (.123456)102

= (.123456) ∗ (.123456)103+2 (Add the exponents)

= (.015241)105

= (.152410)104

x/y = (.123456)103/(.123456)102

= (.123456)/(.123456)103−2 (Subtract the exponents)

= (1.00000)101

= (0.100000)102

Note 1.3.1. If two floating point numbers are added or subtracted, first they are converted into the numbers
with equal exponents. The results in various arithmetic operations are not correct up to six significant digits
due to rounding errors.

It is worth mentioning here that the result of subtraction of two nearly equal numbers leads to a very serious
problem, i.e., loss of significant digits. For example, consider six significant digits numbers x = 123.456 and
y = 123.432, then

x− y = (.123456)103 − (.123432)103 (Normalized form)

= (.000024)103 (Result containing only two significant digits, four non-significant zeroes are appended)

This subtraction of two nearly equal numbers is called as subtractive cancellation or loss of significance. It is
a classical example of computer handling mathematics can create a numerical problem.
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1.3.1 Propagated Error in Arithmetic Operations

Consider any two numbers x1 and x2. Let the errors in the numbers x1 and x2 be δx1 and δx2, respectively.
Then errors in the addition, subtraction, multiplication, and division of these two numbers are as follows

i) Addition: Let X = x1 + x2 and the error in X is δX . Therefore,

X + δX = x1 + δx1 + x2 + δx2

⇒ δX = δx1 + δx2

Absolute Error = |δX| ≤ |δx1|+ |δx2|; Relative Error =
|δX|
|X|

≤ |δx1|
X

+
|δx2|
X

(1.3.1)

ii) Subtraction: Similarly, the error in subtraction X = x1 − x2 is δX = δx1 − δx2.

Absolute Error = |δX| ≤ |δx1|+ |δx2|; Relative Error =
|δX|
|X|

≤ |δx1|
X

+
|δx2|
X

(1.3.2)

iii) Multiplication: Let X = x1x2, then

X + δX = (x1 + δx1)(x2 + δx2) = x1x2 + x1δx2 + x2δx1 + δx1δx2

Neglecting second order term (δx1δx2), the error in the multiplication of two numbers becomes δX =
x2δx1 + x1δx2.

Absolute Error = |δX| ≤ |x2δx1|+ |x1δx2|; Relative Error =
|δX|
|X|

≤ |δx1|
x1

+
|δx2|
x2

(1.3.3)

iv) Division: Let X =
x1
x2

, then

X + δX =
x1 + δx1
x2 + δx2

=

(
x1 + δx1
x2 + δx2

)(
x2 − δx2
x2 − δx2

)
=

x1x2 + x2δx1 − x1δx2 − δx1δx2
x22 − δx22

On neglecting the second order terms (δx1δx2 and δx22), the error is given by δX =
x2δx1 − x1δx2

x22
.

Absolute Error = |δX| ≤ |δx1|
|x2|

+
|x1δx2|

x22
; Relative Error =

|δX|
|X|

≤ |δx1|
x1

+
|δx2|
x2

(1.3.4)

Example 1.3.2. Calculate the absolute and relative errors in the expression a+
5b

c
−3bc, if the measurements

of a = 3.5435, b = .2588 and c = 1.0150 are possibly correct up to four decimal points.

Solution. Let x = a+
5b

c
− 3bc = A+ 5B − 3C, where A = a,B = b

c and C = bc.

Value of x = a+
5b

c
− 3bc = 4.03033

Error in a, b and c is δa = δb = δc = .00005
Absolute error in A = |δA| = .00005

Absolute error in B = |δB| = |cδb|+ |bδc|
c2

=
(1.015 + 0.2588)× .00005

(1.015)2
= .00006182

Absolute error in C = |δC| = |cδb|+ |bδc| = (1.015 + 0.2588)× .00005 = .00006369
Absolute error in x = |δx| ≤ |δA|+5|δB|+3|δC| = .00005+5(.00006182)+3(.00006369) = .0005502

Relative error in x =

∣∣∣∣δxx
∣∣∣∣ = .0005502

4.03033
= .0001365

Percentage error in x = 0.01365%
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1.3.2 Error Propagation in Function of Single Variable

Let us consider a function f(x) of a single variable, x. Assume that the variable x has some error and its
approximate value is x̃ . The effect of error in the value of x on the value of function f(x) is given by

∆f(x) = |f(x)− f(x̃)|

Evaluating ∆f(x) is difficult as the exact value of x is unknown and hence exact f(x) is unknown. But if x̃
is close to x and the function f(x) is infinitely differentiable in some interval containing the points x̃ and x,
then Taylor series can be employed as follows

f(x) = f(x̃) + (x− x̃)f ′(x̃) +
(x− x̃)2

2!
f ′′(x̃) + · · ·

Since the difference (x− x̃) is very small, hence neglecting the second and higher order terms of (x− x̃) will
give following relation

f(x)− f(x̃) ≈ (x− x̃)f ′(x) ⇒ |∆f(x)| ≈ |x− x̃||f ′(x̃)| ≈ ∆x|f ′(x̃)| (1.3.5)

where f(x) = f(x)−f(x̃) represents the estimated error in the function value and x = x− x̃ is the estimated
error of x.

1.3.3 Error Propagation in Function of More than One Variable

General Error Formula: The approach above can be generalized to the function of more than one inde-
pendent variable. Let y = f(x1, x2, . . . , xn) be a function of n-independent variables x1, x2, . . . , xn . Let
δx1, δx2, . . . , δxn be the errors in calculating the variables x1, x2, . . . , xn, respectively. Let error in y be δy,
i.e.,

y + δy = f(x1 + δx1, x2 + δx2, . . . , xn + δxn)

When the required partial derivatives exist, then Taylor’s series expansion is given by

y + δy = f(x1, x2, . . . , xn) +

(
∂f

∂x1
δx1 +

∂f

∂x2
δx2 + · · ·+ ∂f

∂xn
δxn

)
+terms involving second and higher powers of δx1, δx2, . . . , δxn (1.3.6)

The errors in the numbers x1, x2, . . . , xn are small enough to neglect the second and higher degree terms of
the numbers δx1, δx2, . . . , δxn. We can obtain the following result from Eq. (1.3.6)

δy ≈ ∂f

∂x1
δx1 +

∂f

∂x2
δx2 + · · ·+ ∂f

∂xn
δxn (1.3.7)

Equation (1.3.7) is known as the general error formula. Since the error term may be of any sign, (+)ve or
(−)ve, we can take absolute values of the terms in the expression.

|δy| ≈
∣∣∣∣ ∂f∂x1

∣∣∣∣ |δx1|+ ∣∣∣∣ ∂f∂x2

∣∣∣∣ |δx2|+ · · ·+
∣∣∣∣ ∂f∂xn

∣∣∣∣ |δxn|
Example 1.3.3. The radius r and height h of a right circular cylinder are measured as .25 m and 2.4 m, re-
spectively, with a maximum error of 5%. Compute the resulting percentage error in the volume of the cylinder.
Assume the value of π is exact for calculation.



6 UNIT 1.

Solution. The value of π is exact for calculation, so the volume V = πr2h is dependent only on radius r
and height h of the cylinder i.e., V = V (r, h). Therefore, the error δV (r, h) in the volume is given by

δV (r, h) =
∂V

∂r
δr +

∂V

∂h
δh = (2πrh)δr + (πr2)δh

The radius r and height h of the cylinder are measured with a maximum error of 5% i.e.,

δr

r
=

δh

h
= 0.05

The relative error in volume V (r, h) is given by

R.E. =
δV (r, h)

V
=

1

πr2h

(
(2πrh)δr + (πr2)δh

)
= 2

δr

r
+

δh

h
= 2(0.05) + 0.05 = 0.15

Percentage error in the volume of cylinder = R.E. ×100 = 15%.

1.4 Truncation Error

An infinite power series (generally Taylor series) represents the local behavior of a given function f(x) near a
given point x = a. Approximation of an infinite power series with its finite number of terms, while neglecting
remaining terms, leads to the truncation error. If we approximate the power series by the n-th order polyno-
mial, then truncation error is of order n+ 1.

Taylor series for the function f(x) at the point x = a is given by

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

(n)!
f (n)(a) + · · ·

Or, f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

(n)!
f (n)(a) +Rn(x)

where Rn(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(ξ) for some ξ between a and x.

On replacing x = a+ h, we get following form of the Taylor series

f(a+ h) = f(a) + (h)f ′(a) +
(h)2

2!
f ′′(a) + · · · · · ·+ (h)n

(n)!
f (n)(a) +Rn(x)

where Rn(x) =
(h)n+1

(n+ 1)!
f (n+1)(ξ); a < ξ < a + h. For a convergent series, Rn(x) → 0 as n → ∞. Since

it is not possible to compute an infinite number of terms, we approximate the function f(x) by first n-terms,
and neglecting higher order terms. Then the error is given by remainder term Rn(x). The exact value of ξ is
not known, so the value of ξ is such that the error term considered is maximum.

Example 1.4.1. Calculate the number of terms required in Taylor series approximation of sin(x) to compute
the value of sin(π/12) correct up to 4-decimal places.

Solution. Using Taylor series of sin(x) at point x = 0, we have

sin(x) = x− x3

3!
+

x5

5!
+ · · ·+ (x)2n−1

(2n− 1)!
(−1)n−1 +R2n−1(x)
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If we retain only first 2n− 1 terms in this expression, then the error term is given by

R2n−1(x) =
(x)2n

(2n)!
f (2n)(ξ); 0 < ξ < x at x =

π

12
= 0.2618

The maximum value of f (2n)(ξ) is 1. The error term must be less than .00005 for 4-decimal points accuracy

R2n−1(x) =
(0.2618)2n

(2n)!
< .00005 ⇒ 2n ≥ 5

Hence, 4-decimal points accuracy can be achieved by computing more than five terms of Taylor series.

1.5 Loss of Significance: Condition and Stability

In this section, we will study the two related concepts of condition and stability for function and process,
respectively. The condition is used to describe the sensitivity of the function and stability is used to describe
the sensitivity of the process.

Condition: The sensitivity of the function f(x) with the change in the argument x is described by the
condition number (CN). It is a relative change in the function f(x) for per unit relative change in x. CN of
the function f(x) at any point x is given by

CN =

∣∣∣f(x)−f(x̃)
f(x)

∣∣∣∣∣x−x̃
x

∣∣ =

∣∣∣∣f(x)− f(x̃)

x− x̃

∣∣∣∣ ∣∣∣∣ x

f(x)

∣∣∣∣
For small change in x, Lagrange mean value theorem gives

f(x)− f(x)

x− x̃
≈ f ′(x)

So, CN is given by

CN =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ (1.5.1)

If CN ≤ 1, then the function f(x) is said to be well-conditioned. Otherwise, it is said to be ill-conditioned.
The function with large CN is more ill-conditioned as compared to the function with small CN.

Note 1.5.1. Let us consider a mathematical model of any system, in which variable x gives input, and output
is the function f(x). If a small relative change in x (input) produces a large relative change in output f(x),
then the system is said to be a sensitive system as fluctuation in input may break the system. Mathematically,
if CN is large, then the function is more sensitive to changes and function is ill-conditioned.

Example 1.5.2. Find the CNs of the functions f(x) = x and x3.

Solution. Using (1.5.1), we have

CN of the function
√
x =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =
∣∣∣∣∣∣
x
(
1
2x

−1
2

)
√
x

∣∣∣∣∣∣ = 1

2

CN of the function x3 =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =
∣∣∣∣∣x
(
3x2
)

x3

∣∣∣∣∣ = 3

CN of the function
√
x is less than 1 , so the function

√
x is well conditioned. The function x3 is an

ill-conditioned function as CN > 1.
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Example 1.5.3. Check the condition of the function f(x) =
1

1− 2x+ x2
at x = 1.01.

Solution.
f(x) =

1

1− 2x+ x2
=

1

(1− x)2

CN =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣
x=1.01

=

∣∣∣∣∣∣
x
(

−2
(1−x)3

)
(

1
(1−x)2

)
∣∣∣∣∣∣
x=1.01

= 202

The function f(x) =
1

1− 2x+ x2
at x = 1.01 is highly ill-conditioned function. The function has a singular

point x = 1, so near this point, there are sharp changes in the function value, which make the function highly
ill-conditioned.

Example 1.5.4. Find the CN of the function f(x) =
√
x+ 1−

√
x at point x = 11111.

Solution.

CN =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =
∣∣∣∣∣∣
x
(

1
2
√
x+1

− 1
2
√
x

)
√
x+ 1−

√
x

∣∣∣∣∣∣
x=11111

≈ 1

2

Example 1.5.5. Compute the function f(x) =
√
x+ 1 −

√
x =

1√
x+ 1 +

√
x

by using both the formulae

at point x = 11111. Use six significant digits floating point rounding arithmetic.

Solution. We have two formulas f(x) =
√
x+ 1−

√
x and f(x) =

1√
x+ 1 +

√
x

to compute the function

f(x) at point x = 11111. We will use both the formulas with six significant digits arithmetic, and see that
both the processes will produce different results for the same function.

Process-I: f(x) =
√
x+ 1−

√
x : f(11111) =

√
11112−

√
11111 = 105.413− 105.409 = .004

Process-II: f(x) =
1√

x+ 1 +
√
x
: f(11111) =

1√
11112 +

√
11111

=
1

105.413 + 105.409

=
1

210.822
= 0.00474334

Note that, the exact result up to 6 significant digits is .00474330.

Here, it is candidly seen that if we compute the function f(x) =
√
x+ 1 −

√
x directly, then it is error-

prone. This is due to the fact that if we subtract two approximately equal numbers, then there is a loss of
significant digits. For example in Process-I, when we subtract 105.413 and 105.409, then these two numbers
are correct up to six significant digits, but the result .004 contains only one significant digit. Since there
is a loss of five significant digits, so the result obtained is highly erroneous. This step can be avoided by
rationalizing the function f(x). The result obtained in Process-II after rationalization is correct up to five
significant digits.

Stability of the Process:

It is clear from Example 1.5.5 that computation of the same function from two different processes can
produce different results. There are following two major phases for computation of the function value f(x):



1.5. LOSS OF SIGNIFICANCE: CONDITION AND STABILITY 9

i) First phase is to check the condition of the function by computing the CN of the function.

ii) Second phase is to check the stability of the process involved in the computation of the function. The
stability of process can be checked by calculating the condition of each step in the process.

The function f(x) = 1/(1−x2) is ill-conditioned (CN ≫ 1) near x = ±1. If the function is ill-conditioned
then whatever process we will use, it tends to error. So every process will produce an error in computation of
the function value f(x) = 1/(1− x2) near x = ±1.

The function f(x) =
√
x+ 1 −

√
x at x = 11111 is well conditioned (CN ≈ 1/2, Example 1.5.4). If

the function is well conditioned, then we have to compute the function value by the stable process. If even
a single step of the process is ill-conditioned, then the whole process is an unstable process, and we have to
switch over to any other alternate stable process.

Example 1.5.6. Discuss the stability of the Processes-I and II in Example 1.5.5. Hence, validate the results
that the Processes-I yields erroneous result and Process-II produces a more accurate result for the same func-
tion f(x).

Solution. We will calculate the CN of each step involved in both the Processes-I and II.

Process-I: f(x) =
√
x+ 1−

√
x

f(x) =
√
11112−

√
11111

= 105.413− 105.409

= 0.004

Various computational steps in the process are as follows

x1 = 11111 (f(x) = Constant, CN = 0)
x2 = x1 + 1 = 11112 (f(x) = x+ 1,CN = 1)
x3 =

√
x2 = 105.413 (f(x) =

√
x,CN = 1/2)

x4 =
√
x1 = 105.409 (f(x) =

√
x,CN = 1/2)

x5 = x4 − x3 = .004 (f(x) = x− x3 and f(x) = x4 − x,CN = 26352)

In the last step x5 = x4 − x3, we can assume the function f(x) of variable x3 or x4. Let f(x) = x4 − x, so
condition for this step is given by

CN =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ = ∣∣∣∣ x(−1)

x4 − x

∣∣∣∣ = ∣∣∣∣105.409.004

∣∣∣∣ ≈ 26352

This step is not a stable step as CN is very large. So the whole process is an unstable process due to this step.
That’s why the result obtained from this process is highly erroneous.

Process-II: f(x) =
1√

x+ 1 +
√
x

We will check the conditions of each step in Process-II, and conclude that each step in this process is well
conditioned.

f(x) =
1√

11112 +
√
11111

=
1

105.413 + 105.409
=

1

210.822
= 0.00474334
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Various steps involved in this process are as follows

x1 = 11111

x2 = x1 + 1 = 11112

x3 =
√
x2 = 105.413

x4 =
√
x1 = 105.409

x5 = x4 + x3 = 210.822

x6 =
1

x5
= 0.00474334

The first four steps in the process are well conditioned as discussed in Process-I. For the fifth step, let f(x) =
x+ x4 . The condition for this step is given by

CN =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ = ∣∣∣∣ x(1)

x4 + x

∣∣∣∣ = ∣∣∣∣105.409222.822

∣∣∣∣ = 1

2

The last step is f(x) = 1
x = 1, and the condition for this step is given by

CN =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =
∣∣∣∣∣x
(
− 1

x2

)
1
x

∣∣∣∣∣ = 1

From above discussion, it is clear that all the steps in Process-II are well conditioned, and hence this process
is a stable process. Since the process is stable, so the result obtained is accurate to five significant digits.

Note 1.5.7. Even a single step in the process can make the whole process unstable. So we have to be extra
careful during a large process, and must avoid the steps (if possible) with the loss of significant digits. We can
use any alternate approach like rationalization, Taylor series expansion, etc. to avoid loss of significant digits.

Example 1.5.8. Discuss the stability of the function f(x) = 1− cos(x), when x is nearly equal to zero. Find
a stable way to compute the function f(x).

Solution. If we directly compute the function f(x) = 1−cos(x) at x ≈ 0, then it will lead to subtraction of
two nearly equal numbers and produce loss of significance. To avoid this loss, we can use any of the following
three alternates

(i) f(x) = 1− cos(x) = 1−
(
1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

)
=

x2

2!
− x4

4!
+

x6

6!
+ · · ·

(ii) f(x) = 1− cos(x) =
1− cos2(x)

1 + cos(x)
=

sin2(x)

1 + cos(x)

(iii) f(x) = 1− cos(x) = 2 sin2
x

2

1.6 Some Interesting Facts about Error

1. Let us assume we are doing six significant digits arithmetic on a hypothetical computer. If we want to
add a small number x = 0.000123 to a large number y = 123.456 using this computer, then

x+ y = (.123456)103 + (.123000)10−3 (Normalized form)

= (.123456)103 + (.000000)103 (Equal exponent using symmetric rounding)

= (.123456)103 (Result, we missed the addition!)
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This type of situations occurred commonly during the computations of infinite series. In these series,
the initial terms are comparatively large. So, usually after adding some terms of the series, we are
in a situation of adding a small term to a very large term. It may produce high rounding error in the
computation. To avoid this kind of error, we can use backward sum of the series instead of forward
sum, such that the each new term is compatible with the magnitude of accumulated sum.

2. In the case of series with mixed signs (like Taylor series of sin(x)), sometimes individual terms are
larger than the summation itself. For example, in Taylor series of sin(2.13), the first term is 2.13. It is
called as smearing, and we should use these kinds of series with extra care.

3. While performing arithmetic computations in a numerical method, the steps involving large number of
arithmetic operations must be computed in double precisions. Such operations are error-prone to round-
off error. For example, in Gauss-Seidel method for the solution of system of linear equations, the inner
product

n∑
i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn

is a common operation, and such computations must be made in double precisions.

Exercise 1.6.1. 1. Define the terms error, absolute error, relative error and significant digits. The numbers
x = 1.28 and y = 0.786 are correct to the digits specified. Find estimates to the relative errors in
x+ y, x− y, xy, and x/y.

2. Calculate the absolute and relative errors in the expression 3a − 2bc +
b

a
if the measurement of a =

3.5435, b = .2588 and c = 1.0150 are possible only to correct up to four decimal points.

3. Find the maximum possible error in the computed value of the hyperbolic sine function sinh(x) =
ex − e−x

2
at the point x = 1, if the maximum possible error in the value of x is dx = 0.01.

4. Let the function u = 4x2y3/z4 and errors in the values of variables x, y, z are 0.001. Find the relative
error in the function u at x = y = z = 1.

5. The radius r and height h of a right circular cylinder are measured as 2.5 m and 1.6 m, respectively,
with a maximum error of 2%. Compute the resulting percentage error measured in the volume of the
cylinder by the formula V = πr2h. Assume the value of π is exact for calculation.

6. Calculate the number of terms required in Taylor series approximation of the function cos(x) to compute
the value of cos(π/12) correct up to 4-decimal places.

7. Find the number of terms of the Taylor series expansion of the function ex required to compute the
value of e correct to six decimal places.

8. Discuss the condition and stability of the function f(x) = x −
√
x2 − 1 at x = 11111, using six

significant digits floating point rounding arithmetic. Find a stable way to compute the function.

9. Discuss the condition and stability of the function f(x) = x − sin(x), when x is nearly equal to zero.
Find a stable way to compute the function f(x).

10. Discuss CN and stability of the function y = sec(x) in the interval [0, π/2].
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Unit 2

Course Structure

• Interpolation: Hermite’s and spline interpolation. Interpolation by iteration –Aitken’s and Neville’s
schemes.

2.1 Introduction

The statement y = f(x), x0 ≤ x ≤ xn means: corresponding to every value of x in the range x0 ≤ x ≤ xn,
there exists one or more values of y. Assuming that f(x) is single-valued and continuous and that it is known
explicitly, then the values of f(x) corresponding to certain given values of x, say x0, x1, . . . , xn can easily
be computed and tabulated. The central problem of numerical analysis is the converse one: Given the set of
tabular values (x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn) satisfying the relation y = f(x) where the explicit
nature of f(x) is not known, it is required to find a simpler function, say ϕ(x), such that f(x) and ϕ(x) agree
at the set of tabulated points. Such a process is called interpolation. If ϕ(x) is a polynomial, the the process
is called polynomial interpolation and ϕ(x) is called the interpolating polynomial. In this unit, we shall be
concerned with Hermite’s interpolation and iterative interpolation by Aitken’s and Neville’s schemes.

2.2 Hermite Interpolation

We are familiar with the interpolating polynomial of degree ≤ n; which passes through (n + 1) points
(xi, f (xi)) ; i = 0, 1, 2, . . . , n. Now, let us derive interpolating polynomial for a function f(x) such that
the values of the function f(x) and its derivative f ′(x) match with this polynomial at (n + 1) points xi; i =
0, 1, 2, . . . , n. The polynomial of degree ≤ 2n+ 1 is required to satisfies 2n+ 2 conditions. Let us consider
an interpolating polynomial of degree ≤ 2n+ 1 which satisfies the following 2(n+ 1) restrictions at (n+ 1)
points xi; i = 0, 1, 2, . . . , n.

P2n+1 (xi) = f (xi)
P ′
2n+1 (xi) = f ′ (xi)

}
, i = 0, 1, 2, · · · , n (2.2.1)

We have to express the polynomial P2n+1(x) in terms of (n+ 1) points, xi; i = 0, 1, 2, . . . , n. Therefore, let
the polynomial P2n+1(x) be of the following form

P2n+1(x) =
n∑

i=0

ui(x)P2n+1 (xi) +
n∑

i=0

vi(x)P
′
2n+1 (xi) =

n∑
i=0

ui(x)f (xi) +
n∑

i=0

vi(x)f
′ (xi) (2.2.2)

13
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where ui(x) and vi(x) are polynomials of degree ≤ 2n + 1. Let us rewrite these polynomials in terms of
Lagrange polynomial coefficients li(x) as follows

ui(x) = (aix+ bi) l
2
i (x) and vi(x) = (cix+ di) l

2
i (x), for i = 0, 1, 2, . . . , n (2.2.3)

where ai, bi, ci, di are constants to be determined. The coefficients li(x) are given by

li(x) =

n∏
k=0
k ̸=i

x− xk
xi − xk

=
(x− x0) (x− x1) · · · (x− xi−1) (x− xi+1) · · · (x− xn)

(xi − x0) (xi − x1) · · · (xi − xi−1) (xi − xi+1) · · · (xi − xn)

with property

li (xj) =

{
1 i = j

0 i ̸= j
(2.2.4)

The polynomial (2.2.2) is interpolating polynomial if it satisfies the conditions (2.2.1). For this, we have

ui (xj) =

{
1 i = j
0 i ̸= j

v′i (xj) =

{
1 i = j

0 i ̸= j

and (2.2.5)

vi (xj) = 0 ∀j = 0, 1, · · · , n u′i (xj) = 0 ∀j = 0, 1, · · · , n

On using Eqs. (2.2.3) - (2.2.5) , we have

ui (xj) =

{
1 i = j
0 i ̸= j

⇒ (aixj + bi) l
2
i (xj) =

{
1 i = j

0 i ̸= j

aixi + bi = 1

vi (xj) = 0 ∀ j = 0, 1, · · · , n ⇒ (cixj + di) l
2
i (xj) = 0

cixi + di = 0

v′i (xj) =

{
1 i = j
0 i ̸= j

⇒ (cixj + di) 2li (xj) l
′
i (xj) + cil

2
i (xj) =

{
1 i = j

0 i ̸= j

(cixi + di)2l
′
i(xi) + ci = 1

u′i (xj) = 0∀j = 0, 1, · · · , n ⇒ (aixj + bi) 2li (xj) l
′
i (xj) + ail

2
i (xj) = 0

(aixi + bi)2l
′
i(xi) + ai = 1

Therefore, we have following four sets of equations in the variables, ai, bi, ci, di; i = 0, 1, · · · , n.

aixi + bi = 1
cixi + di = 0
(cixi + di) 2l

′
i (xi) + ci = 1

(aixi + bi) 2l
′
i (xi) + ai = 0

⇒


ai = −2l′i (xi)
bi = 1 + 2xil

′
i (xi)

ci = 1
di = −xi

On using these values of constants, ai, bi, ci, di; i = 0, 1, · · · , n in Eqs. (2.2.3), we get

ui(x) = (aix+ bi) l
2
i (x) =

(
−2l′i (xi)x+ 1 + 2xil

′
i (xi)

)
l2i (x)

vi(x) = (cix+ di) l
2
i (x) = (x− xi) l

2
i (x)
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Use these values in Eq. (2.2.2) to get the following Hermite interpolating polynomial

P2n+1(x) =

n∑
i=0

ui(x)f (xi) +

n∑
i=0

vi(x)f
′ (xi)

=

n∑
i=0

(
−2l′i (xi)x+ 1 + 2xil

′
i (xi)

)
l2i (x)f (xi) +

n∑
i=0

(x− xi) l
2
i (x)f

′ (xi) (2.2.6)

Example 2.2.1. Compute the Hermite interpolating polynomial and then the value of the function f(0.5) from
the following data set.

x −1 0 1 2
f(x) 2 2 2 26
f ′(x) 2 0 2 68

Solution. We have 4(= n+1) points, x0 = −1, x1 = 0, x2 = 1, x3 = 2; therefore, the Hermite polynomial
(2.2.6) is of degree ≤ 7(= 2n+ 1). It is given by

P (x) =

3∑
i=0

(
−2l′i (xi)x+ 1 + 2xil

′
i (xi)

)
l2i (x)f (xi) +

3∑
i=0

(x− xi) l
2
i (x)f

′ (xi)

We have to calculate Lagrange coefficients polynomials li(x) and their derivatives l′i (xi) to compute the
interpolating polynomial. On using n = 3 in the following formula, we have

li(x) =
n∏

k=0
k ̸=i

x− xk
xi − xk

=
(x− x0) (x− x1) · · · (x− xi−1) (x− xi+1) · · · (x− xn)

(xi − x0) (xi − x1) · · · (xi − xi−1) (xi − xi+1) · · · (xi − xn)

For i = 0, 1, 2, 3, we have

l0(x) =

3∏
k=0
k ̸=0

x− xk
x0 − xk

=
(x− x1) (x− x2) (x− x3)

(x0 − x1) (x0 − x2) (x0 − x3)
=

−1

6
(x− 0)(x− 1)(x− 2)

⇒ l′0 (x0) =
−11

6

l1(x) =
3∏

k=0
k ̸=1

x− xk
x1 − xk

=
(x− x0) (x− x2) (x− x3)

(x1 − x0) (x1 − x2) (x1 − x3)
=

1

2
(x+ 1)(x− 1)(x− 2)

⇒ l′1 (x1) =
−1

2

l2(x) =
3∏

k=0
k ̸=2

x− xk
x2 − xk

=
(x− x0) (x− x1) (x− x3)

(x2 − x0) (x2 − x1) (x2 − x3)
=

−1

2
(x+ 1)(x− 0)(x− 2)

l′2 (x2) =
1

2

l3(x) =

3∏
k=0
k ̸=3

x− xk
x3 − xk

=
(x− x0) (x− x1) (x− x2)

(x3 − x0) (x3 − x1) (x3 − x2)
=

1

6
(x+ 1)(x− 0)(x− 1)

l′3 (x3) =
11

6
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The interpolating polynomial is given by

P (x) =
3∑

t=0

(
−2l′t (xt)x+ 1 + 2xtl

′
t (xt)

)
l2t (x)f (xt) +

3∑
i=0

(x− xt) l
2
t (x)f

′ (xt)

=
(
−2l′0 (x0)x+ 1 + 2x0l

′
0 (x0)

)
l20(x)f (x0) +

(
−2l′1 (x1)x+ 1 + 2x1l

′
1 (x1)

)
l21(x)f (x1)

+
(
−2l′2 (x2)x+ 1 + 2x2l

′
2 (x2)

)
l22(x)f (x2) +

(
−2l′3 (x3)x+ 1 + 2x3l

′
3 (x3)

)
l23(x)f (x3)

+ (x− x0) l
2
0(x)f

′ (x0) + (x− x1) l
2
1(x)f

′ (x1) + (x− x2) l
2
2(x)f

′ (x2) + (x− x3) l
2
3(x)f

′ (x3)

=

(
11

3
x+

14

3

)(
−1

6
(x− 0)(x− 1)(x− 2)

)2

(2) + (x+ 1)

(
1

2
(x+ 1)(x− 1)(x− 2)

)2

+(−x+ 2)

(
−1

2
(x+ 1)(x− 0)(x− 2)

)2

(2) +

(
−11

3
x+

25

3

)(
1

6
(x+ 1)(x− 0)(x− 1)

)2

+(x+ 1)

(
−1

6
(x− 0)(x− 1)(x− 2)

)2

(2) + (x− 0)

(
1

2
(x+ 1)(x− 1)(x− 2)

)2

(0)

+(x− 1)

(
−1

2
(x+ 1)(x− 0)(x− 2)

)2

(2) + (x− 2)

(
1

6
(x+ 1)(x− 0)(x− 1)

)2

(68)

=

(
28

3
x+

34

3

)(
−1

6
(x− 0)(x− 1)(x− 2)

)2

+ (2x+ 2)

(
1

2
(x+ 1)(x− 1)(x− 2)

)2

+2

(
−1

2
(x+ 1)(x− 0)(x− 2)

)2

+

(
−82

3
x+

244

3

)(
1

6
(x+ 1)(x− 0)(x− 1)

)2

= x5 − x3 + 2

Therefore, P (0.5) = (0.5)5 − (0.5)3 + 2 = 1.90625

Note: We can easily verify that the polynomial satisfies all the conditions

x −1 0 1 2
P (x) = x5 − x3 + 2 2 2 2 26
P ′(x) = 5x4 − 3x2 2 0 2 68

The polynomial x5 − x3 + 2 is a unique polynomial of degree ≤ 7(= 2n+ 1), and it satisfies the conditions
above. Again, it is worth to mentioning here that there are an infinite number of polynomials of degree > 7
which satisfying above conditions.

Exercise 2.2.2. 1. From the following table, find f(0.5), f ′(1.5) using Hermite interpolation.

x 0 2 3
f(x) 2 16 80
f ′(x) −1 31 107

2. Find the Hermite polynomial of the third degree approximating the function y(x) such that

y(0) = 1, y′(0) = 0

y(1) = 3, y′(1) = 5.

3. Calculate f(1.2) by approximating the following values with cubic polynomial f(1) = 0, f ′(1) =
1, f(2) = 0.693147, f ′(2) = 0.5
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2.3 Spline Interpolation

A sequence of continuous curves that are connected to form a single continuous curve is called as a spline
curve. Consider a given set of data points (xi, yi), i = 0, 1, . . . , n such that xi < xi+1 for all i = 0, 1, . . . , n−
1. In general, a m-th degree spline Ps(x) for this data set is a piecewise polynomial of degree m, which
satisfies following two conditions:

1. It is of degree ≤ m for each interval (xi, xi+1), i = 0, 1, . . . , n− 1 and of degree m in at least one such
interval.

2. The spline Ps(x) and its first m− 1 derivatives are continuous at each node points xi, i = 1, . . . , n− 1
in the interval (x0, xn).

2.3.1 Cubic Spline Interpolation

Let us approximate the function f(x) by different cubic polynomials Pi(x) = aix
3 + bix

2 + cix + di, i =
1, 2, . . . , n for each sub-interval [xi−1, xi] in the given interval [x0, xn].

P (x) =


P1(x) = a1x

3 + b1x
2 + c1x+ d1 x0 ≤ x ≤ x1

P2(x) = a2x
3 + b2x

2 + c2x+ d2 x1 ≤ x ≤ x2
...
Pn(x) = anx

3 + bnx
2 + cnx+ dn xn−1 ≤ x ≤ xn

In cubic spline approximation, the polynomials and their first and second derivatives are continuous at node
points. A cubic spline polynomial P (x) satisfies the following three properties.

1. On each subinterval [xi−1,xi] , 1 ≤ i ≤ n, P (x) is a third-degree polynomial, i.e.,

Pi(x) = aix
3 + bix

2 + cix+ di, i = 1, 2, . . . , n

We have to find 4n unknowns: ai, bi, ci, di; i = 1, 2, . . . , n.

2. The values of the cubic spline at node points equal the values of the function at these points.

P (xi) = fi, i = 0, 1, . . . , n

3. The polynomials P (x), P ′(x) and P ′′(x) are continuous throughout the interval (x0, xn).

On using the above second and third properties, we have following results

a) Continuity of P (x) : At each node point x = xp, the values of two polynomials Pi(x) and Pi+1(x)
must be equal, and also equals to the value of the function f (xi). At any node point x = xi, i =
1, 2, . . . , n− 1, we can obtain following equations.
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The polynomial value Pi (xi) for interval [xi−1, xi], must equals the function value f (xi)

Pi (xi) = aix
3
i + bix

2
i + cixi + di = f (xi) = fi

Similarly, polynomial for interval [xi, xi+1] gives following equations

Pi+1 (xi) = ai+1x
3
i + bi+1x

2
i + ci+1xi + di+1 = f (xi) = fi

So, we have following set of equations

aix
3
i + bix

2
i + cixi + di = fi

ai+1x
3
i + bi+1x

2
i + ci+1xi + di+1 = fi

(2.3.1)

b) At the end points x0 and xn of the interval, the values of splines must be equal to the values of the
function.

f0 = a1x0
3 + b1x0

2 + c1x0 + d1

fn = anxn
3 + bnxn

2 + cnxn + dn
(2.3.2)

c) Continuity of P ′(x) and P ′′(x) : At each node point x = xi; the values of polynomials P ′(x) and
P ′
i+1(x) are equal, and the values of polynomials Pi i(x) and P ′′

i+1(x) are also equal. At node points
x = xp, i = 1, 2, . . . , n− 1; we must have

3aix
2
i + 2bixi + ci = 3ai+1x

2
i + 2bi+1xi + ci+1 (2.3.3)

6aixi + 2bi = 6ai+1xi + 2bi+1 (2.3.4)

We have 2(n− 1) equations from system (2.3.1); two equations from system (2.3.2); and 2(n− 1) equations
from systems (2.3.3) and (2.3.4). So, we have total 4n− 2 equations, while the number of arbitrary constants
to be determined is 4n (ai, bi, ci, di; i = 1, 2, . . . , n). Hence, we need two more equations for the polynomials
to be unique.

Let us take the notation P ′ (xi) = mi and P ′′ (xi) = Mi. In general, we assign some values to the poly-
nomial P ′′(x) at the end points, that is P ′′ (x0) = M0 and P ′′ (xn) = Mn. If the end conditions are M0 = 0
and Mn = 0, then our spline is called as a natural spline (As the drafting of the spline always behaves in this
manner).

At last, we have 4n equations in 4n variables; which can be easily solved to obtain the required cubic spline.
But to reduce the computational work, we use an alternative method to obtain the cubic spline interpolation
described below.

Alternative Method for Cubic Spline: Since the function P (x) is a cubic polynomial, so the function
P ′′(x) is linear function of x in the interval xi−1 ≤ x ≤ xi and can be written as

P ′′(x) =
xi − x

xi − xi−1
P ′′ (xi−1) +

(x− xi−1)

xi − xi−1
P ′′ (xi)

Let us assume that the length of the interval (xi−1, xi) is hi i.e. hi = xi − xi−1. Also, assume Mi = P ′′ (xi)

P ′′(x) =
xi − x

hi
Mi−1 +

(x− xi−1)

hi
Mi
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On integrating this equation twice on x, we have

P (x) =
(xi − x)3

6hi
Mi−1 +

(x− xi−1)
3

6hi
Mi + k1x+ k2 (2.3.5)

where k1 and k2 are arbitrary constants. The values of cubic spline polynomials must equal to function values
at nodal points; therefore, we have

P (xi−1) = f (xi−1) = fi−1 and P (xi) = f (xi) = fi

On using these conditions in Eq. (2.3.5), we have

P (xi−1) = fi−1 =
1

6
h2Mi−1 + k1xi−1 + k2

P (xi) = fi =
1

6
h2Mi + k1xi + k2

Solution of these two equations for k1 and k2 is given by

k1 =
1

hi
(fi − fi−1)−

1

6
(Mi −Mi−1)hi

k2 =
1

hi
(xifi−1 − xi−1fi)−

1

6
(xiMi−1 − xi−1Mi)hi

On substituting these values of k1 and k2 in Eq. (2.3.5), we have

P (x) =
1

6hi
(xi − x)3Mi−1 +

1

6hi
(x− xi−1)

3Mi +
x

hi
(fi − fi−1)

− x

6
(Mi −Mi−1)hi +

1

hi
(xifi−1 − xi−1fi)−

1

6
(xiMi−1 − xi−1Mi)hi (xi−1 ≤ x ≤ xi)

=
1

6hi

[
(xi − x)

{
(xi − x)2 − h2

}]
Mi−1 +

1

6hi

[
(x− xi−1)

{
(x− xi−1)

2 − h2
}]

Mi

+
1

hi
(xi − x) fi−1 +

1

hi
(x− xi−1) fi i = 1, 2, . . . , n (2.3.6)

To compute values of Mi−1 and Mi, we will use continuity of the polynomial P ′(x). On differentiating the
Eq. (2.3.6) w.r.t. x, we get

P ′(x) = −(xi − x)2

2hi
Mi−1 +

(x− xi−1)
2

2hi
Mi −

(Mi −Mi−1)hi
6

+
fi − fi−1

hi
xi−1 ≤ x ≤ xi (2.3.7)

Similarly, we can obtain P ′(x) for the interval xi ≤ x ≤ xi+1, by simply changing i = i+1 in Eq. (2.3.7).

P ′(x) = −(xi+1 − x)2

2hi+1
Mi +

(x− xi)
2

2hi+1
Mi+1 −

1

6
(Mi+1 −Mi)hi+1 +

fi+1 − fi
hi+1

(xi ≤ x ≤ xi+1)

(2.3.8)
The continuity of the derivatives implies that the derivatives P ′(x) in both the intervals xi−1 ≤ x ≤ xi and
xi ≤ x ≤ xi+1 must be equal at the node point x = xi. We have

⇒ 1

2
hiMi −

(Mi −Mi−1)hi
6

+
fi − fi−1

hi
= −1

2
hi+1Mi −

1

6
(Mi+1 −Mi)hi+1 +

fi+1 − fi
hi+1



20 UNIT 2.

On rewriting this equation, we have

hi
6
Mi−1+

hi + hi+1

3
Mi+

hi+1

6
Mi+1 =

1

hi+1
(fi+1 − fi)−

1

hi
(fi − fi−1) i = 1, 2, . . . , n−1; xi−1 ≤ x ≤ xi

(2.3.9)
The system (2.3.9) will produce a linear system of (n− 1) equations in (n+ 1) unknowns M0,M1, . . . ,Mn.
We can use any two additional conditions for unique solution of the system. The spline is a natural spline in
case of end conditions M0 = 0 and Mn = 0.

We solve the system (2.3.9), and then use the values of M0,M1, . . . ,Mn in system (2.3.6) to obtain the
following cubic spline as desired.

P (x) =
1

6hi
(xi − x)3Mi−1 +

1

6hi
(x− xi−1)

3Mi +
x

hi
(fi − fi−1)−

x

6
(Mi −Mi−1)hi

+
1

hi
(xifi−1 − xi−1fi)−

1

6
(xiMi−1 − xi−1Mi)hi i = 1, 2, . . . , n (2.3.10)

2.3.2 Cubic Spline for Equi-spaced Points

The interval length of all the intervals is same in case of equi-spaced points, i.e.,

h1 = h2 = . . . = hn = h

So, our system of Eqs. (2.3.9) and (2.3.10) reduces to following Eqs. (2.3.11) and (2.3.12), respectively

Mi−1 + 4Mi +Mi+1 =
6

h2
(fi+1 − 2fi + fi−1) i = 1, 2, . . . , n− 1 (2.3.11)

P (x) =
1

6h

[(
xi − x)3Mi−1 +

(
x− xi−1)

3Mi

]
+

1

h
(xi − x)

(
fi−1 −

h2

6
Mi−1

)
+

1

h
(x− xi−1)

(
fi −

h2

6
Mi

)
, i = 1, 2, . . . , n (2.3.12)

These systems can be solved to obtain the desired cubic spline.

Example 2.3.1. Obtain cubic spline approximation for e0.2 from the following values of ex correct up to six
significant digits. Use natural spline conditions.

x 0 0.1 0.3 0.4
ex 1 1.10517 1.34986 1.49182

Solution.
Given

h1 = 0.1, h2 = 0.2, h3 = 0.1

x0 = 0, x1 = 0.1, x2 = 0.3, x3 = 0.4

f0 = 1, f1 = 1.10517, f2 = 1.34986, f3 = 1.49182

Natural spline conditions are M0 = M3 = 0. Since the points are not equispaced; we have to use Eq. (2.3.9)
for the values of M1 and M2

hi
6
Mi−1 +

hi + hi+1

3
Mi +

hi+1

6
Mi+1 =

1

hi+1
(fi+1 − fi)−

1

hi
(fi − fi−1)
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i = 1

h1
6
M0 +

h1 + h2
3

M1 +
h2
6
M2 =

1

h2
(f2 − f1)−

1

h1
(f1 − f0)

6M1 + 2M2 = 10.305

(2.3.13)

i = 2

h2
6
M1 +

h2 + h3
3

M2 +
h3
6
M3 =

1

h3
(f3 − f2)−

1

h2
(f2 − f1)

2M1 + 6M2 = 11.769

(2.3.14)

On solving Eqs. (2.3.13) and (2.3.14) for M1 and M2, we get

M1 = 1.196625 and M2 = 1.562625

We have to compute the value of e0.2, that is in the interval (x1, x2). Therefore, we will use these values of
M1 and M2 in the Eq. (2.3.10) for i = 1 to obtain the cubic spline approximation of the value e0.2.

P (x) =
1

6hi
(xi − x)3Mi−1 +

1

6hi
(x− xi−1)

3Mi +
x

hi
(fi − fi−1)

− x

6
(Mi −Mi−1)hi +

1

hi
(xifi−1 − xi−1fi)−

1

6
(xiMi−1 − xi−1Mi)hi

i = 1

P (x) =
1

6h1
(x1 − x)3M0 +

1

6h1
(x− x0)

3M1 +
x

h1
(f1 − f0)

− x

6
(M1 −M0)h1 +

1

h1
(x1f0 − x0f1)−

1

6
(x1M0 − x0M1)h1

On using different values and x = 0.2, we obtain following cubic spline approximation for e0.2

P (0.2) = 1.22088

While the exact value of e0.2 is 1.22140. We can also compute the following cubic spline polynomials for the
data set 

1 + 1.032x+ 1.994x3 0 ≤ x ≤ 0.1

1.002 + 0.981x+ 0.507x2 + 0.305x3 0.1 ≤ x ≤ 0.3

1.080 + 0.196x+ 3.125x2 − 2.604x3 0.3 ≤ x ≤ 0.4

Exercise 2.3.2. 1. Check the following functions, that they are splines or not

(i) f(x) =


5x, 0 ≤ x ≤ 1

11x− 6 1 ≤ x ≤ 2

−4x+ 10x, 2 ≤ x ≤ 3

(ii) f(x) =

{
12x− 7x2, 0 ≤ x ≤ 1

1 + 10x− 6x2 1 ≤ x ≤ 2

2. Determine the cubic spline polynomial for the following data set and hence compute the values of
f(0.3) and f(2.6).

x 0 1 2 3
f(x) 1 −8 −30 −59
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3. Find the cubic spline fit for the following data points

x −1 0 1
f(x) 2 5 9

Use natural spline conditions f ′′(−1) = 0 and f ′′(1) = 0.

4. Construct the cubic spline with the natural end conditions that passes through the points (−1, 0), (0, 1), (2, 5)
and (3, 2).

2.4 Divided Differences

The Lagrange interpolation formula has the disadvantage that if another interpolation point were added, then
the interpolation coefficients li(x) will have to be recomputed. We therefore seek an interpolation polynomial
which has the property that a polynomial of higher degree may be derived from it by simply adding new
terms. Newton’s general interpolation formula is one such formula and it employs what are called divided
differences. It is our principal purpose in this subsection to define such differences and discuss certain of their
properties to obtain the basic formula due to Newton.

Let (x0, y0), (x1, y1), . . . , (xn, yn) be the given (n+ 1) points. Then the divided differences of order 1, 2,
. . ., n are defined by the relations:

[x0, x1] =
y1 − y0
x1 − x0

,

[x0, x1, x2] =
[x1, x2]− [x0, x1]

x2 − x0
,

... (2.4.1)

[x0, x1, . . . , xn] =
[x1, x2, . . . , xn]− [x0, x1, . . . , xn−1]

xn − x0
.

2.5 Newton’s General Interpolation Formula

By definition, we have

[x, x0] =
y − y0
x− x0

,

so that
y = y0 + (x− x0)[x, x0] (2.5.1)

Again

[x, x0, x1] =
[x, x0]− [x0, x1]

x− x1

which gives
[x, x0] = [x0, x1] + (x− x1)[x, x0, x1]

Substituting this value of [x, x0] in Eq.(2.5.1), we obtain

y = y0 + (x− x0)[x0, x1] + (x− x0)(x− x1)[x, x0, x1] (2.5.2)

But

[x, x0, x1, x2] =
[x, x0, x1]− [x0, x1, x2]

x− x2
,
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and so
[x, x0, x1] = [x0, x1, x2] + (x− x2)[x, x0, x1, x2] (2.5.3)

Equation (2.5.2) now gives

y = y0 + (x− x0)[x0, x1] + (x− x0)(x− x1)[x0, x1, x2]

+(x− x0)(x− x1)(x− x2)[x, x0, x1, x2] (2.5.4)

Proceeding in this way, we obtain

y = y0 + (x− x0)[x0, x1] + (x− x0)(x− x1)[x0, x1, x2]

+(x− x0)(x− x1)(x− x2)[x0, x1, x2, x3] + . . .

+(x− x0)(x− x1)(x− x2) · (x− xn)[x, x0, x1, . . . , xn] (2.5.5)

This formula is called Newton’s general interpolation formula with divided differences, the last term being
the remainder term after (n + 1) terms. Hence after generating the divided differences, interpolation can be
carried out.

Example 2.5.1. Certain corresponding values of x and log10 x are (300, 2.4771), (304, 2.4829),
(305, 2.4843) (307, 2.4871). Find log10 301.

Solution : The divided difference table is

x y = log10 x

300 2.4771
0.00145

304 2.4829 0.00001
0.00140

305 2.4843 0
0.00140

307 2.4871

Hence, Eq.(2.5.5) gives

log10 301 = 2.4771 + 0.00145 + (−3)(−0.00001) = 2.4786

2.6 Interpolation by Iteration

Newton’s general interpolation formula may be considered as one of a class methods which generate succes-
sively higher-order interpolation formulae. We now describe another method of this class, due to A.C. Aitken,
which has the advantage of being very easily programmed for a digital computer.

Given the (n + 1) points (x0, y0), (x1, y1), . . . , (xn, yn), where the values of x need not necessarily be
equally spaced, then to find the value of y corresponding to any given value of x we proceed iteratively as
follows:
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Obtain a first approximation to y by considering the first-two points only; then obtain its second approxi-
mation by considering the first-three points, and so on. We denote the different interpolation polynomials by
∆(x), with suitable subscripts, so that at the first stage of approximation, we have

∆01(x) = y0 + (x− x0)[x0, x1] =
1

x1 − x0

∣∣∣∣y0 x0 − x
y1 x1 − x

∣∣∣∣ (2.6.1)

Similarly, we can form ∆02(x), ∆03(x), . . . Next, we form ∆012 by considering the first-three points:

∆012(x) =
1

x2 − x1

∣∣∣∣∆01(x) x1 − x
∆02(x) x2 − x

∣∣∣∣ (2.6.2)

Similarly, we obtain ∆013(x),∆014(x), etc. At the n-th stage of approximation, we obtain

∆0123...n(x) =
1

xn − xn−1

∣∣∣∣∆0123...n−1(x) xn−1 − x
∆0123...n−2n(x) xn − x

∣∣∣∣ (2.6.3)

The computations may conveniently be arranged as in Table 1.1 below:

Table 1.1 Aitken’s Scheme
x y

x0 y0
∆01(x)

x1 y1 ∆012(x)
∆02(x) ∆0123(x)

x2 y2 ∆013(x) ∆01234(x)
∆03(x) ∆0124(x)

x3 y3 ∆014(x)
∆04(x)

x4 y4

A modification of this scheme, due to Neville, is given in Table 1.2. Neville’s scheme is particularly suited
for iterated inverse interpolation.

Table 1.2 Neville’s Scheme
x y

x0 y0
∆01(x)

x1 y1 ∆012(x)
∆12(x) ∆0123(x)

x2 y2 ∆123(x) ∆01234(x)
∆23(x) ∆1234(x)

x3 y3 ∆234(x)
∆34(x)

x4 y4

As an illustration of Aitken’s method, we consider, again, Example (2.5.1).

Example 2.6.1. Aitken’s scheme is
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x log10 x

300 2.4771
2.47855

304 2.4829 2.47858
2.47854 2.47860

305 2.4843 2.47857
2.47853

307 2.4871

Hence log10 301 = 2.4786, as before.

An obvious advantage of Aitken’s method is that gives a good idea of the accuracy of the result at any stage.

Exercise 2.6.2. 1. Given f(x) = 1
x2 . Find the divided differences [a, b], and [a, b, c].

2. Given the set of tabulated points (0, 2), (1, 3), (2, 12) and (15, 3587) satisfying the function y = f(x),
compute f(4) using Newton’s divided difference formula.



Unit 3

Course Structure

• Approximation of Function: Least square approximation. Weighted least square approximation.

3.1 Introduction

In experimental work, we often encounter the problem of fitting a curve to data which are subject to errors.
The strategy for such cases is to derive an approximating function that broadly fits the data without necessarily
passing through the given points. The curve drawn is such that the discrepancy between the data points and
the curve is least. In the method of least squares, the sum of the squares of the errors is minimized. The
problem of approximating a function by means of Chebyshev polynomials is described in this unit.

3.2 Least Squares Curve Fitting Procedures

Let the set of data points be (xi, yi), i = 1, 2, . . . ,m, and let the curve given by Y = f(x) be fitted to this
data. At x = xi, the given ordinate is yi and the corresponding value on the fitting curve is f(xi). If ei is the
error of approximation at x = xi, then we have

ei = yi − f(xi) (3.2.1)

If we write

S = [y1 − f(x1)]
2 + [y2 − f(x2)]

2 + . . .+ [ym − f(xm)]2

= e21 + e22 + . . .+ e2m, (3.2.2)

then the method of least squares consists in minimizing S, i.e., the sum of the squares of the errors. In the
following subsection, we shall study the linear least squares fitting to given data (xi, yi), i = 1, 2, . . . ,m.

3.2.1 Fitting a Straight Line

Let Y = a0 + a1x be the straight line to be fitted to the given data, viz. (xi, yi), i = 1, 2, . . . ,m. Then,
corresponding to Eq.(3.2.2), we have

S = [y1 − (a0 + a1x)]
2 + [y2 − (a0 + a1x)]

2 + . . .+ [ym − (a0 + a1xm)]2 (3.2.3)

26
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For S to be minimum, we have

∂S

∂a0
= 0 = −2[y1 − (a0 + a1x)]− 2[y2 − (a0 + a1x2)]− . . .− 2[ym − (a0 + a1xm)]

∂S

∂a1
= 0 = −2x1[y1 − (a0 + a1x)]− 2x2[y2 − (a0 + a1x2)]− . . .− 2xm[ym − (a0 + a1xm)]

The above equations simplify to

ma0 + a1(x1 + x2 + . . .+ xm) = y1 + y2 + . . .+ ym

and a0(x1 + x2 + . . .+ xm) + a1(x
2
1 + x22 + . . .+ x2m) = x1y1 + x2y2 + . . .+ xmym (3.2.4)

or more compactly to

ma0 + a1

m∑
i=1

xi =

m∑
i=1

yi and a0

m∑
i=1

xi + a1

m∑
i=1

x2i =

m∑
i=1

xiyi (3.2.5)

Equations (3.2.5) are called the normal equations, and can be solved for a0 and a1, since xi and yi are known
quantities. We can obtain easily

a1 =

m
m∑
i=1

xiyi −
m∑
i=1

xi ·
m∑
i=1

yi

m
∑

x2i −
(

m∑
i=1

xi

)2 (3.2.6)

and then
a0 = y − a1x. (3.2.7)

Since
∂2S

∂a20
and

∂2S

∂a21
are both positive at the points a0 and a1, it follows that these values provide a minimum

of S. In Eq.(3.2.7), x and y are the means of x and y, respectively. Form Eq.(3.2.7), we have

y = a0 + a1x,

which shows the fitted straight line passes through the centroid of the data points. Sometimes, a goodness of
fit is adopted. The correlation coefficient (cc) is defined as

cc =

√
Sy − S

Sy
, where Sy =

m∑
i=1

(yi − y)2 and S is defined by Eq.(3.2.3) (3.2.8)

If cc is close to 1, then the fit is considered to be good, although this is not always true.

Example 3.2.1. Find the best values of a0 and a1 if the straight line Y = a0+a1x is fitted to the data (xi, yi):

(1 , 0.6), (2 , 2.4),(3 , 3.5), (4 , 4.8), (5 , 5.7)

Solution:
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From the given table of values, we find x = 3, y = 3.4, and

a1 =
5(63.6)− (15)(17)

5(55)− 225
= 1.26 and a0 = y − a1x = −0.38

The correlation coefficient =

√
16.10− 0.2240

16.10
= 0.9930.

3.3 Nonlinear Curve Fitting by Linearization of Data

There are some nonlinear curves, which are equivalent to linear fitting after some transformations in the
dependent and independent variables. For example, if we want to fit a curve of the type y = aebx to a data set.
Then taking natural log on both sides, we have

ln(y) = ln(a) + bx

This expression is equivalent to following linear expression

Y = A+BX

where Y = ln(y), A = ln(a), B = b,X = x. We are summarizing some nonlinear curves in the following
table, which with simple operations and transformations can be converted into linear curve fitting.
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Example 3.3.1. Fit a curve y = axb to the following data

x : 1 2 3 5 6
y : 1 9 29 129 221

Solution. On taking log on both sides of the curve y = axb, we get

ln(y) = ln(a) + b ln(x)

So, the curve fitting of type y = axb is equivalent to fit a straight line Y = A + bX , where Y = ln(y), A =
ln(a), X = ln(x). Normal equations for straight line Y = A+ bX fitting are as follows

nA+ b
n∑

i=1

Xl =
n∑

i=1

Yl

A
n∑

i=1

Xt + b
n∑

i=1

X2
l =

n∑
i=1

XtYt

(3.3.1)

On computing various terms in normal equations

x X = ln(x) y Y = ln(y) X2 XY

1 0 1 0 0 0
2 0.693147181 9 2.197224577 0.480453014 1.523000021
3 1.098612289 29 3.36729583 1.206948961 3.699352578
5 1.609437912 129 4.859812404 2.590290394 7.821566331
6 1.791759469 221 5.398162702 3.210401996 9.672209137

5.192956851 15.82249551 7.488094364 22.71612807

The normal Eqs. (3.3.1) are as follows

5A+ 5.192956851b = 15.822495515.192956851A+ 7.488094364b = 22.71612807

On solving these equations for A and b, we obtain

A = 0.04931094359, b = 2.99943582

a = eA = 1.050546961, b = 2.99943582

Hence, our curve is y = axb = 1.050546961x2.99943582.

Example 3.3.2. Following are census details for the population of India from the year 1961 to 2011. Fit an ex-
ponential curve y = aebx to these data, and hence find the approximate population in the years 1966, 1985, 1996
and 2009.

Year (x) 1961 1971 1981 1991 2001 2011
Population (in crores) (y) 43.9235 54.8160 68.3329 84.6421 102.8737 121.0193

Solution. We have to fit an exponential curve y = aebx for years (x) from 1961 to 2011 . To avoid lengthy
calculations (like y = aekx = a(2.718)(1961)b ), we can shift the origin and rescale the data as follows

X =
x− 1981

10
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Now, we have to fit the exponential curve y = aebx to the following data

X : −2 −1 0 1 2 3
y : 43.9235 54.8160 68.3329 84.6421 102.8737 121.0193

On taking logarithmic on both side to the equation y = aebx, we get

ln y = ln a+ bX

By replacing Y = ln(y), A = ln(a), we have following straight line

Y = A+ bX

Normal equations for this straight line are as follows

nA+ b
n∑

i=1

Xi =
n∑

i=1

Yi

A
n∑

i=1

Xi + b
n∑

i=1

X2
i =

n∑
i=1

XiYi

X y Y = ln(y) X2 XY

−2 43.9235 3.78245 4 −7.5649
−1 54.8160 4.00398 1 −4.00398
0 68.3329 4.22439 0 0
1 84.6421 4.43843 1 4.43843
2 102.8737 4.63350 4 9.26700
3 121.0193 4.79595 9 14.38785

3 25.87870 19 16.52440

The normal equations are given by
6A+ 3b = 25.87870

3A+ 19b = 16.52440

On solving these equations, we have

A = 4.21069, b = 0.20486

Since A = ln(a) ⇒ a = 67.40281 Hence, the fitted curve is given by

y = 67.40281e0.20486X

Now, we have to compute populations in the years (x) = 1966, 1985, 1996 and 2009 . Corresponding to these
years, the variable X is given by

X =
x− 1981

10
= −1.5, 0.4, 1.5., 2.8

So, the populations are given by

y(1966) = 67.40281e0.20486(−1.5) = 49.570533

y(1985) = 67.40281e0.20486(0.4) = 73.158664

y(1996) = 67.40281e0.20486(1.5) = 91.649962

y(2009) = 67.40281e0.20486(2.8) = 119.616951
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Exercise 3.3.3. 1. Certain experimental values of x and y are given below:

(0 , -1), (2 , 5), (5 , 12), (7 , 20)

If the straight line Y = a0 + a1x is fitted to the above data, find the approximate values of a0 and a1.

2. Fit a straight line to the following data set

x 1 1.2 1.4 1.6 1.8 2.0
f(x) 0 0.182322 0.336472 0.470004 0.587787 0.693147

3. The growth of cell culture (optical density) at various pH levels are tabulated in the following table.

pH(x) 3.5 4 4.5 5 5.5 6 6.5 7
Optical density(y) 0.20 0.28 0.35 0.41 0.46 0.52 0.55 0.62

4. An empirical formula for the effect of temperature on viscosity of a liquid is given by Andrade’s equa-
tion µ = aebt where µ is the dynamic viscosity of the liquid, T is absolute temperature, and a, b are
constants. Compute the best fitted Andrade’s model to the following data for a given liquid.

T : 10 20 30 40 50
µ : 4.67 3.84 3.17 2.71 2.53

5. It is expected from theoretical consideration, that the rate of flow is proportional to some power of the
pressure at the nozzle of a fire hose. Get the least squares values for exponent and proportionality factor.

Flow rate (F ) : 90 110 130 150 170
Pressure (P ) : 10 18 28 41 53

3.4 Curve Fitting by Polynomials

Let the polynomial of the n-th degree

Y = a0 + a1x+ a2x
2 + . . .+ anx

n (3.4.1)

be fitted to the data points (xi, yi), i = 1, 2, . . . ,m. We then have

S =
[
y1 − (a0 + a1x1 + a2x

2
1 + . . .+ anx

n
1 )
]2

+
[
y2 − (a0 + a1x2 + a2x

2
2 + . . .+ anx

n
2 )
]2

+ . . . . . .+
[
ym − (a0 + a1xm + a2x

2
m + . . .+ anx

n
m)
]2

(3.4.2)

Equating to zero the first partial derivatives and simplifying, we obtain the normal equations:

ma0 + a1
∑

xi + a2
∑

x2i + . . . an
∑

xni =
∑

yi,

a0
∑

xi + a1
∑

x2i + . . . an
∑

xn+1
i =

∑
xiyi, (3.4.3)

...
...

...
...

...

a0
∑

xni + a1
∑

xn+1
i + . . . an

∑
x2ni =

∑
xni yi,
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where the summations are performed from i = 1 to i = m. The system (3.4.3) constitutes (n+ 1) equations
in (n + 1) unknowns, and hence can be solved for a0, a1, . . . , an. Equation (3.4.1) then gives the required
polynomial of the n-th degree.

For larger values of n, system (3.4.3) becomes unstable with the result that round off errors in the data may
cause large changes in the solution. Such systems occur quite often in practical problems and are called ill
conditioned system. Orthogonal polynomials are most suited to solve such systems and one particular form
of these polynomials, the Chebyshev polynomial.

Example 3.4.1. Fit a polynomial of the second degree to the data points (x, y) given by

(0, 1), (1, 6), and (2, 17)

Solution: For n = 2, Eq.(3.4.3) requires
∑

xi,
∑

x2i ,
∑

x3i ,
∑

x4i ,
∑

yi,
∑

xiyi and
∑

x2i yi. The table
of values is as follows:

The normal equations are

3a0 + 3a1 + 5a2 = 24

3a0 + 5a1 + 9a2 = 40

5a0 + 9a1 + 17a2 = 74

Solving the above system, we obtain

a0 = 1, a1 = 2 and a2 = 3.

The required polynomial is given by Y = 1 + 2x+ 3x2, and it can be seen that this fitting is exact.

Exercise 3.4.2. 1. Fit a second degree parabola y = a0 + a1x+ a2x
2 to the data (xi, yi):

(1 , 0.63), (3 , 2.05), (4 , 4.08), (6 , 10.78)

2. Fit a quadratic curve to the following data, and compute the value of variable y at point x = 3

x 0 1 2 4 5
y − 2 0 10 78 148

3. Obtain the least squares fit of the form y = ax2 + bx+ c for the following data set.

x : 10 12 15 23 20
y : 14 17 23 25 21

Solve the system of normal equations with the aid of Gauss elimination method.
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3.5 Weighted Least Square Approximation

In the previous section, we have minimized the sum of squares of the errors. A more general approach is to
minimize the weighted sum of the squares of the errors taken over all data points. If this sum is denoted by S,
then instead of Eq.(3.2.2), we have

S = W1

[
y1 − f(x1)

]2
+W2

[
y2 − f(x2)

]2
+ . . .+Wm

[
ym − f(xm)

]2
= W1e

2
1 +W2e

2
2 + . . .+Wme2m. (3.5.1)

In Eq.(3.5.1), the Wi are prescribed positive numbers and are called weights. A weight is prescribed according
to the relative accuracy of a data points. If all the data points are accurate, we set Wi = 1 for all i. We consider
again the linear and non-linear cases below.

3.5.1 Linear Weighted Least Squares Approximation

Let Y = a0 + a1x be the straight line to be fitted to the given data points, viz. (x1, y1), . . . , (xm, ym). Then

S(a0, a1) =

m∑
i=1

Wi

[
yi − (a0 + a1xi)

]2
. (3.5.2)

For maxima or minima, we have
∂S

∂a0
=

∂S

∂a1
= 0, which gives (3.5.3)

∂S

∂a0
= −2

m∑
i=1

Wi

[
yi − (a0 + a1xi)

]
= 0 and

∂S

∂a1
= −2

m∑
i=1

Wi

[
yi − (a0 + a1xi)

]
xi = 0.

Simplifying yields the system of equations for a0 and a1:

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi =

m∑
i=1

Wiyi and a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i =

m∑
i=1

Wixiyi (3.5.4)

which are the normal equations in this case and are solved to obtain a0 and a1.

Example 3.5.1. Suppose that in the data of Exercise (3.3.3), the point (5, 12) is known to be more reliable
than the others. Then we prescribe a weight (say, 10) corresponding to this point only and all other weights
are taken as unity. Find the new ‘linear least squares approximation’.

Solution: Let us calculate the following table.

The normal Eqs.(3.5.4) then give

13a0 + 59a1 = 144 and 59a0 + 303a1 = 750
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Solving the above equations, we obtain

a0 = −1.349345 and a1 = 2.73799

The ‘linear least squares approximation’ is, therefore, given by

y = −1.349345 + 2.73799x

Exercise 3.5.2. 1. Consider Example (3.5.1) again with an increased weight, say 100, corresponding to
y(5.0) and calculate the new ‘linear least squares approximation’ and comment the influence of increas-
ing weight to the approximation.

3.5.2 Nonlinear Weighted Least Squares Approximation

We now consider the least squares approximation of a set of m data points (xi, yi), i = 1, 2, . . . ,m, by a
polynomial of degree n < m. Let

y = a0 + a1x+ a2x
2 + . . .+ anx

n (3.5.5)

be fitted to the given data points. We then have

S(a0, a1, . . . , an) =
m∑
i=1

Wi

[
yi − (a0 + a1xi + . . .+ anx

n
i )
]2
. (3.5.6)

If a minimum occurs at (a0, a1, . . . , an), then we have

∂S

∂a0
=

∂S

∂a1
=

∂S

∂a2
= . . . =

∂S

∂an
= 0. (3.5.7)

These conditions yield the normal equations

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi + . . .+ an

m∑
i=1

Wix
n
i =

m∑
i=1

Wiyi

a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i + . . .+ an

m∑
i=1

Wix
n+1
i =

m∑
i=1

Wixiyi (3.5.8)

...
...

...
...

a0

m∑
i=1

Wix
n
i + a1

m∑
i=1

Wix
n+1
i + . . .+ an

m∑
i=1

Wix
2n
i =

m∑
i=1

Wix
n
i yi.

Equations (3.5.8) are (n+1) equations in (n+1) unknowns a0, a1, . . . , an. If the xi are distinct with n < m,
then the equations possess a ‘unique’ solution.

Note 3.5.3. In general, the least squares curves do not pass through any data point. The least squares curves
have global effects (if we change the position of one point, it will change the whole curve).

Interpolating polynomial is best suitable for a data set having less number of points, as it has zero least
squares error. But, for large data set, we have already discussed the disadvantages of higher order polynomials.
Least squares fitting are suitable for large data set having global patterns like a straight line, exponential,
parabolic, etc. But selection of appropriate curve is very difficult task, as it is not possible to predict the
suitable curve by just looking at the data set. Scatter diagram will be helpful in this regard.
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Course Structure

• Orthogonal polynomials, Gram –Schmidt orthogonalisation process, Chebysev polynomials, Mini-max
polynomial approximation.

4.1 Orthogonal Polynomial approximation method

In the previous unit, we considered the least squares approximations of discrete data. We shall, in the present
unit, discuss the least squares approximation of a continuous function on [a, b]. In this case, the summations
in the normal equations are now replaced by definite integrals. However, this method possesses the disadvan-
tage of solving a large linear system of equations. Besides, such a system may exhibit a peculiar tendency
called ill-conditioning, which means that small change in any of its parameters introduces large errors in the
solution - the degree of ill-conditioning increasing with the order of the system. Hence, alternative methods
of solving the continuous function for least squares problem have gained importance, and of these the method
that employs ‘orthogonal polynomial’ is currently in use. This method possess the great advantage that it does
not require a linear system to be solved and is described below.

We choose the approximation in the form:

Y (x) = a0f0(x) + a1f1(x) + . . .+ anfn(x), (4.1.1)

where fj(x) is a polynomial in x of degree j. Then we write

S(a0, a1, . . . , an) =

a∫
0

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]2
dx. (4.1.2)

35
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For S to be minimum, we must have

∂S

∂a0
= 0 = −2

b∫
a

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]
f0(x) dx

∂S

∂a1
= 0 = −2

b∫
a

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]
f1(x) dx (4.1.3)

...

∂S

∂an
= 0 = −2

b∫
a

W (x)
[
y(x)−

{
a0f0(x) + a1f1(x) + . . .+ anfn(x)

}]
fn(x) dx

The system of normal equations can be written as

a0

b∫
a

W (x)f0(x)fj(x) dx + a1

b∫
a

W (x)f1(x)fj(x) dx + . . . . . .

+ an

b∫
a

W (x)fn(x)fj(x) dx =

b∫
a

W (x)y(x)fj(x) dx, j = 0, 1, 2, . . . , n. (4.1.4)

In Eq.(4.1.4), we find products of the type fp(x)fq(x) in the integrands, and if we assume that
b∫

a

W (x)fp(x)fq(x) dx =


0, p ̸= q
b∫
a
W (x)f2

p (x) dx, p = q,
(4.1.5)

Hence from Eq.(4.1.4), we obtain

aj =

[ b∫
a

W (x)y(x)fj(x) dx

]/[ b∫
a

W (x)f2
j (x) dx

]
, j = 0, 1, 2, . . . , n. (4.1.6)

Substitution of a0, a1, . . . , an in Eq.(4.1.1) then yields the required least squares approximation, but the func-
tions f0(x), f1(x), . . . , fn(x) are still not known. The fj(x), which are polynomials in x satisfying the con-
dition (4.1.5), are called orthogonal polynomials and are said to be orthogonal with respect to the weight
function W (x). They play an important role in numerical analysis and a few of them are listed below.

A brief discussion of some important properties of the Chebyshev polynomials Tn(x) and their usefulness
in the approximation of functions will be given in a later subsection in this unit. We now return to our
discussion of the problem of determining the least squares approximation. As we noted earlier, the function
fj(x) are yet to be determined. These are obtained by using ‘Gram-Schmidt orthogonalization process’, which
has important applications in numerical analysis.
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4.2 Gram-Schmidt Orthogonalization Process

Suppose that the orthogonal polynomial fi(x), valid on the interval [a, b], has the leading term xi. Then,
starting with

f0(x) = 1 (4.2.1)

we find that the linear polynomial f1(x), with leading term x, can be written as

f1(x) = x+ k1,0f0(x), (4.2.2)

where k1,0 is a constant to be determined. Since f1(x) and f0(x) are orthogonal, we have

b∫
a

W (x)f0(x)f1(x) dx = 0 =

b∫
a

xW (x)f0(x) dx+ k1,0

b∫
a

W (x)f2
0 (x) dx [using Eqs.(4.1.5) and (4.2.1)]

Now from the above, we obtain

k1,0 = −

[ b∫
a

xW (x)f0(x) dx

]/[ b∫
a

W (x)f2
0 (x) dx

]
, (4.2.3)

and Eq.(4.2.2) gives

f1(x) = x−

[[ b∫
a

xW (x)f0(x) dx

]/[ b∫
a

W (x)f2
0 (x) dx

]]
f0(x) (4.2.4)

Now, the polynomial f2(x), of degree 2 in x and with leading term x2, may be written as

f2(x) = x2 + k2,0f0(x) + k2,1f1(x), (4.2.5)

where the constants k0,2 and k2,1 are to be determined by using the orthogonality conditions in Eq.(4.1.5).
Since f2(x) is orthogonal to f0(x), we have

b∫
a

W (x)f0(x)
[
x2 + k2,0f0(x) + k2,1f1(x)

]
dx = 0. (4.2.6)

Since

b∫
a

W (x)f0(x)f1(x) dx = 0, the above equation gives

k2,0 = −

[ b∫
a

x2W (x)f0(x) dx

]/[ b∫
a

W (x)f2
0 (x) dx

]
= −

[ b∫
a

x2W (x) dx

]/[ b∫
a

W (x) dx

]
,

(4.2.7)
Again, since f2(x) is orthogonal to f1(x), we have

b∫
a

W (x)f1(x)
[
x2 + k2,0f0(x) + k2,1f1(x)

]
dx = 0. (4.2.8)
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Using the condition that

b∫
a

W (x)f0(x)f1(x) dx = 0, the above yields

k2,1 = −

[ b∫
a

x2W (x)f1(x) dx

]/[ b∫
a

W (x)f2
1 (x) dx

]
, (4.2.9)

Since k2,0 and k2,1 are known, Eq.(4.2.5) determines f2(x). Proceeding in this way, the method can be
generalized and we write

fj(x) = xj + kj,0f0(x) + kj,1f1(x) + . . .+ kj,j−1fj−1(x), (4.2.10)

where the constants kj,i are so chosen that fj(x) is orthogonal to f0(x), f1(x), . . . , fj−1(x). These conditions
yield

kj,i = −

[ b∫
a

xjW (x)fi(x) dx

]/[ b∫
a

W (x)f2
i (x) dx

]
, (4.2.11)

Since the ai and fi(x) in Eq.(4.1.1) are known, the approximation Y (x) can now be determined. The following
example illustrates the method of procedure.

Example 4.2.1. Obtain the first-four orthogonal polynomials fn(x) on [−1, 1] with respect to the weight
function W (x) = 1.

Solution: Let f0(x) = 1. Then Eq.(4.2.3) gives

k1,0 = −

[ 1∫
−1

x dx

]/[ 1∫
−1

dx

]
= 0,

We then obtain from Eq.(4.2.2), f1(x) = x. Equations (4.2.7) and (4.2.9) gives respectively

k2,0 = −

[ 1∫
−1

x2 dx

]/[ 1∫
−1

dx

]
= −1

3
and k2,1 = −

[ 1∫
−1

x2x dx

]/[ 1∫
−1

x2 dx

]
= 0.

Then Eq.(4.2.5) yields f2(x) = x2 − 1/3. In a similar manner, we obtain

k3,0 = −

[ 1∫
−1

x3 dx

]/[ 1∫
−1

dx

]
= 0, k3,1 = −

[ 1∫
−1

x3 x dx

]/[ 1∫
−1

x2 dx

]
= −3

5
,

and k3,2 = −

[ 1∫
−1

x3(x2 − 1/3) dx

]/[ 1∫
−1

(x2 − 1/3)2 dx

]
= 0,

It is easily verified that

f3(x) = x3 − 3

5
x.

Thus the required orthogonal polynomials are 1, x, x2 − 1/3 and x3 − (3/5)x. These polynomials are called
Legendre polynomials and are usually denoted by Pn(x). It is easy to verify that these polynomials satisfy the
orthogonal property given in Eq.(4.1.5).
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4.3 Chebyshev Polynomials Approximation

In this section, we are mainly concerned with the approximation by Chebyshev polynomials. To begin, here
we will briefly discuss some basic aspects of Chebyshev polynomials. Chebyshev differential equation of
degree n is given by (

1− x2
) d2y
dx2

− x
dy

dx
+ n2y = 0 − 1 ≤ x ≤ 1

Two linearly independent solutions of this differential equation are Chebyshev polynomial of the first kind
Tn(x) = cos

(
n cos−1 x

)
and Chebyshev polynomial of the second kind Un(x) = sin

(
n cos−1 x

)
. Here,

we will concentrate only on Chebyshev polynomials of the first kind Tn(x) and use its minimax property to
obtain best lower approximation for a given polynomial.

Now, we will discuss important forms, recurrence relation and orthogonal property of Chebyshev polyno-
mials of the first kind Tn(x) of degree n.

1. Forms of Chebyshev polynomial

Tn(x) = cos
(
n cos−1 x

)
, −1 ≤ x ≤ 1

On replacing x = cos(θ) or θ = cos−1 x, we have

Tn(cos θ) = cos(nθ)

On using the de Moivre’s formula (cos θ ± i sin θ)n = cos(nθ)± i sin(nθ), we have

Tn(cos θ) = cos(nθ)

=
1

2
[(cos θ + i sin θ)n + (cos θ − i sin θ)n]

=
1

2

[(
cos θ + i

√
1− cos2 θ

)n
+
(
cos θ − i

√
1− cos2 θ

)n]
=

1

2

[(
cos θ +

√
cos2 θ − 1

)n
+
(
cos θ −

√
cos2 θ − 1

)n]
Substitute x = cos(θ) to get the following form

Tn(x) =
1

2

[(
x+

√
x2 − 1

)n
+
(
x−

√
x2 − 1

)n]
2. Chebyshev polynomial in terms of Gauss hypergeometric function

If we put x = 1−2t in Chebyshev differential equation, then it will transform into the following differential
equation (

t− t2
) d2y
dt2

+

(
1

2
− t

)
dy

dt
+ n2y = 0

This differential equation is equivalent to following Gauss hypergeometric equation
(
t− t2

) d2y
dt2

+(γ− (α+

β + 1)t)dydt − αβy = 0, with α = n, β = −n and γ = 1
2 Therefore, the Chebyshev polynomial can also be

written in terms of Gauss hypergeometric function F (α, β; γ; t) as follows

Tn(x) = F

(
n,−n;

1

2
;
1− x

2

)
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3. Polynomial expansion for Chebyshev polynomials

De Moivre’s formula is given by

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n =
n∑

m=0

nCm(cos θ)n−m(i sin θ)m

In this expansion, real terms exist only for m = 2k as

(i sin θ)m = (i sin θ)2k = (−1)k
(
sin2 θ

)k
=
(
cos2 θ − 1

)k
On equating real terms, we have

cos(nθ) =

[n/2]∑
k=0

nC2k(cos θ)
n−2k

(
cos2 θ − 1

)k
Use Tn(cos θ) = cos(nθ) and x = cos(θ) to get following form

Tn(x) =

[n/2]∑
k=0

n!

2k!(n− 2k)!
xn−2k

(
x2 − 1

)k
4. Recurrence relation for Chebyshev polynomials

Consider the following trigonometric identities

cos(nθ) = cos(θ + (n− 1)θ) = cos(θ) cos((n− 1)θ)− sin(θ) sin((n− 1)θ)

cos((n− 2)θ) = cos(−θ + (n− 1)θ) = cos(θ) cos((n− 1)θ) + sin(θ) sin((n− 1)θ)

On adding these equations, we get

cos(nθ) + cos((n− 2)θ) = 2 cos(θ) cos((n− 1)θ)

On using Tn(cos θ) = cos(nθ) and x = cos(θ), we have

Tn(x) + Tn−2(x) = 2xTn−1(x)

(or) Tn(x) = 2xTn−1(x)− Tn−2(x) (4.3.1)

Since, we have Tn(x) = cos
(
n cos−1 x

)
,⇒ T0(x) = 1, T1(x) = x.

Higher degree Chebyshev polynomials can be obtained using recurrence relation (4.3.1), and Chebyshev
polynomials up to degree six are listed in following table
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5. Orthogonal property of Chebyshev polynomials

Chebyshev polynomials Tn(x) are orthogonal w.r.t. weight function
1√

1− x2
over the interval [−1, 1], i.e.∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx = 0;n ̸= m (4.3.2)

When n = m, we have ∫ 1

−1

T 2
n(x)√
1− x2

dx =

{
π n = 0
π
2 n ̸= 0

6. Minimax property of Chebyshev polynomials

One of the most important properties of Chebyshev polynomials is minimax property. We will use this
property to obtain lower order polynomial approximation for a given polynomial.

The coefficient of xn in the polynomial Tn(x) is 2n−1, therefore 21−nTn(x) is a polynomial with coefficient
of xn is 1 . It means leading coefficient in polynomial 21−nTn(x) is 1 . Since Tn(x) = cos

(
n cos−1 x

)
so its

maximum absolute value is 1 .
max

−1≤x≤1
|Tn(x)| = 1

On using these facts, we can state the minimax property of Chebyshev polynomial as follows

Consider polynomials with leading coefficients 1 (known as a monic polynomial) and of degree n > 0, i.e.,

Pn(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0

Then, following relations hold in the domain −1 ≤ x ≤ 1,

max
−1≤x≤1

|Pn(x)| ≥ max
−1≤x≤1

∣∣21−nTn(x)
∣∣ = 21−n (4.3.3)

The minimax property implies that among all the monic polynomials of degree n, the 21−nTn(x) has smallest
least upper bound for its absolute value in the domain −1 ≤ x ≤ 1. Thus if we approximate a given poly-
nomial by lower order polynomial, then by Chebyshev polynomial we can minimize the maximum absolute
error.
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Example 4.3.1. Use Chebyshev polynomials to compute the best lower order approximation for the polyno-
mial 3x4 + 5x3 − x+ 1 in the domian −1 ≤ x ≤ 1. Also, compute the error bound in this approximation.

Solution. First, we replace the highest order term in the polynomial with the help of Chebyshev polynomial
as follows

3x4 + 5x3 − x+ 1 =
3

8
(3T0(x) + 4T2(x) + T4(x)) + 5x3 − x+ 1

=
3

8
T4(x) +

3

2
T2(x) +

9

8
T0(x) + 5x3 − x+ 1

=
3

8
T4(x) +

3

2

(
2x2 − 1

)
+

9

8
+ 5x3 − x+ 1

=
3

8
T4(x) + 5x3 + 3x2 − x+

5

8

On neglecting the term
3

8
T4(x), the lower order approximation is as follows

3x4 + 5x3 − x+ 1 = 5x3 + 3x2 − x+
5

8

The maximum absolute error (4.3.3) in this approximation is given by

3

23
T4(x) =

3

23
=

3

8
= 0.375

Note that if we directly neglect the term 3x4 from the given polynomial, then the maximum possible error in
the interval −1 ≤ x ≤ 1 is 3.

Example 4.3.2. Economize the Taylor series expansion cosx = 1− x2

2!
+

x4

4!
− x6

6!
+O

(
x8
)

to lower order
approximation over the interval −1 ≤ x ≤ 1. Also, compute the error bound.

Solution. On using the value of x6 in terms of Chebyshev polynomials, we have

1− x2

2!
+

x4

4!
− x6

6!
= 1− x2

2!
+

x4

4!
− 1

6!

(
1

32
(10T0(x) + 15T2(x) + 6T4(x) + T6(x))

)
= 1− x2

2!
+

x4

4!
− 1

6!

(
1

32

(
10 + 15

(
2x2 − 1

)
+ 6

(
8x4 − 8x2 + 1

)
+ T6(x)

))
On neglecting the term containing T6(x), we have

1− x2

2!
+

x4

4!
− x6

6!
≈ 1− x2

2!
+

x4

4!
− 1

6!

(
1

32

(
10 + 15

(
2x2 − 1

)
+ 6

(
8x4 − 8x2 + 1

)))
=

23039

23040
− 639

1280
x2 +

19

480
x4

This polynomial is the lower order economized approximation for the function cosx. The error in this ap-
proximation is given by

1

6!
21−nTn(x) =

1

6!

1

25
T6(x) =

1

6!

1

25
= 0.000043402777

Example 4.3.3. Approximate the polynomial x3 + 5x2 + 2x − 1 to a quadratic polynomial with minimum
error in the interval (3, 4).
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Solution. To apply the Chebyshev approximation, first of all, we have to change the variable x to variable
t, such that the interval converts from (3, 4) to (−1, 1). Let our new variable be t = ax + b. At x = 3 and
x = 4, we want t = −1 and t = 1 respectively, i.e.,

−1 = 3a+ b
1 = 4a+ b

On solving these two equations for a and b and using these values, we have

t = 2x− 7 or x =
1

2
(t+ 7)

On using this expression for x in given polynomial, we have

x3 + 5x2 + 2x− 1 =

(
1

2
(t+ 7)

)3

+ 5

(
1

2
(t+ 7)

)2

+ 2

(
1

2
(t+ 7)

)
− 1

=
1

8
t3 +

31

8
t2 +

295

8
t+

881

8

Now, we have to convert
1

8
t3 +

31

8
t2 +

295

8
t+

881

8
to a quadratic polynomial over the domain (−1, 1).

1

8
t3+

31

8
t2 +

295

8
t+

881

8
=

1

8

(
1

4
(3T1(t) + T3(t))

)
+

31

8
t2 +

295

8
t+

881

8

=
1

32
T3(t) +

3

32
T1(t) +

31

8
t2 +

295

8
t+

881

8

=
1

32
T3(t) +

3

32
t+

31

8
t2 +

295

8
t+

881

8

=
1

32
T3(t) +

31

8
t2 +

1183

32
t+

881

8

Lower order approximation is given by

31

8
t2 +

1183

32
t+

881

8
over the interval (−1, 1)

(or)
31

8
(2x− 7)2 +

1183

32
(2x− 7) +

881

8
= 15.5x2 − 34.5625x+ 41.21875 over the interval (3, 4).

Exercise 4.3.4. 1. If the function f1(x) = 1, f2(x) = x are orthogonal on the interval [−1, 1], find the
values of a and b so that the function f3(x) = 1 + ax+ bx2 is orthogonal to both f1 and f2 on [−1, 1].

2. Define an orthogonal set of functions and show that the set f(x) = sin
nπx

l
, n = 1, 2, . . . is orthogonal

on [0, l].

3. Economize Taylor series expansion ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ O(x5) to lower order Chebyshev

approximation over the interval −1 ≤ x ≤ 1.

4. Use the Chebyshev polynomials to obtain the approximations of second degree for the following poly-
nomials

(i) 2x4 + 3x3 − x+ 2 on [−1, 1] (ii) x3 + 2x2 − 5x+ 3 on [2, 3]
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Course Structure

• Numerical Integration: Gaussian quadrature formula and its existence. Euler-MacLaurin formula

5.1 Introduction

The general problem of numerical integration may be stated as: Given a set of data points (x0, y0), (x1, y1), . . . ,
(xn, yn) of a function y = f(x), where f(x) is not known explicitly, it is required to compute the value of the
definite integral

I =

b∫
a

y dx. (5.1.1)

Different integration formulae can be obtained depending upon the type of interpolation formula used.

5.2 Gaussian quadrature formula

In numerical integration, the value of integral,

b∫
a

f(x) dx, depends on the values of function f(x) at suitable

number of points. It can be written as follows

I =

b∫
a

f(x) dx ≈
n∑

i=0

λif(xi),

where x0, x1, · · · , xn are (n + 1) node points in the interval [a, b], and λi’s are weights given to the values
of function f(x) at these node points. A polynomial of degree n is used for approximation to compute these
(n + 1) weights λi’s. Let, there be no restriction on the points xi’s also, then there are total 2n + 2 arbitrary
constants [(n + 1) weights λi’s and (n + 1) node points xi’s]. For these 2n + 2 constants, a polynomial of
degree 2n + 1 can be utilized to approximate the function. So, higher accuracy can be achieved by these
formulas. These methods are known as Gauss quadrature methods. Here, we will discuss Gauss quadrature
methods based on Gauss-Legendre formula.

44
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In this method, we assume the integral is of the form,

1∫
−1

f(x)dx. Note that any definite integral,

b∫
a

g(x)dx

can be converted to the form,

1∫
−1

f(x)dx by substituting following formula

x =
b− a

2
t+

b+ a

2

Let the function f(x) in the integral

1∫
−1

f(x) dx be approximated by the following polynomial of degree 2n+1

f(x) ≈ a0 + a1x+ a2x
2 + · · ·+ a2n+1x

2n+1

The integral is approximated by following expression

1∫
−1

f(x) dx =

n∑
i=0

λi f(xi) (5.2.1)

L.H.S. and R.H.S. of Eq. (5.2.1) are as follows

L.H.S. =

∫ 1

−1
f(x)dx =

∫ 1

−1

(
a0 + a1x+ a2x

2 + · · ·+ a2n+1x
2n+1

)
dx

=2a0 +
2

3
a2 +

2

5
a4 + · · ·

R.H.S. =

n∑
n=1

λ1f (x1) =λ0

(
a0 + a1x0 + a2x

2
0 + · · ·+ a2n+1x0

2n+1
)

+ λ1

(
a0 + a1x1 + a2x1

2 + · · ·+ a2n+1x
2n+1
1

)
+ λ2

(
a0 + a1x2 + a2x2

2 + · · ·+ a2n+1x
2n+1
2

)
...

+ λn

(
a0 + a1xn + a2x

2
n + · · ·+ a2n+1x

2n+1
n

)
On comparing both sides, we get

λ0 + λ1 + λ2 + · · ·+ λn = 2

λ0x0 + λ1x1 + λ2x2 + · · ·+ λnxn = 0

λ0x
2
0 + λ1x

2
1 + λ2x

2
2 + · · ·+ λnx

2
n =

2

3
...

λ0x
2n+1
0 + λ1x

2n+1
1 + λ2x

2n+1
2 + · · ·+ λnx

2n+1
n = 0 (5.2.2)

In general, it is very difficult to solve these 2n + 2 nonlinear equations. But fortunately, the values of x1’s
are zeroes of Legendre orthogonal polynomials (discussed later in the chapter). Once the values of x1’s are
known, we can use these values in the system (5.2.2). We will get linear system for λl’s, which can be easily
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solved. Here, we are considering only some particular cases.

1-Point Formula (n = 0) For n = 0, we have following two equations from system (5.2.2)

λ0 = 2

λ0x0 = 0

Solution is λ0 = 2, x0 = 0.

On using these values in Eq. (5.2.1), we have following Gauss-Legendre 1-point formula∫ 1

−1
f(x)dx = λ0f (x0) = 2f(0) (5.2.3)

2-Points Formula ( n = 1 )

For n = 1, we have following four Eqs. (5.2.2)

λ0 + λ1 = 2 (5.2.4)

λ0x0 + λ1x1 = 0 (5.2.5)

λ0x0
2 + λ1x

2
1 =

2
3 (5.2.6)

λ0x0
3 + λ1x

3
1 = 0 (5.2.7)

Eq. (5.2.7) −x21 Eq. (5.2.5) implies

λ0x0
(
x0

2 − x21
)
= 0 or λ0x0 (x0 − x1) (x0 + x1) = 0

Now if we select λ0 = 0, or x0 = 0, or x0 = x1, then remaining equations do not hold. Therefore, we have
x0 = −x1. On using this in Eq. (5.2.5) and solving Eqs. (5.2.4) and (5.2.5) simultaneously, we have

λ0 = λ1 = 1

On substituting the values x0 = −x1 and λ0 = λ1 = 1 in Eq. (5.2.6), we get

x0 =
1√
3
, x1 =

−1√
3

Equation (5.2.1) provides the following Gauss-Legendre 2-points formula∫ 1

−1
f(x)dx = λ0f (x0) + λ1f (x1) = f

(
−1√
3

)
+ f

(
1√
3

)
(5.2.8)

3-Points Formula

For n = 2, we have following six equations from system (5.2.2)

λ0 + λ1 + λ2 = 2

λ0x0 + λ1x1 + λ2x2 = 0

λ0x
2
0 + λ1x

2
1 + λ2x

2
2 =

2

3
λ0x

3
0 + λ1x

3
1 + λ2x

3
2 = 0

λ0x
4
0 + λ1x

4
1 + λ2x

4
2 =

2

5
λ0x

5
0 + λ1x

5
1 + λ2x

5
2 = 0
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Here, we are presenting solution directly without giving any computational details.

x0 = −
√

3

5
, x1 = 0, x2 =

√
3

5
λ0 =

5

9
, λ1 =

8

9
, λ2 =

5

9

Gauss–Legendre 3-points formula is given by

1∫
−1

f(x) dx = λ0f(x0) + λ1f(x1) + λ2f(x2) =
5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)
(5.2.9)

Example 5.2.1. Compute the integral
∫ 1

−1

1

1 + x2
dx with the help of Gauss-Legendre 1, 2 and 3-points for-

mulas. Compare the results with exact value.

Solution.

i) Gauss-Legendre 1-point formula (5.2.3)∫ 1

−1
f(x)dx = 2f(0)∫ 1

−1

1

1 + x2
dx = 2(1) = 2

ii) Gauss-Legendre 2-points formula (5.2.8)∫ 1

−1
f(x)dx = f

(
−1√
3

)
+ f

(
1√
3

)
∫ 1

−1

1

1 + x2
dx =

1

1 +
(
−1√
3

)2 +
1

1 +
(

1√
3

)2 =
3

2
= 1.5

iii) Gauss-Legendre 3-points formula (5.2.9)∫ 1

−1
f(x)dx =

5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)
∫ 1

−1

1

1 + x2
dx =

5

9

1

1 +
(
−
√

3
5

)2 +
8

9

1

1 + 0
+

5

9

1

1 +
(√

3
5

)2 =
114

72
= 1.58333

Exact solution is given by ∫ 1

−1

1

1 + x2
dx = tan−1(x)

∣∣1
−1

=
π

2
= 1.571

Hence, 3-points formula gives better approximation.

Example 5.2.2. Solve the integral

0.5∫
0

exp(−x2) dx numerically with the help of Gauss Legendre 3-point for-

mula.
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Solution. To convert the interval [0, 0.5] in to interval [−1, 1], the transformation is given by

x =
b− a

2
t+

b+ a

2
=

1

4
t+

1

4

On using this expression in the given integral, we get

0.5∫
0

exp(−x2) dx =

1∫
−1

exp

(
−
(
t

4
+

1

4

)2
)

1

4
dt =

1

4

 1∫
−1

exp

(
−
(
t

4
+

1

4

)2
)
dt


On applying Gauss–Legendre 3-points formula, we have

1

4

 1∫
−1

exp

(
−
(
t

4
+

1

4

)2
)
dt

 =
1

4

(
5

9
f

(
−
√

3

5

)
+

8

9
f (0) +

5

9
f

(√
3

5

))

=
1

4

5

9

(
exp

(
−
(
1

4

(
−3

5

)
+

1

4

)2
))

+
8

9

(
exp

(
−
(
1

4

)2
))

+
5

9

exp

−

(
1

4

(√
3

5

)
+

1

4

)2


=
1

4

(
5

9
(0.9968296200) +

8

9
(0.9394130628) +

5

9
(0.8213346963)

)
= 0.4612812800

Computation of Weights and Nodes using Legendre Polynomials

Since our major concern is to compute the weights λi and nodes xi for Gauss–Legendre integration
1∫

−1

f(x)dx =

n∑
t=0

λtf(xt) with the help of Legendre polynomials, hence here we are discussing the vari-

ous properties of Legendre polynomials in brief only.

1. Legendre polynomial Ln(x) of degree n is solution of following second order differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0

2. Rodrigues formula: The Legendre polynomials can be obtained using Rodrigues formula

Ln(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
3. Recurrence relation for Legendre polynomials: We have following recurrence relation for Legendre

polynomials
(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x)

From Rodrigues formula, we can easily compute following Legendre polynomials

L0(x) = 1 and L1(x) = x

On using the recurrence relation for n = 1, we have

(2) L2(x) = (3)xL1(x)− L0(x) = 3x2 − 1
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L2(x) =
1

2

(
3x2 − 1

)
Similarly, the recurrence relation provides higher order Legendre polynomials for n = 2, 3, 4... The

Legendre polynomials up to order 6 are as follows L0(x) = 1, L1(x) = x, L2(x) =
1

2

(
3x2 − 1

)
,

L3(x) =
1

2

(
5x3 − 3x

)
, L4(x) =

1

8

(
35x4 − 30x2 + 3

)
, L5(x) =

1

8

(
63x5 − 70x3 + 15x

)
, L6(x) =

1

16

(
231x6 − 315x4 + 105x2 − 5

)
, · · ·

4. Orthogonal property of Legendre polynomials Here, without going in details, we will only state the
orthogonal property of Legendre polynomials. Legendre polynomials Ln(x) are orthogonal over the
interval [−1, 1] ∫ 1

−1
Lm(x)Ln(x)dx = 0;n ̸= m

When n = m, we have ∫ 1

−1
L2
n(x)dx =

2

2n+ 1

Theorem 5.2.3. Let us consider that orthogonal polynomials with weight functions w(x) over the interval

[a, b]. If xi’s i = 0, 1, 2, · · · , n are zeroes of orthogonal polynomials, then the integral
∫ b

a
w(x)f(x)dx =

n∑
i=0

λif (xi) is exact for polynomials of degree ≤ (2n+ 1).

Proof. Let the function f(x) be a polynomial of degree ≤ (2n+1). Let Pn(x) be the interpolating polynomial
of degree ≤ n which agrees f(x) at (n+ 1) points

Pn (xt) = f (xt) , i = 0, 1, 2, · · · , n

Therefore, the function f(x)−Pn(x) has (n+1) zeroes xi, i = 0, 1, 2, · · · , n. Let Qn+1(x) be polynomial
of degree (n+ 1) having zeroes xi’s.

We can write f(x)−Pn(x) as product of two polynomials Qn+1(x) and Rn(x), where Rn(x) is a polyno-
mial of degree at most n, i.e.,

f(x)− Pn(x) = Qn+1(x)Rn(x) (5.2.10)

On multiplying (5.2.10) with w(x) and then integrating from a to b, we have∫ b

a
w(x)f(x)dx−

∫ b

a
w(x)Pn(x)dx =

∫ b

a
w(x)Qn+1(x)Rn(x)dx

The integral on right hand side is zero, if the function Qn+1(x) is orthogonal over the interval [a, b] with
respect to weight function, w(x), to all polynomials of degree ≤ n. Then, we have∫ b

a
w(x)f(x)dx =

∫ b

a
w(x)Pn(x)dx (5.2.11)

Consider the interpolating polynomial Pn(x) of Lagrange form

Pn(x) =
n∑

i=1

f (xi) li(x)
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From Eq. (5.2.11), we have∫ b

a
w(x)f(x)dx =

∫ b

a
w(x)Pn(x)dx =

∫ b

a
w(x)

(
n∑

i=1

f (xi) li(x)

)
dx =

n∑
i=0

λif (xi) (5.2.12)

where λi =

∫ b

a
w(x)li(x)dx are the weights. As we start with the assumption, that f(x) is a polynomial of

degree ≤ (2n+ 1). It proves that the formula has an accuracy of (2n+ 1) degree polynomial.

Note 5.2.4. We prove that if xt’s are zeroes of orthogonal polynomials, then the integral
∫ b

a
w(x)f(x)dx =

n∑
i=0

λif (xi) is exact for polynomials of degree ≤ (2n+ 1).

Now, Legendre polynomials are orthogonal with respect to weight function w(x) = 1 over the interval
[a, b] = [−1, 1]. So, we will use Legendre polynomials for the calculation of the weights λ1 and nodes x1 for

Gauss-Legendre integration
∫ 1

−1
f(x)dx =

n∑
i=0

λif (xi)

1-Point Formula ( n = 0 )

The nodes xt’s are zeroes of orthogonal polynomials. For n = 0, we have Legendre polynomial, L1(x) =

x. Therefore, the node x0 is zero of this polynomial, and it follows x0 = 0. Weight λ1 =

∫ b

a
w(x)ll(x)dx is

given by λ0 =

∫ 1

−1
1dx = 2 Hence

∫ 1

−1
f(x)dx =

n∑
i=0

λtf (xi) = λ0f (x0) = 2f(0)

2-Points Formula ( n = 1 )

For n = 1, nodes are zeroes of the Legendre polynomial L2(x) =
1

2

(
3x2 − 1

)
Nodes are x0 =

−1√
3
, x1 =

1√
3

. The weights are given by the formula λ1 =

∫ b

a
w(x)l1(x)dx, we have

λ0 =

∫ 1

−1
l0(x)dx =

∫ 1

−1

x− x1
x0 − x1

dx =
−
√
3

2

∫ 1

−1

(
x− 1√

3

)
dx = 1

λ1 =

∫ 1

−1
l1(x)dx =

∫ 1

−1

x− x0
x1 − x0

dx =

√
3

2

∫ 1

−1

(
x+

1√
3

)
dx = 1

So, Gauss-Legendre 2-points formula is given by∫ 1

−1
f(x)dx = λ0f (x0) + λ1f (x1) = f

(
−1√
3

)
+ f

(
1√
3

)
3-Points Formula (n = 2)

For n = 2, we have following equation for Legendre polynomial

L3(x) =
1

2

(
5x3 − 3x

)
= 0
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Nodes are x0 = −
√

3

5
, x1 = 0, x2 =

√
3

5
. Weights are given by

λ0 =

∫ 1

−1
l0(x)dx =

∫ 1

−1

(x− x1) (x− x2)

(x0 − x1) (x0 − x2)
dx =

5

6

∫ 1

−1
x

(
x−

√
3

5

)
dx =

5

9

λ1 =

∫ 1

−1
l1(x)dx =

∫ 1

−1

(x− x0) (x− x2)

(x1 − x0) (x1 − x2)
dx =

−5

3

∫ 1

−1

(
x2 − 3

5

)
dx =

8

9

λ2 =

∫ 1

−1
l2(x)dx =

∫ 1

−1

(x− x0) (x− x1)

(x2 − x0) (x2 − x1)
dx =

5

6

∫ 1

−1
x

(
x+

√
3

5

)
dx =

5

9

Gauss-Legendre 3-points formula is given by∫ 1

−1
f(x)dx = λ0f (x0) + λ1f (x1) + λ2f (x2) =

5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)

5.3 Euler-MacLaurin Formula

Euler–Maclaurin formula is used to compute numerical quadrature and to approximate the sum of finite and
infinite series. Let us derive Euler-Maclaurin formula with the help of Binomial expansion and shift operator
(Ef(x) = f(x+ h)).

1

E − 1
f(x) =

1

enDD − 1
f(x)

=
1

hD + (hD)2

2! + (hD)3

3! + (hD)4

4! + · · ·
f(x) (using E = enD)

=
1

hD
(
1 + hD

2 + (hD)2

6 + (hD)3

24 + · · ·
)

=
1

hD(1 + z)
f(x)

where z =
hD

2
+

(hD)2

6
+

(hD)3

24
+ · · · On using the expression,

1

1 + z
= 1− z + z2 − z3 + · · · , we have

1

E − 1
f(x) =

1

hD

(
1− z + z2 − z3 + · · ·

)
f(x)

=
1

hD

(
1−

(
hD

2
+

(hD)2

6
+

(hD)3

24

)
+

(
hD

2
+

(hD)2

6
+

(hD)3

24

)2

−
(
hD

2
+

(hD)2

6
+

(hD)3

24

)3

+ · · ·

)
f(x)

=
1

hD

(
1− hD

2
+

(hD)2

12
− (hD)4

720
+

(hD)6

30240
− · · ·

)
f(x)

⇒ 1

E − 1
f(x) =

(
1

hD
− 1

2
+

hD

12
− (hD)3

720
+

(hD)5

30240
− · · ·

)
f(x) (5.3.1)

Consider the following expression

En − 1

E − 1
f (x0) =

1

E − 1
((En − 1) f (x0)) =

1

E − 1
(f (xn)− f (x0))
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On using Eq. (5.3.1) in this expression, we get

En − 1

E − 1
f (x0) =

(
1

hD
− 1

2
+

hD

12
− (hD)3

720
+

(hD)5

30240
− · · ·

)
(f (xn)− f (x0))

=
1

hD
(f (xn)− f (x0))−

1

2
(f (xn)− f (x0)) +

hD

12
(f (xn)− f (x0)) (5.3.2)

−(hD)3

720
(f (xn)− f (x0)) + · · ·

=
1

h

∫ xn

x0

f(x)dx− 1

2
(f (xn)− f (x0)) +

h

12

(
f ′ (xn)− f ′ (x0)

)
− h3

720

(
f ′′′ (xn)− f ′′′ (x0)

)
+ · · · (5.3.3)

Also, we have the following expression

En − 1

E − 1
f (x0) =

(
1 + E + E2 + · · ·+ En−1

)
f (x0)

= f (x0) + f (x1) + f (x2) + · · ·+ f (xn−1)

=
n−1∑
i=0

f (xt) (5.3.4)

On equating Eq. (5.3.3) and Eq. (5.3.4) , we have

n−1∑
t=0

f (xt) =
1

h

xn∫
x0

f(x)dx− 1

2
(f (xn)− f (x0)) +

h

12

(
f ′ (xn)− f ′ (x0)

)
− h3

720

(
f ′′′ (xn)− f ′′′ (x0)

)
+

h5

30240

(
f (v) (xn)− f (v) (x0)

)
− · · ·

n∑
t=0

f (xt) =
1

h

xn∫
x0

f(x)dx+
1

2
(f (xn) + f (x0)) +

h

12

(
f ′ (xn)− f ′ (x0)

)
− h3

720

(
f ′′′ (xn)− f ′′′ (x0)

)
+

h5

30240

(
f (v) (xn)− f (v) (x0)

)
− · · · (5.3.5)

Equation (5.3.5) can be used to compute the series expansion. But to compute the integral value, rewrite the
Eq. (5.3.5) as follows

xn∫
x0

f(x)dx = h

(
n−1∑
i=1

f (xi) +
1

2
(f (xn) + f (x0))

)
− h2

12

(
f ′ (xn)− f ′ (x0)

)
+

h4

720

(
f ′′′ (xn)− f ′′′ (x0)

)
− h6

30240

(
f (v) (xn)− f (v) (x0)

)
+ · · · (5.3.6)

Note 5.3.1. It is worth mentioning here that from the integral formula (5.3.6), we can easily derive composite
Trapezoidal and Simpson 1/3 rules. In formula (5.3.6), on neglecting all the derivative terms, we have

xn∫
x0

f(x)dx = h

(
n−1∑
i=1

f (xi) +
1

2
(f (xn) + f (x0))

)

It is nothing but the composite Trapezoidal rule. Similarly, we can derive Simpson 1/3 rule.
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Example 5.3.2. Find the sum of cubes of first n natural numbers using Euler-Maclaurin formula.

Solution. Euler-Maclaurin formula for the sum of finite series (Eq. (5.3.5)) is as follows

n∑
i=0

f (xi) =
1

h

xn∫
x0

f(x)dx+
1

2
(f (xn) + f (x0)) +

h

12

(
f ′ (xn)− f ′ (x0)

)
− h3

720

(
f ′′′ (xn)− f ′′′ (x0)

)
+

h5

30240

(
f (v) (xn)− f (v) (x0)

)
− · · ·

To find the sum of cubes of first n natural numbers, let f(x) = x3 with x0 = 0, xn = n and xi = i, i =
0, 1, 2, . . . , n. We have f ′(x) = 3x2, f ′′′(x) = 6 and higher derivatives terms are zeroes. Also, the step size
is h = 1. Now, using all these values in Eq. (13.35), we have

n∑
i=0

x3i =
x4

4

∣∣∣∣xn

x0

+
1

2

(
n3 + 0

)
+

1

12

(
3x2n − 3x20

)
− 1

720
(6− 6)

n∑
i=0

x3i =
n4

4
+

1

2

(
n3
)
+

1

12

(
3n2
)
=

(
n(n+ 1)

2

)2

Example 5.3.3. Use Euler-Maclaurin formula to prove that

cos(0) + cos
( π

100

)
+ cos

(
2π

100

)
+ · · ·+ cos(2π) = 1

Solution. We have to prove that
200∑
i=0

cos

(
iπ

100

)
= 1

The function is f(x) = cos(x) with step size h =
π

100
. On using the Euler-Maclaurin formula (5.3.5), we

have

n∑
i=0

f (x1) =
1

h

xn∫
x0

f(x)dx+
1

2
(f (xn) + f (x0)) +

h

12

(
f ′ (xn)− f ′ (x0)

)
− h3

720

(
fm′′ (xn)− fm′ (x0)

)
+

h5

30240

(
f (v) (xn)− f (v) (x0)

)
− · · ·

200∑
i=0

cos

(
iπ

100

)
=
100

π

2π∫
0

cos(x)dx+
1

2
(cos(2π) + cos(0)) +

π

1200
(sin(2π)− sin(0))

− h3

720
(− sin(2π) + sin(0)) +

h5

30240
(sin(2π)− sin(0))− · · ·

200∑
i=0

cos

(
iπ

100

)
=
1

2
(1 + 1) = 1

Example 5.3.4. Use Euler-Maclaurin formula to compute the value of the Integral,

2∫
1

e−x2
dx. Divide the

Interval into ten equal parts and use up to third derivative terms only.
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Soltuion. The spacing is h = 0.1, and we have to compute the function f(x) = e−x2
at 11 node points

x0 = 1, x1 = 1.1, x2 = 1.2, x3 = 1.3, . . . , x10 = 2

x f(x) = e−x2

1 0.367879

1.1 0.298197

1.2 0.236928

1.3 0.18452

1.4 0.140858

1.5 0.105399

1.6 0.077305

1.7 0.055576

1.8 0.039164

1.9 0.027052

2 0.018316

For n = 10, Euler-Maclaurin formula (5.3.6) is given by

x10∫
x0

f(x)dx = h

(
g∑

t=1
f (xi) +

1
2 (f (x10) + f (x0))

)
− h2

12 (f
′ (x10)− f ′ (x0))

+ h4

720 (f
′′′ (x10)− fm′ (x0))− h6

30240

(
f (v) (xn)− f (v) (x0)

)
+ · · · (5.3.7)

The derivative terms up to third order are as follows

f(x) = e−x2

f ′(x) = −2xe−x2
f ′(1) = −0.735758 f ′(2) = −0.073264

f ′′(x) = −2e−x2
+ 4x2e−x2

f ′′′(x) = 12xe−x2 − 8x3e−x2
f ′′′(1) = 1.471516 f ′′′(2) = −0.732640

On using these values of derivative terms and h = 0.1 in Eq. (5.3.7), we have

x0∫
x0

f(x)dx =(0.1)

(
g∑

i=1

f (xt) +
1

2
(f(2) + f(1))

)
− (0.1)2

12

(
f ′(2)− f ′(1)

)
+

(0.1)4

720

(
f ′′′(2)− f ′′′(1)

)
2∫

1

f(x)dx =(0.1)

(
1.164999 +

1

2
(0.018316 + 0.367879)

)
− (0.1)2

12
(−0.073264− (−0.735758))

+
(0.1)4

720
(−0.732640− 1.471516)

2∫
1

f(x)dx =0.135810− 0.000552− 0.0000003 = 0.1352577
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Exercise 5.3.5. 1. Evaluate the following integrals by using Gauss–Legendre 2-points and 3-points for-
mulas.

a)

2∫
1

(x2 − lnx) dx, b)

2∫
1

x2e−x2
dx, c)

π/2∫
1

√
1 + sin2 x dx, d)

1∫
0

ex

1 + sinx
dx

2. Calculate the value of loge 2 from the integral

1∫
0

dx

1 + x
by using Euler-Maclaurin formula.

3. Use Euler–Maclaurin formula to prove that

sin(0) + sin
( π

100

)
+ sin

(
2π

100

)
+ · · ·++sin (2π) = 0.

4. Prove the following results with the help of Euler-Maclaurin formula

a)

n∑
x=1

x =
n(n+ 1)

2
, b)

n∑
x=1

x2 =
n(n+ 1)(2n+ 1)

6

5. Use Euler-Maclaurin formula to compute the value of the series
100∑
x=1

1

x
. Use derivative terms up to order

5.



Unit 6

Course Structure

• Gregory-Newton quadrature formula, Romberg integration.

6.1 Gregory-Newton quadrature formula

We explain here Gregory-Newton formula by replacing the derivatives of f(x) at x = x0 = a and x = xn = b
by the corresponding forward difference formula and backward difference formula respectively.

We have
hy′0 = ∆y0 −

1

2
∆2y0 +

1

3
∆3y0 −

1

4
∆4y0 +

1

5
∆5y0 − · · ·

h3y′′′0 = ∆3y0 −
3

2
∆4y0 +

7

4
∆5y0 − · · ·

and
hy′n = ∆yn−1 +

1

2
∆2yn−2 +

1

3
∆3yn−3 +

1

4
∆4yn−4 +

1

5
∆5yn−5 + · · ·

h3y′′′n = ∆3yn−3 +
3

2
∆4yn−4 +

7

4
∆5yn−5 · · · .

Then substituting the values in the Euler-Maclaurin Summation formula, we get
b∫

a

f(x)dx =
h

2
[(y0 + yn) + 2 (y1 + y2 + . . .+ yn−1)]−

1

6
(∆yn−1 −∆y0)

− 1

12

(
∆2yn−2 −∆2y0

)
− 19

360

(
∆3yn−3 −∆3y0

)
− 3

720

(
∆4yn−4 −∆4y0

)
− 863

30240

(
∆5

n−5 −∆5y0
)
− . . .

]
This is known as Gregory-Newton Quadrature formula.

Example 6.1.1. Find the value of the integral

36◦∫
31◦

f(x)dx by Gregory-Newton formula where f(x) is given

by the following table.

56
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x 31◦ 32◦ 33◦ 34◦ 35◦ 36◦

f(x) 2.4913617 2.5051500 2.5185139 2.5314789 2.5440680 2.5563025

Solution : We first construct the following table.

x y = y(x) ∆y ∆2y ∆3y ∆4y ∆5y

31◦ 2.4913617
0.0137883

32◦ 2.5051500 - 0.0004244
0.0133639 0.0000255

33◦ 2.5185139 - 0.0003939 −25× 10−7

0.0129650 0.0000230 8× 10−7

34◦ 2.5314789 - 0.0003759 −17× 10−7

0.0125891 0.0000213
35◦ 2.5440680 - 0.0003646

0.0122345
36◦ 2.5563025

Now, h = 1◦.

Hence by Gregory-Newton quadrature formula gives,

36◦∫
31◦

f(x) dx =
(0.017453292)

2

[
2.4913617 + 2.5563025 + 2(2.5051500 + 2.5185139 + 2.5314789

+2.5440680)− 1

6
(0.0122345− 0.0137883)− 1

12
(−0.0003646− 0.000422)

− 19

360
(0.0000213− 0.0000255)

]
[Ignoring the other terms]

= 0.008726646[25.321663] + 0.0002589667 + 0.00006575 + 0.000000222]

= 0.220976024

≃ 0.220976 [Correct upto 6D]

Exercise 6.1.2. 1. Evaluate the following integrals by Gregory-Newton quadrature formula

(i)

0.3∫
0

(1− 8x3)1/2dx (ii)

1∫
0

√
sinxdx (iii)

3∫
2

√
(2x2 + 1)(x2 − 2)dx

6.2 Richardson Extrapolation

Richardson extrapolation techniques are used to improve the order of numerical techniques. We consider
suitable numerical method with different spacing to improve the accuracy of the method. Here, we will
discuss Richardson extrapolation for numerical integration. Consider a numerical method for the value of the
integral I =

∫ b
a f(x)dx with spacing h has an accuracy of order k. A method is said to be of order k if the
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order of error term is k + 1. Let the approximate value computed by this method be I1. Hence, we can write
the method as follows

I = I1 + a1h
k+1 + a2h

k+2 + · · · (6.2.1)

where ai’s are the asymptotic error constants. Suppose we use the same method with spacing
h

2
and computed

value is I2. Then, in that case, we have

I = I2 + a1

(
h

2

)k+1

+ a2

(
h

2

)k+2

+ · · · (6.2.2)

To increase the order of method, multiply Eq. (6.2.2) with 2k+1 and then subtract it from Eq. (6.2.1), we get

I =

(
2k+1I2 − I1

)
(2k+1 − 1)

+ b2h
k+2 + b3h

k+3 + · · ·

The value of the integral is given by

I =

∫ b

a
f(x)dx =

(
2k+1I2 − I1

)
(2k+1 − 1)

(6.2.3)

This scheme is of order at least k+1. This process of finding higher-order formula from two different spacing
is called Richardson extrapolation.

6.3 Romberg Integration

Romberg integration technique is an iterative technique. It uses repeated applications of Richardson extrapo-
lation for numerical integration. In Romberg integration, we use a numerical method with different spacing to
improve the accuracy of the method. The Richardson formula (6.2.3) is given by

I =

∫ b

a
f(x)dx =

(
2k+1I2 − I1

)
(2k+1 − 1)

where I1 is numerical integration with spacing h and I2 is numerical integration with spacing h/2. In Romberg
integration, we will use Richardson scheme successively to obtain further higher order scheme.

For example, we will compute the integral with spacing h, h/2, h/4, h/8, · · · from any method like
Trapezoidal or Simpson method. Let these values be I01 , I

0
2 , I

0
3 , I

0
4 , · · · . Here the subscript denotes the inte-

gration with different spacing (subscript is 1 for spacing h, subscript 2 for spacing h/2, so on), and superscript
denotes the iteration number (the superscript 0 denotes initial approximation for Romberg integration).

We apply Richardson scheme for each set (h, h/2), (h/2, h/4), (h/4, h/8), (h/8, h/16) . . . to obtained the
values of I11 , I

1
2 , I

1
3 , I

1
4 , . . .. Then, Richardson scheme is applied further by using these obtained values. This

process is repeated till only one value is remained.

For easy understanding and to keep all these computations at one place, we can build a table of the form

I01
I02 I12
I03 I13 I23
I04 I14 I24 I34
I05 I15 I25 I35 I45
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Let us discuss this scheme for composite Trapezoidal and Simpson schemes for numerical integrations.

Trapezoidal Rule: The composite Trapezoidal scheme is given by

I = IT + a1h
2 + a2h

4 + · · ·

Let the computed values for the integral with spacing h, h/2, h/4, h/8, . . . using composite Trapezoidal
scheme be I01 , I

0
2 , I

0
3 , I

0
4 , . . .. The Richardson scheme for composite trapezoidal rule provides first iteration as

follows

I1k+1 =

(
4I0k+1 − I0k

)
(4− 1)

+ b2h
4 + · · · , k = 1, 2, 3, · · ·

This expression provides the values of the first approximations
(
I11 , I

1
2 , I

1
3 , . . .

)
of Romberg integration. We

can further use these values to obtain the higher approximations. In general, the j-th iteration is given by

IJk+1 =

(
4jIj−1

k+1 − Ij−1
k

)
(4J − 1)

, k = 1, 2, 3, . . . (6.3.1)

Simpson Rule: The composite Simpson scheme is given by

I = IS + a1h
4 + a2h

6 + · · ·

Proceeding in a similar manner as in Trapezoidal method, the j-th iteration of Romberg integration for com-
posite Simpson rule is given by

Ijk+1 =

(
4j+1Ij−1

k+1 − Ij−1
k

)
(4j+1 − 1)

, k = 1, 2, 3, . . . (6.3.2)

Example 6.3.1. Compute the value of integral I =

1∫
0

1

1 + x
dx with the help of Romberg integration. Use

only four Initial values of integral with the Trapezoldal rule.

Solution. First, we will compute the four initlal approximation to the integral I =

1∫
0

1

1 + x
dx by using

Trapezoldal rule with spacing h = 1, h/2 = 0.5, h/4 = 0.25, h/8 = 0.125. These values are listed in
following Table.
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The Romberg integration formula (6.3.1) is given by

Ijk+1 =

(
41Ij−1

k+1 − I−1
k

)
(4−1 − 1)

, k = 1, 2, 3, . . . .

On using this formula and inithal values from the table, we can easily compute the Iterations of Romberg
integration. For the first iteration, we have

I12 =

(
4I02 − I01

)
3

= 0.694444

I13 =

(
4I03 − I02

)
3

= 0.693254

I14 =

(
4I04 − I03

)
3

= 0.693155

Similarly, the second iteration is given by

I23 =

(
16I13 − I12

)
15

= 0.693175

I24 =

(
16I14 − I13

)
15

= 0.693148

The last iteration is as follows

I34 =

(
64I24 − I23

)
63

= 0.693147

This value of the integral is correct up to 6 decimal places. In table form, we can list the iterations as follows
Spacing Value of integral 1st iteration of 2nd iteration of 3rd iteration of

using Trapezoidal rule Romberg Integration Romberg Integration Romberg Integration
h = 1 0.750000

h/2 = 0.5 0.708333 0.694444

h/4 = 0.25 0.697024 0.693254 0.693175

h/8 = 0.125 0.694122 0.693155 0.693148 0.693147

Note that last two iterations (0.693148 and 0.693147) matches upto five decimal points. So the result
0.693147 is at least correct upto five decimal places.

Example 6.3.2. Use Simpson formula to compute the value of integral

2∫
1

e−x2
dx with n = 2, 4 and 8 . Then

use the Romberg integration to improve these values.

Solution. First, we will compute initial values with the help of Simpson formula as follows

n = 2 I01 = 0.5
2 (f(1) + 4f(1.5) + f(2)) = 0.134632

n = 4 I02 = 0.25
2 (f(1) + 4f(1.25) + 4f(1.75) + 2f(1.5) + f(2)) = 0.135210

n = 8 I03 = 0.125
2

(
f(1) + 4(f(1.125) + f(1.375) + f(1.625) + f(1.8755))

+2(f(1.25) + f(1.5) + f(1.75)) + f(2)

)
= 0.135254

The following table contains the iterations of the Romberg integration (6.3.2)
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Spacing Values of integral 1st iteration of 2nd iteration of
using Simpson rule Romberg Integration Romberg Integration

h = 0.5 0.134632

h/2 = 0.25 0.135210 0.135249

h/4 = 0.125 0.135254 0.135257 0.135257

Hence, the value of integral

2∫
1

e−x2
dx from Romberg integration is 0.135257. It is correct up to six decimal

points. Note that the correct value of the integral up to ten decimal points is 0.1352572579.

Exercise 6.3.3. 1. Use Trapezoidal formula to compute the value of integral I =

1∫
0

e−x2
dx, with n = 1, 2

and 4. Then use the Romberg integration to improve these values.

2. Use Romberg integration to compute I =

2π∫
0

sinx dx, correct to three decimal places.

3. Use Romberg integration to compute I =

4∫
0

x5 dx, correct to three decimal places.

4. Compute the value of integration I =

1∫
0

1

1 + x2
dx with help of Romberg integration. Use only 4 initial

values of integral with Trapezoidal rule.



Unit 7

Course Structure

• Systems of Linear Algebraic Equations: Direct methods - Factorization method.

7.1 Introduction

The systems of linear equations arise in the modeling of many physical and engineering problems. The linear
system of equations with m equations in n variables x1, x2, . . . , xn, has the following form.

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

or, equivalently
n∑

j=1

aijxj = bi; 1 ≤ i ≤ m

The matrix form of the system is given by
AX = B (7.1.1)

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn

 , X =


x1
x2
...
xn

 , B =


b1
b2
...
bm


The matrix A is a coefficient matrix, and vector X is a solution vector. If each element of vector B is zero,
then the system is called homogeneous system. Otherwise, it is a non-homogeneous system. For any homoge-
neous system, zero solution is always a solution, and it is also known as trivial solution. The system of linear
equations may have a unique solution, an infinite number of solutions, or no solution.

62
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In this unit, linear systems with unique solutions have been discussed. There are many direct and iterative
methods for the solutions of such systems. Both types of methods have some advantages and disadvantages. It
depends on the size and structure of the coefficient matrix A, available computer resources, and solution strate-
gies adopted. This unit deals with direct LU – decomposition method/factorization method/tri-angularization
method.

7.2 LU Decomposition (or) Factorization (or) Triangularization Method

In this method, the coefficient matrix A is factorized into the product of two triangular matrices such that one
matrix is lower triangular L and the other matrix is upper triangular U , i.e.,

A = LU

where L =


l11 0 . . . 0
l21 l22 . . . 0
...
ln1 ln2 · · · lnn

 and U =


u11 u12 . . . u1n
0 u22 . . . u2n
...
0 0 . . . unn

 are lower and upper triangular

matrices, respectively. The matrices L and U have to be computed, such that

A = LU =


l11 0 . . . 0
l21 l22 · · · 0
...
ln1 ln2 . . . lnn




u11 u12 · · · u1n
0 u22 · · · u2n
...
0 0 · · · unn



=


l11u11 l11u12 · · · l11u1n
l21u11 l21u12 + l22u22 · · · l21u1n + l22u2n
...
ln1u11 ln1u12 + ln2u22 · · · ln1u1n + ln2u2π + · · ·+ lnnunn


(7.2.1)

After comparing the elements of both the matrices, we get the following relations

ln1u1j + l12u2j + · · ·+ l2sunj = aij 1 ≤ i, j ≤ n

where lij = 0, j > i and uij = 0, i > j

This set contains n2 equations. But, the total number of variables is
(
n2 + n

)
in lower and upper triangular

matrices. So, we have to predefine n variables for a unique solution. For convenience, let us consider

either lii = 1 (or) uii = 1; 1 ≤ i ≤ n

Accordingly, we have following two methods

7.2.1 Doolittle Method

In this method, we will consider

lii = 1; 1 ≤ i ≤ n
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7.2.2 Crout Method

In this method, we will consider
uii = 1; 1 ≤ i ≤ n

Here, we will discuss the computation of lower and upper triangular matrices in Crout method i.e., we have
uii = 1, 1 ≤ i ≤ n. The similar procedure can be used in Doolittle method. We have

li1u1j + li2u2j + · · ·+ linunj = aij 1 ≤ i, j ≤ n

where uii = 1, 1 ≤ i ≤ n; lij = 0, j > i; and uij = 0, i > j. From (7.2.1) and u11 = 1; it is clear that the
first columns of matrix L and A are identical. So, we have

li1 = ai1, 1 ≤ i ≤ n

The first rows of both the matrices in (7.2.1) produce the first row of matrix U as follows

u11 = 1 and u1j =
a1j
l11

, 2 ≤ j ≤ n

Now, we will compute second column of matrix L and second row of matrix U as follows

li2 = ai2 − li1u12, 2 ≤ i ≤ n

u22 = 1 and u2j =
a2j − l21u1j

l22
, 3 ≤ j ≤ n

In general, we can compute k-th column and k-th row of matrices L and U , respectively by using following
equations

lik = aik −
k−1∑
j=1

lijujk, k ≤ i ≤ n

ukk = 1 and ukj =

akj −
k−1∑
m=1

lkmumj

lkk
, k + 1 ≤ j ≤ n

After computing the matrices L and U , the system of equations is given by

AX = B

LUX = B

Let UX = Y , then the above system reduces to

LY = B

The system LY = B is the lower triangular system. So, the vector Y can be easily determined by using
forward substitution. The vector X can be easily computed by using back substitution from the following
upper triangular system

UX = Y

Example 7.2.1. Use Crout and Doolittle methods to calculate the solution of the following system of linear
equations

3x1 − x2 + x3 = 1

2x1 + 3x2 + x3 = 4

3x1 + x2 − 2x3 = 6
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Solution. Crout method: First, we decompose the coefficient matrix A into the product of lower and upper
triangular matrices with diagonal elements in upper triangular matrix as unity, i.e. 3 −1 1

2 3 1
3 1 −2

 =

 l11 0 0
l21 l22 0
l31 l32 l33


︸ ︷︷ ︸

L

 1 u12 u13
0 1 u23
0 0 1


︸ ︷︷ ︸

U

=

 l11 l11u12 l11u13
l21 l21u12 + l22 l21u13 + l22u23
l31 l31u12 + l32 l31u13 + l32u23 + l33


After equating the terms on both sides, we obtain following set of equations

l11 = 3, l11u12 = −1, l11u13 = 1

l21 = 2, l21u12 + l22 = 3, l21u13 + l22u23 = 1

l31 = 3, l31u12 + l32 = 1, l31u13 + l32u23 + l33 = −2

The solution of this system produces the values of lij and uij as follows
First Column: l11 = 3, l21 = 2, l31 = 3

First Row: u12 = −1/l11 = −1/3 and u13 = 1/l11 = 1/3

Second Column: l22 = 3− l21u12 =
11
3 and l32 = 1− l31u12 = 2

Second Row: u23 = (1− l21u13) /l22 =
1
11

Third Column: l33 = −2− l31u13 + l32u23 =
−35
11

So, we can easily write the coefficient matrix A in terms of the matrices L and U as follows 3 −1 1
2 3 1
3 1 −2

 =

 3 0 0
2 11

3 0
3 2 −35

11

 1 −1
3

1
3

0 1 1
11

0 0 1


The system LY = B is given by  3 0 0

2 11
3 0

3 2 −35
11

 y1
y2
y3

 =

 1
4
6


This system of equations can be rewritten as follows

3y1 + 0y2 + 0y3 = 1

2y1 +
11

3
y2 + 0y3 = 4

3y1 + 2y2 −
35

11
y3 = 6

From the first equation, we get

y1 =
1

3
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On substituting this value in the second equation, we have y2 =
10

11
, and from the last equation y3 = −1.

On using these values of y1, y2 and y3 in the system

UX = Y

we have  1 −1
3

1
3

0 1 1
11

0 0 1

 x1
x2
x3

 =

 1
3
10
11
−1


From the last equation x3 = −1, using this value in the second equation x2 = 1, and the first equation gives
x1 = 1. So, the solution is given by

x1 = 1, x2 = 1, x3 =| −1

Doolittle method: First, we decompose the coefficient matrix A in the product of lower and upper triangular
matrices with diagonal elements in the lower triangular matrix as unity.

A = LU =

3 −1 1
2 3 1
3 1 −2

 =

 1 0 0
l21 1 0
l31 l32 1


︸ ︷︷ ︸

L

 u11 u12 u13
0 u22 u23
0 0 u33


︸ ︷︷ ︸

U

Proceeding in a similar manner as in Crout method, we obtain 3 −1 1
2 3 1
3 1 −2

 =

 1 0 0
2
3 1 0
1 6

11 1

 3 −1 1
0 11

3
1
3

0 0 −35
11


First, we solve LY = B by using forward substitution 1 0 0

2
3 1 0
1 6

11 1

 y1
y2
y3

 =

 1
4
6


The solution is, y1 = 1, y2 =

10

3
, y3 =

35

11
. Now, we solve UX = Y by using backward substituions

3 −1 1
0 11

3
1
3

0 0 −35
11

x1x2
x3

 =

 1
10
3
35
11


On solving this system of equations, final soltuion is given by

x1 = x2 = 1 and x3 = −1

Example 7.2.2. Solve the following system of linear equations with the help of LU-decomposition method

3x1 − 3x2 + x3 = 4

−2x1 + 2x2 + x3 = −1

x1 + x2 + 2x3 = 3
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Solution. Crout method: The coefficient matrix A can be written as the product of lower and upper
triangular matrices as follows

 3 −3 1
−2 2 1
1 1 2

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 1 u12 u13
0 1 u23
0 0 1


After equating the terms on both sides, we obtain

l11 = 3, l11u12 = −3, l11u13 = 1

l21 = −2, l21u12 + l22 = 2, l21u13 + l22u23 = 1

l31 = 1, l31u12 + l32 = 1, l31u13 + l32u23 + l33 = 2

The solution of these equations is as follows

l11 = 3, u12 = −1, u13 =
1

3
l21 = −2, l22 = 0

Since the element l22 = 0, so we cannot solve the equation l21u13 + l22u23 = 1 for the variable u23.

The method fails as the element l22 = 0 is zero.

Similarly, in Doolittle method, the element u22 = 0 is zero, so method fails again.

Note 7.2.3. Rather, the system has a unique solution x1 = 1, x2 = 0, x3 = 1, but LU-decomposition method
does not work here. The first two rows of the system are a linear multiple of each other till the first two terms.
Hence, the pivot element (l22 and u22) becomes zero and the method fails. The solution can be obtained by
interchanging any of first two rows with the third row.

So far, we have discussed the LU decomposition method for a general coefficient matrix, but if the coef-
ficient matrix A is a positive definite symmetric matrix, then the method becomes simpler and is known as a
Cholesky method.

A square matrix A is a positive definite symmetric matrix if it is symmetric and XTAX > 0 for each
nonzero column vector X .

Example 7.2.4. Prove that matrix A =

 3 −1 1
−1 3 1
1 1 2

 is positive definite symmetric matrix.
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Solution. Let nonzero vector be X =

 a
b
c

. Then, we have

XTAX =
[
a b c

]  3 −1 1
−1 3 1
1 1 2

 a
b
c


=
[
a b c

]  3a− b+ c
−a+ 3b+ c
a+ b+ 2c


= 3a2 − ab+ ac− ab+ 3b2 + bc+ ac+ bc+ 2c2

=
(
a2 + b2 − 2ab

)
+
(
a2 + c2 + 2ac

)
+
(
b2 + c2 + 2bc

)
+ a2 + b2

= (a− b)2 + (a+ c)2 + (b+ c)2 + a2 + b2

which is always positive for each nonzero vector X . The matrix A is symmetric matrix and XTAX > 0 for
each nonzero X . So, the matrix A is positive definite symmetric matrix.

Example 7.2.5. Show that the matrix A =

 2 −1 1
−1 2 1
1 1 2

 is not positive definite symmetric matrix.

Soltuion.
X⊤AX = (a− b)2 + (a+ c)2 + (b+ c)2

The scalar XTAX can be zero for a, b, c such that a = b = −c. For example X =

 1
1
−1

. The matrix

A is symmetric, but it does not satisfy X⊤AX > 0 for each nonzero X . Hence, the matrix A is not positive
definite symmetric matrix. A symmetric matrix A is positive definite symmetric matrix, if any one of the
following properties holds

1. All its eigenvalues are positive

2. All its leading principal minors are positive

3. aii > 0 and aii >
∑
j ̸=i

|aij | for each i

4. All pivots are positive

7.3 Cholesky Method

In case of positive definite symmetric matrix A, there exists a unique decomposition of matrix A, known as
Cholesky decomposition

A = LLT (7.3.1)

where L is a lower triangular matrix and LT is its transpose. Therefore, the system AX = B can be written
as follows

LL⊤X = B

Let LTX = Y , then
LY = B (7.3.2)
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First we compute vector Y using forward substitution from Eq. (7.3.2) and then compute vector X from the
equation

LTX = Y (7.3.3)

The matrix A can also be decomposed as A = UU τ , where U is an upper triangular matrix.

Example 7.3.1. Solve the following system of linear equations with the aid of Cholesky method

3x1 − x2 + x3 = 2
−x1 + 3x2 + x3 = 6
x1 + x2 + 2x3 = 5

Solution. The matrix A =

 3 −1 1
−1 3 1
1 1 2

 is a positive definite matrix. Using Eq. (7.3.1) to decompose the

matrix, we get
A = LLT

where L is a lower triangular matrix and LT is the transpose of L, i.e. 3 −1 1
−1 3 1
1 1 2

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33


On comparing both sides and solving the resulting equations, we get matrix L as follows

L =


√
3 0 0

−
√
3

3
2
√
6

3 0√
3
3

√
6
3 1


The system AX = B can be written as follows

LLTX = B

Let LTX = Y , then LY = B. Compute vector Y from the equation LY = B.
√
3 0 0

−
√
3

3
2
√
6

3 0√
3
3

√
6
3 1


 y1

y2
y3

 =

 2
6
5


The solution of this system of equations is given by

y1 =
2
√
3

3
, y2 =

5
√
6

3
, y3 = 1

On computing the vector X from the equation LTX = Y , we have
√
3 −

√
3
3

√
3
3

0 2
√
6

3

√
6
3

0 0 1


x1x2
x3

 =

2
√
3

3
5
√
6

3
1


On solving this system of equations by back substitution, we get the following solution

x1 = 1, x2 = 2, x3 = 1
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Exercise 7.3.2. 1. Decompose the matrix

A =

5 −2 1
7 1 −5
3 7 4


into the form LU where L is unit lower triangular and U an upper triangular matrix. Hence solve the
system AX = B where B = [4 8 10]T

2. Show that the following system cannot be solved with the help of LU-decomposition method

3x1 − 3x2 + x3 = 4

−2x1 + 2x2 + x3 = −1

x1 + x2 + 2x3 = 3

3. Solve the following system of linear equations by Cholesky method

2x1 + x2 − x3 = 6

x1 − 3x2 + 5x3 = 11

−x1 + 5x2 + 4x3 = 13



Unit 8

Course Structure

• Eigenvalue and Eigenvector Problems: Direct methods, Iterative method –Power method.

8.1 Eigen value and Eigenvector Problems

Let A be a square matrix of order n with elements aij . We wish to find a column vector X and a constant λ
such that

AX = λX (8.1.1)

In Eq.(8.1.1), λ is called the eigenvalue and X is called the corresponding eigenvector. The matrix Eq.(8.1.1),
when written out in full, represents a set of homogeneous linear equations:

(a11 − λ)x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + (a22 − λ)x2 + . . .+ a2nxn = 0

...
...

... (8.1.2)

an1x1 + an2x2 + . . .+ (ann − λ)xn = 0.

A nontrivial solution exists only when the coefficient determinant in (8.1.2) vanishes. Hence, we have∣∣∣∣∣∣∣∣∣
a11 − λ a12 a13 . . . a1n
a21 a22 − λ a23 . . . a2n

...
...

...
...

...
an1 an2 an3 . . . ann − λ

∣∣∣∣∣∣∣∣∣ = 0. (8.1.3)

This equation, called the characteristic equation of the matrix A, is a polynomial equation of degree n in
λ, the polynomial being called the characteristic polynomial of A. If the roots of Eq.(8.1.3) be given by
λi(i = 1, 2, . . . , n), then for each value of λi, there exist a corresponding Xi such that

AXi = λiXi. (8.1.4)

The eigenvalues λi may be either distinct (i.e. all different) or repeated. The evaluation of eigenvectors in the
case of the repeated roots is a much involved process and will not be attempted here. The set of all eigenvalues,
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λi, of a matrix A is called the spectrum of A and the largest of |λi| is called the spectral radius of A. The
eigen values are obtained by solving the algebraic Eq.(8.1.3). This method, which is demonstrated in Example
(8.2.1), is unsuitable for matrices of higher order and better methods must be applied, which is beyond of our
syllabus. Readers are suggested to go through any standard book of numerical analysis. In some practical
applications only the numerically largest eigenvalue and the corresponding eigenvector are required, and we
will describe an iterative method, namely the Power Method, to compute the largest eigenvalue. This method
is easy of application and also well-suited for machine computations.

8.2 Direct Method

In this section we will recall, how to calculate eigenvalues and eigenvector a matrix by direct method. Let us
consider the following example.

Example 8.2.1. Find the eigenvalues and eigenvectors of the matrix:

A =

5 0 1
0 −2 0
1 0 5


Solution: The characteristic equation of this matrix is given by∣∣∣∣∣∣

5− λ 0 1
0 −2− λ 0
1 0 5− λ

∣∣∣∣∣∣ = 0.

which gives λ1 = −2, λ2 = 4 and λ3 = 6. The corresponding eigenvectors are obtained thus

(i) λ1 = −2. Let the eigenvector be X1 = [x1 x2 x3]
T . Then we have

A

x1x2
x3

 = −2

x1x2
x3


which gives the equations

7x1 + x3 = 0 and x1 + 7x3 = 0

The solution is x1 = x3 = 0 with x2 arbitrary. In particular, we take x2 = 1 and the eigenvector is
X1 = [0 1 0]T .

(ii) λ2 = 4. With X2 = [x1 x2 x3]
T as the eigenvector, the equations are

x1 + x3 = 0 and − 6x2 = 0,

from which we obtain x1 = −x3 and x2 = 0. We choose, in particular, x1 = 1/
√
2 and x3 = −1/

√
2 so

that x21 + x22 + x23 = 1. The eigenvector chosen in this way is said to be normalized. We, therefore, have
X2 = [1/

√
2 0 − 1/

√
2]T .

(iii) λ3 = 6. If X3 = [x1 x2 x3]
T is the required eigenvector, then the equations are

−x1 + x3 = 0

−8x2 = 0

x1 − x3 = 0,

which give x1 = x3 and x2 = 0. Choosing x1 = x3 = 1/
√
2, the normalised eigenvector is given by

X3 = [1/
√
2 0 1/

√
2]T .
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8.3 Iterative method

We have discussed a direct method for computing eigenvalues of a square matrix. The eigenvalues can be
obtained by using this method, but for higher order matrix, expanding the characteristic determinant and ob-
taining roots from the high-degree characteristic equation are very difficult. Also in the direct methods, the
errors committed will remain in final results. In the case of higher order matrices, the numbers of operational
counts are large, and the error propagation will cause great damage to the results obtained. Consequently, we
require iterative procedures for the solution of eigenvalue problems.

In next subsection, we will discuss following iterative procedure to compute eigenvalues and eigenvectors
for a square matrix.

8.3.1 Power Method

Power method is used to determine the largest eigenvalue (in magnitude) of matrix A of order n. Let
λ1, λ2, · · · , λn be the eigenvalues of the matrix A, such that

|λ1| > |λ2| > . . . > |λn|

The aim is to determine the absolutely largest eigenvalue (λ1). Let X1, X2, . . . , Xn be the eigenvectors
corresponding to the eigenvalues, λ1, λ2, . . . , λn, respectively. It implies

AXi = λiXi; 1 ≤ i ≤ n

If the matrix A has n-linearly independent eigenvectors, then we can write any vector X (from same vector
space) as a linear combination of the vectors, X1, X2, . . . , Xn. Therefore, for some scalars, ci; 1 ≤ i ≤ n, we
have

X = c1X1 + c2X2 + . . .+ cnXn

Pre-multiplying Eq. (8.3.1) with the matrix A, we get

AX = A (c1X1 + c2X2 + . . .+ cnXn)

= c1AX1 + c2AX2 + . . .+ cnAXn (ci; 1 ≤ i ≤ n are scalars)

= c1λ1X1 + c2λ2X2 + . . .+ cnλnXn (AXi = λXi; 1 ≤ i ≤ n)

= λ1

(
c1X1 + c2

λ2

λ1
X2 + . . .+ cn

λn

λ1
Xn

)
Again, pre-multiplying with matrix A, we get

A2X = λ1

(
c1AX1 + c2

λ2

λ1
AX2 + . . .+ cn

λn

λ1
AXn

)
(ci, λi are scalars)

= λ2
1

(
c1X1 + c2

(
λ2

λ1

)2

X2 + . . .+ cn

(
λn

λ1

)2

Xn

)
Repeating this process k-times successively, we obtain

AkX = λk
1

(
c1X1 + c2

(
λ2

λ1

)k

X2 + . . .+ cn

(
λn

λ1

)k

Xn

)

Ak+1X = λk+1
1

(
c1X1 + c2

(
λ2

λ1

)k+1

X2 + . . .+ cn

(
λn

λ1

)k+1

Xn

)
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Since |λ1| > |λ2| > . . . > |λn|, it implies

lim
k→∞

(
λi

λ1

)k

→ 0; 2 ≤ i ≤ n

⇒ lim
k→∞

Ak+1X

AkX
= λ1

It provides the largest eigenvalue λ1.

Theoretically, the method is as follows: first, we take any initial vector X , then we multiply it by matrix A
infinitely many times (k → ∞). At last, we divide the last two vectors. Practically, it is not possible to repeat
the process infinite times. So, we can multiply the vector X as many times as feasible, for example 50 times.

Then the common ratio
A51X

A50X
is the largest eigenvalue. But, it can create the problem of rounding error, as

the elements of the vector A51X become very large. Therefore, the method is applied by taking the largest
element (magnitude) common at each iteration (to minimize the round-off error), and then continue with the
remaining vector.

A stepwise procedure is as follows

1. Let X(0) be any non-zero initial vector.

2. Multiply X(0) with the matrix A to obtain the vector Y (0) i.e. Y (0) = AX(0).

3. Take the absolutely largest element
(
λ(1)

)
common from the vector Y (0). Let remaining vector be X(1).

Y (0) = λ(1)X(1)

4. Repeat steps ii) and iii) till the last iteration has the desired accuracy.

Y (k) = λ(k+1)X(k+1) k = 0, 1, 2, . . .

5. At last, λ(k+1) and X(k+1) are the approximations to the largest eigenvalue and eigenvector, respec-
tively. Note that we cannot start with trivial initial vector, i.e., zero vector X0 =

[
0 0 0

]T .

Example 8.3.1. Determine the largest eigenvalue and corresponding eigenvector of the matrix

A =

 0 2 4
1 1 −2
−2 0 5


Start with the initial vector, X(0) =

[
1 1 1

]T . Perform the iterations till the eigenvalue and eigenvector
are same up to two decimal places, in last two iterations.

Solution. The first iteration of the Power method is given by

Y (0) = AX(0) =

 0 2 4
1 1 −2
−2 0 5

 1
1
1

 =

 6
0
3


On scaling the vector Y (0) with the absolutely largest element, we have

Y (0) = 6
[
1 0 0.5

]
= λ(1)X(1)
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Similarly, the second iteration is computed as follows

Y (1) = AX(1) =

 0 2 4
1 1 −2
−2 0 5

 1
0
0.5

 =

 2
0
0.5

 = 2

 1
0
0.25


λ(2) = 2 and X(2) =

[
1 0 0.25

]T
.

Proceeding in a similar manner, the subsequent iterations of the Power method are as follows

λ(3) = 1.000000, X(3) = [1.000000 0.500000 0.7500003]T

λ(4) = 5.750000, X(4) = [−0.347826 0.521739 − 1.000000]T

λ(5) = 4.304348, X(5) = [−0.686869 0.505050 − 1.000000]T

λ(6) = 3.626263, X(6) = [−0.824513 0.501393 − 1.000000]T

λ(7) = 3.350975, X(7) = [−0.894431 0.500416 − 1.000000]T

λ(8) = 3.211139, X(8) = [−0.933989 0.500129 − 1.000000]T

λ(9) = 3.132022, X(9) = [−0.957765 0.500041 − 1.000000]T

λ(10) = 3.084470, X(10) = [−0.972588 0.500013 − 1.000000]T

λ(11) = 3.054824, X(11) = [−0.982044 0.500004 − 1.000000]T

λ(12) = 3.035911, X(12) = [−0.988168 0.500001 − 1.000000]T

λ(13) = 3.023663, X(13) = [−0.992173 0.500013 − 1.000000]T

The difference in the values at last two iterations (twelfth and thirteenth) are less than 0.005. Therefore, the
approximate eigenvalue and eigenvector are λ(13) = 3.023663 and X(13) =

[
−0.992173 0.500000 −1.000000

]
,

respectively.

Using direct method, the exact eigenvalue is 3 and eigenvector is
[
−1 0.5 −1

]T .

Note 8.3.2. The differences between the largest eigenvalue λ3 = 3 and other eigenvalues λ1 = 1, λ2 = 2 are
relatively less. Therefore, a large number of iterations are required for higher accuracy. Note that the power
method has following restrictions.

1. The largest (in magnitude) eigenvalue of the matrix must be distinct.

2. The matrix A has n-linearly independent eigenvectors.

3. The rate of convergence is proportional to the ratio,
|λ2|
|λ1|

, where λ2 is the second largest (in magnitude)

eigenvalue and λ1 is the largest (in magnitude) eigenvalue of the matrix A.

8.3.2 Inverse Power Method

The inverse power method is used to compute the smallest (in magnitude) eigenvalue of a given square matrix
A. Inverse power method is a variation of power method. It involves computing of the largest (in magnitude)
eigenvalue of the inverse matrix, A−1.

Theorem 8.3.3. Let λi be an eigenvalue of matrix A, then
1

λi
is the eigenvalue of the matrix A−1. The

eigenvector Xi of matrix A−1 remains same as that of matrix A.
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Proof. Let λi be an eigenvalue and Xi is the corresponding eigenvector of matrix A, then we have

AXi = λiXi

On pre-multiplying with the matrix A−1, we have

A−1 (AXi) = A−1 (λiXi) (8.3.1)

The matrix multiplication is associative, so we have

A−1 (AXi) =
(
A−1A

)
Xi = IXi = Xi (8.3.2)

where the matrix I is the identity matrix. Also, the eigenvalue λi is scaler quantity, so

A−1 (λiXi) = λi

(
A−1Xi

)
(8.3.3)

Equations (8.3.1)-(8.3.3) provide the following result

Xi = λiA
−1Xi

1

λi
Xi = A−1Xi

It implies that
1

λi
is the eigenvalue of A−1, the eigenvector Xi of matrix A−1 remains same as that of matrix

A.

To find the smallest (in magnitude) eigenvalue of the matrix A, we find the largest eigenvalue (in magnitude)
of the matrix A−1, and then the inverse of that eigenvalue is the smallest eigenvalue of the matrix A.

Example 8.3.4. Determine the smallest eigenvalue and the corresponding eigenvector of the matrix

A =

 10 6 7
1 7 −2
2 2 2


Solution. The inverse of matrix A is given by

A−1 =
1

60

 18 2 −61
−6 6 27
−12 −8 64


To compute the smallest (in magnitude) eigenvalue of matrix A, first we find the largest eigenvalue (in mag-
nitude) of A−1, and then inverse of that eigenvalue is the smallest eigenvalue of A.

To compute the largest eigenvalue of matrix, A−1, let us start the iterations with initial vector X(0) =[
1 1 1

]
. The first iteration of Power method is given by

Y (0) = A−1X(0) =
1

60

 18 2 −61
−6 6 27
−12 −8 64

 1
1
1

 =
1

60

 −41
27
44

 =
44

60

 −0.931818
0.613636

1


λ(1) =

44

60
and X(1) =

[
−0.931818 0.613636 1

]T
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The second iteration is as follows

Y (1) = A−1X(1) =
1

60

 18 2 −61
−6 6 27
−12 −8 64

 −0.931818
0.613636

1

 =
76.545456

60

 −1
0.473872
0.918052


λ(2) =

76.545456

60
and X(2) =

[
−1 0.473872 0.918052

]T
Other iterations are given by

λ(3) = 73.053444/60 X(3) =
[
−1.000000 0.460357 0.9166493

]T
λ(4) = 72.994881/60 X(4) =

[
−1.000000 0.459096 0.9176354

]T
λ(5) = 73.057564/60 X(5) =

[
−1.000000 0.458963 0.9178505

]T
λ(6) = 73.070930/60 X(6) =

[
−1.000000 0.458948 0.9178856

]T
λ(7) = 73.073082/60 X(7) =

[
−1.000000 0.458946 0.9178907

]T
λ(8) = 73.073402/60 X(8) =

[
−1.000000 0.458945 0.9178918

]T
λ(9) = 73.073441/60 X(9) =

[
−1.000000 0.458945 0.9178919

]T
λ(10) = 73.073448/60 X(10) =

[
−1.000000 0.458945 0.9178911

]T
The approximate value of the largest eigenvalue of A−1 is λ(10) = 73.073448/60 = 1.2178908
Hence, the smallest eigenvalue of A is 1/1.2178908 = 0.8210916775.

8.3.3 Shifted Power Method

Shifted power method is another variation of power method. It is used to compute the eigenvalues which are
farthest/nearest from a given scalar k.

Theorem 8.3.5. Let λi be an eigenvalue of matrix A, then (λi − k) is an eigenvalue of the matrix (A − kI)
with the same eigenvector as that of matrix A.

Proof. Let λi be an eigenvalue and Xi is the corresponding eigenvector of matrix A, then we have

AXi = λiXi

To compute eigenvalues of (A− kI), we have

(A− kI)Xi = AXi − kIXi

= λiXi − kXi

= (λi − k)Xi

It implies that if λi is an eigenvalue of matrix A, then (λi − k) is an eigenvalue of a matrix, (A − kI). The
vector Xi is the corresponding eigenvector of matrix A as well as (A− kI).

Eigenvalue farthest to a given scalar: To compute eigenvalue of matrix A farthest to a given number k,
first we find the largest eigenvalue (in magnitude) of the matrix, (A−kI), and then that eigenvalue in addition
with k is the desired eigenvalue of matrix A.

For example, let us assume the eigenvalues of a matrix A are −5, 2 and 8 and we want to compute the
eigenvalue that is farthest from the scalar 5 . The eigenvalues of the matrix (A− 5 I) are −10,−3 and 3 . The
computational procedure is to compute the largest (in magnitude) eigenvalue of a matrix (A− 5I) (i.e. −10),
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and then add scalar 5 to that eigenvalue to get the desired eigenvalue (i.e. −5).

Eigenvalue nearest to a given scalar: To compute eigenvalue of matrix A nearest to number k, first, we
find the largest eigenvalue (in magnitude) of matrix (A−kI)−1, and then inverse of that eigenvalue in addition
with k is the desired eigenvalue of matrix A.

For example, let us assume the eigenvalues of a matrix A are −1, 4.5 and 7 and we want to compute the
eigenvalue that is nearest to 4 . We have

Eigenvalues of matrix A are −1, 4.5 and 7

Eigenvalues of matrix (A− 4I) are −5, 0.5 and 3

Eigenvalues of matrix (A− 4I)−1 are
−1

5
, 2 and

1

3

The computational procedure is to compute the largest (in magnitude) eigenvalue of a matrix (A − 4I)−1

(i.e. 2). Then reciprocal (0.5) of that eigenvalue in addition with k(= 4) is the desired eigenvalue (4.5) of
matrix A.

Example 8.3.6. Determine the eigenvalue farthest to 4 for the matrix

A =

 2 6 −3
5 3 −3
5 −4 4


Start the iterations with the initial vector X(0) =

[
1 0 1

]T .

Solution. To compute the eigenvalue of matrix A which is farthest to 4 , we will find the largest (in
magnitude) eigenvalue of the matrix (A− 4I), and then add scalar 4 to that eigenvalue.

A− 4I =

 −2 6 −3
5 −1 −3
5 −4 0


Proceeding in a similar manner as in previous examples with an initial vector X(0) =

[
1 0 1

]T for matrix
A− 4I , the largest eigenvalue of this matrix is computed as follows

Y (0) = (A− 4I)X(0) =

 −2 6 −3
5 −1 −3
5 −4 0

 1
0
1

 =

 −5
1
1

 = 5

 −1
0.4
1


λ(1) = 5 and X(1) =

[
−1 0.4 1

]T
Other iterations are given by λ(2) = 8.4 X(2) =

[
0.166667 −1.000000 −0.7857142

]T
λ(3) = 4.833333 X(3) =

[
−0.822660 0.866995 1.000000

]T
λ(4) = 7.980295 X(4) =

[
0.482099 −1.000000 −0.9500004

]T
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λ(5) = 6.410494 X(5) =
[
−0.641791 0.976601 1.000000

]T
λ(6) = 7.185556 X(10) =

[
0.576599 −1.000000 −0.9902316

]T
λ(7) = 6.882997 X(7) =

[
−0.607658 0.995742 1.000000

]T
λ(8) = 7.034031 X(8) =

[
0.595643 −1.000000 −0.9981848

]T
λ(9) = 6.978212 X(9) =

[
−0.601405 0.999219 1.000000

]T
λ(10) = 7.006245 X(10) =

[
0.599198 −1.000000 −0.99966610

]T
These iterations are converging to the eigenvalue 7. Since the elements of eigenvectors are changing the

sign alternatively, so the eigenvalue is –7. The largest eigenvalue of matrix (A− 4I) is −7, so the eigenvalue
of matrix A is −7 + 4 = −3. The eigenvalue λ = −3 of matrix A is farthest from scalar 4.

Note that the eigenvalues of matrix A are −3, 5 and 7.

Example 8.3.7. Determine the eigenvalue nearest to 5 and the corresponding eigenvector of the matrix

A =

 10 6 7
1 7 −2
2 2 2

 .

Solution. First, we find the largest eigenvalue (in magnitude) of the matrix (A − 5I)−1. Then, by adding
number 5 to the inverse of that eigenvalue will produce an eigenvalue of the matrix A (nearest to number 5).

A− 5I =

 5 6 7
1 2 −2
2 2 −3



(A− 5I)−1 =
1

30

 2 −32 26
1 29 −17
2 −2 −4


Now, we have to compute the largest eigenvalue of the matrix, (A− 5I)−1. Let us start the iterations with the
initial vector, X(0) =

[
1 1 1

]T . The first iteration is given by

Y (0) = (A− 5I)−1X(0) =
1

30

 2 −32 26
1 29 −17
2 −2 −4

 1
1
1

 =
1

30

 −4
13
−4

 =
13

30

 −0.307692
1
−0.307692


Similarly, other iterations are as follows

λ(2) = 40.615383/30 X(2) =
[
−1.000000 0.835227 −0.034091

]T
λ(3) = 29.613638/30 X(3) =

[
−1.000000 0.835227 −0.034091

]T
λ(4) = 30.821949/30 X(4) =

[
−1.0000000 0.789591 −0.101554

]T
λ(5) = 29.907299/30 X(5) =

[
−1.000000 0.789926 −0.106093

]T
The largest eigenvalue of the matrix (A− 5I)−1 is

29.907299

30
≈ 1
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The smallest eigenvalue of the matrix (A− 5I) is
1

1
= 1

The eigenvalue of the matrix A nearest to 5 is 1 + 5 = 6.

Exercise 8.3.8. 1. Determine the dominant eigenvalue of A =

[
1 2
3 4

]
by power method.

2. Determine the largest eigenvalue in magnitude and corresponding eigenvector of the following matrix
by power method.

A =

1 −3 2
4 4 −1
6 3 5


3. Using power method, find the largest eigenvalue and the corresponding eigenvector of the following

matrices with initial approximation [1, 1, 1]t. Perform only five iterations.

(i)

 1 1 −1
3 2 4
−1 4 2

 (i)

 −9 2 6
5 0 −3

−16 4 11





Unit 9

Course Structure

• Nonlinear Equations: Fixed point iteration method, convergence and error estimation, Modified Newton-
Raphson method, Muller’s method.

9.1 Introduction

In scientific and engineering studies, a frequently occurring problem is to find the roots of equations of the
form

f(x) = 0 (9.1.1)

If f(x) is quadratic, cubic and a biquadratic expression, then algebraic formulae are available for expressing
the roots in terms of the coefficients. On the other hand, when f(x) is a polynomial of higher degree or
an expression involving transcendental functions, algebraic methods are not available, and recourse must be
taken to find the roots by approximate methods. It is assumed that the readers are already familiar with the
bisection method, the method of false position. In these methods, we require an interval in which the root lies.
We now describe methods which require one or more approximate values to start the solution.

9.2 Fixed point iteration method

In order to describe the method, we first rewrite the Eq. (9.1.1) in the form

x = ϕ(x) (9.2.1)

Now, let x0 be an approximate root of Eq. (9.2.1). Then, substituting in Eq. (9.2.1), we get the first approxi-
mation as

x1 = ϕ(x0)

Successive substitutions give the approximations

x2 = ϕ(x1), x3 = ϕ(x2), . . . , xn = ϕ(xn−1).

The sequence may not converge to a definite number. But if the sequence converges to a definite number ξ,
then ξ will be a root of the equation x = ϕ(x). To show this, let

xn+1 = ϕ(xn) (9.2.2)

81
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be the relation between the n-th and (n + 1)-th approximations. As n increases, xn+1 → ξ and if ϕ(x) is a
continuous function, then ϕ(xn) → ϕ(ξ). Hence, in the limit, we obtain

ξ = ϕ(ξ), (9.2.3)

which shows that ξ is a root of the equation x = ϕ(x).

Condition of Convergence

To establish the condition of convergence of Eq. (9.2.1), we proceed in the following way:

From Eq. (9.2.2), we have

x1 = ϕ(x0) (9.2.4)

From Eqs. (9.2.3) and Eq. (9.2.4), we get

ξ − x1 = ϕ(ξ)− ϕ(x0) = (ξ − x0)ϕ
′(ξ0), x0 < ξ0 < ξ, (9.2.5)

Similarly, we obtain

ξ − x2 = (ξ − x1)ϕ
′(ξ1), x1 < ξ1 < ξ (9.2.6)

ξ − x3 = (ξ − x2)ϕ
′(ξ2), x2 < ξ2 < ξ (9.2.7)

...

ξ − xn+1 = (ξ − xn)ϕ
′(ξn), xn < ξn < ξ (9.2.8)

If we assume |ϕ′(ξi)| ≤ k for all i, then the above equation give

|ξ − x1| ≤ k|ξ − x0|
|ξ − x2| ≤ k|ξ − x1|
|ξ − x3| ≤ k|ξ − x2|

...

|ξ − xn+1| ≤ k|ξ − xn|

Multiplying the corresponding sides of the above equations, we obtain

|ξ − xn+1| ≤ kn+1|ξ − x0| (9.2.9)

If k < 1, i.e., if |ϕ′(ξi)| < 1, then the right side of Eq. (9.2.9) tends to zero and the sequence of approximation
x0, x1, x2, . . . converges to the root ξ. Thus, when we express the equation f(x) = 0 in the form x = ϕ(x),
then ϕ(x) must be such that

|ϕ′(x) < 1|

in an immediate neighbourhood of the root. It follows that if the initial approximation x0 is chosen in an
interval containing the root ξ, then the sequence of approximation converges to the root ξ.
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Error Estimation

We shall fin the error in the root obtained. We have

|ξ − xn| ≤ k|ξ − xn−1|
⇒ |ξ − xn| = k|ξ − xn + xn − xn−1|
⇒ |ξ − xn| ≤ k[|ξ − xn|+ |xn − xn−1|]

⇒ |ξ − xn| ≤ k

1− k
|xn − xn−1| =

k

1− k
kn−1|x1 − x0| =

kn

1− k
|x1 − x0|, (9.2.10)

which shows that the convergence would be faster for smaller values of k. Now, let ε be the specific accuracy
so that

|ξ − xn| ≤ ε

Then, Eq. (9.2.10) gives

|xn − xn−1| ≤
1− k

k
ε, (9.2.11)

which can be used to find the difference between two successive approximation (or iterations) to achieve a
prescribed accuracy. From (9.2.11), it is clear that the rate of convergence of the fixed point iteration method
is linear.

9.3 Modified Newton-Raphson method

It is known that the Newton-Raphson iterative scheme for finding a simple root x = ξ of the equation f(x) = 0
is given by

xn+1 = xn − f(xn)

f ′(xn)
(9.3.1)

We know that the iterative method converges quadratically for a simple root. Now, if ξ is a root of f(x) = 0
with multiplicity m, then by modified Newton-Raphson method the iteration formula corresponding to Eq.
(9.3.1) is taken as

xn+1 = xn −m
f(xn)

f ′(xn)
(9.3.2)

which means that (1/m)f ′(xn) is the slope of the straight line passing through (xn, yn) and intersection the
x-axis at the point (xn+1, 0). Eq. (9.3.2) is called the modified Newton’s formula. Since ξ is a root of f(x) = 0
with multiplicity m, it follows that ξ is also a root of f ′(x) = 0 with multiplicity (p− 1), of f ′′(x) = 0 with
multiplicity (p− 2), and so on. Hence the expressions

x0 −m
f(x0)

f ′(x0)
, x0 − (m− 1)

f ′(x0)

f ′′(x0)
, x0 − (m− 2)

f ′′(x0)

f ′′′(x0

must have the same value if there is a root with multiplicity m, provided that the initial approximation x0 is
chosen sufficiently close to the root.

Order of convergence : Simple Root

Consider the Newton-Raphson method (9.3.1) converges to a root ξ of the equation f(x) = 0. Let εn = ξ−xn
be the error in n-th approximation, xn. Then

xn+1 = xn − f(xn)

f ′(xn)
and ξ − εn+1 = ξ − εn − f(ξ − εn)

f ′(ξ − εn)
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Now, on using Taylor Series expansion of the function f(x) about the point x = ξ, we have

εn+1 = εn +
f(ξ)− εnf

′(ξ) + 1
2!ε

2
nf

′′(ξ)− 1
3!ε

3
nf

′′′(ξ) + · · ·
f ′(ξ)− εnf ′′(ξ) + 1

2!ε
2
nf

′′′(ξ)− 1
3!ε

3
nf

iv(ξ) + · · ·
(9.3.3)

If ξ is the simple root (i.e., multiplicity one), then f(ξ) = 0 and f ′(ξ) ̸= 0. On dividing the numerator and
denominator in Eq.(9.3.3) with f ′(ξ), we get

εn+1 = εn +
−εn + 1

2!ε
2
n
f ′′(ξ)
f ′(ξ) − 1

3!ε
3
n
f ′′′(ξ)
f ′(ξ) + · · ·

1−
(
εn

f ′′(ξ)
f ′(ξ) − 1

2!ε
2
n
f ′′′(ξ)
f ′(ξ) + 1

3!ε
3
n
f iv(ξ)
f ′(ξ) − · · ·

)
⇒ εn+1 = εn +

[
−εn +

1

2!
ε2n

f ′′(ξ)

f ′(ξ)
− 1

3!
ε3n

f ′′′(ξ)

f ′(ξ)
+ · · ·

]
·
[
1−

(
εn

f ′′(ξ)

f ′(ξ)
− 1

2!
ε2n

f ′′′(ξ)

f ′(ξ)
+

1

3!
ε3n

f iv(ξ)

f ′(ξ)
− · · ·

)]−1

(9.3.4)

Let z = εn
f ′′(ξ)

f ′(ξ)
− 1

2!
ε2n

f ′′′(ξ)

f ′(ξ)
+

1

3!
ε3n

f iv(ξ)

f ′(ξ)
− · · · . Since εn is the error term and as lim

n→∞
εn → 0, so we

have z << 1. On using the expansion (1− z)−1 = 1 + z + z2 + · in the Eq. (9.3.4), we obtain

εn+1 = εn +

[
−εn +

ε2n
2!

f ′′(ξ)

f ′(ξ)
+O(ε3n)

] [
1 + εn

f ′′(ξ)

f ′(ξ)
+O(ε2n)

]
⇒ εn+1 = −ε2n

2

f ′′(ξ)

f ′(ξ)
+O(ε3n) ⇒ lim

n→∞

|εn+1|
|ε|2

=

∣∣∣∣12 f ′′(ξ)

f ′(ξ)

∣∣∣∣
This imply that, the order of convergence of Newton-Raphson method is 2 (quadratic convergence).

Order of convergence : Multiple Root

In the case of multiple roots of order m, the Newton-Raphson method has convergence as follows. Continuing
with Eq. (9.3.3), we have

εn+1 = εn +
f(ξ)− εnf

′(ξ) + 1
2!ε

2
nf

′′(ξ)− 1
3!ε

3
nf

′′′(ξ) + · · ·
f ′(ξ)− εnf ′′(ξ) + 1

2!ε
2
nf

′′′(ξ)− 1
3!ε

3
nf

iv(ξ) + · · ·

Consider the equation f(x) = 0 has multiple root ξ of order m, then f ′(ξ) = f ′′(ξ) = · · · = fm−1(ξ) = 0
and fm(ξ) ̸= 0. So the above equation reduces to the following equation

εn+1 = εn +

(−1)mεmn
m! f (m)(ξ) + (−1)m+1εm+1

n

(m+1)! f (m+1)(ξ) + (−1)m+2εm+2
n

(m+2)! f (m+2)(ξ) + · · ·
(−1)m−1εm−1

n

(m−1)! f (m)(ξ) + (−1)mεmn
m! f (m+1)(ξ) + (−1)m+1εm+1

n

(m+1)! f (m+2)(ξ) · · ·

On dividing the numerator and denominator by
(−1)m−1εm−1

n

(m− 1)!
f (m)(ξ), we have

εn+1 = εn +
− εmn

m + ε2n
m(m+1)

f (m+1)(ξ)

f (m)(ξ)
− ε3n

m(m+1)(m+2)
f (m+2)(ξ)

f (m)(ξ)
+ · · ·

1−
(
εn
m

f (m+1)(ξ)

f (m)(ξ)
− ε2n

m(m+1)
f (m+2)(ξ)

f (m) + ε3n
m(m+1)(m+2)

f (m+3)(ξ)

f (m)(ξ)
− · · ·

)
On using the expansion, (1− z)−1 = 1 + z + z2 + · · · , the above expression can be rewritten as

εn+1 = εn

(
1− 1

m

)
− ε2n

m2(m+ 1)

fm+1(ξ)

f (m)(ξ)
+O(ε3n)
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If m = 1 (i.e., ξ is only a simple root) then the coefficient of εn is zero and coefficient of ε2n is not equal to
zero and hence the scheme is of second order.

If m ̸= 1 then the coefficient of εn itself is not equal to zero and hence the scheme is only of first order.

Example 9.3.1. Find a double root of the equation f(x) = x3 − x2 − x+ 1 = 0.

Solution: Choosing x0 = 0.8, we have

f ′(x) = 3x3 − 2x− 1, and f ′′(x) = 6x− 2.

With x0 = 0.8, we obtain

x0 − 2
f(x0)

f ′(x0)
= 0.8− 2

0.072

−0.68
= 1.012 and x0 −

f ′(x0)

f ′′(x0)
= 0.8− −0.68

2.8
= 1.043

The closeness of these values indicates that there is a double root near to unity. For the next approximation,
we choose x1 = 1.01 and obtain

x1 − 2
f(x1)

f ′(x1)
= 1.01− 0.0099 = 1.0001 and x1 −

f ′(x1)

f ′′(x1)
= 1.01− 0.0099 = 1.0001

We conclude, therefore, that there is a double root at x = 1.0001 which is sufficiently close to the actual root
unity.

9.4 Accelerated Newton-Raphson Method

Let the function f(x) have a zero ξ of multiplicity m, then the function f ′(x) has zero ξ of multiplicity m−1.

So, the function g(x) =
f(x)

f ′(x)
has a zero ξ of multiplicity 1, i.e., simple zero. So, the Newton-Raphson

method will be applicable for the function g(x) to compute this zero, i.e.,

xn+1 = xn − g (xn)

g′ (xn)
where g(x) =

f(x)

f ′(x)
(9.4.1)

This method is known as the accelerated Newton-Raphson method.

Example 9.4.1. Solve the equation x3 − .642x2 − 3.538959x + 3.490082 = 0 with accelerated Newton
Raphson method. Start with initial approximation 1.

f(x) = x3 − .642x2 − 3.538959x+ 3.490082

f ′(x) = 3x2 − 1.284x− 3.538959

g(x) =
f(x)

f ′(x)
=

x3 − .642x2 − 3.538959x+ 3.490082

3x2 − 1.284x− 3.538959

g′(x) = 1−
(
x3 − .642x2 − 3.538959x+ 3.490082

)
(6x− 1.284)

(3x2 − 1.284x− 3.538959)2

The accelerated Newton-Raphson method (9.4.1) is given by

xn+1 = xn − g (xn)

g′ (xn)
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Let initial approximation be x0 = 1, then we get

x1 = x0 −
g (x0)

g′ (x0)

= 1.302097145

x2 = x1 −
g (x1)

g′ (x1)

= 1.320945602

x3 = x2 −
g (x2)

g′ (x2)

= 1.320991553

x4 = x3 −
g (x3)

g′ (x3)

= 1.321000

9.5 Muller Method

In this method, we will approximate the function y = f(x) by a second-degree curve p2(x) in the neigh-
borhood of the root. Fig. 9.5.1 Graphical representation of Muller method Let xi−2, xi−1 and xi be the

Figure 9.5.1: Graphical representation of Muller method

approximations to a root of the equation, f(x) = 0, then yi−2 = f (xi−2) , yi−1 = f (xi−1) and yi = f (xi)
Let the approximating curve be a quadratic polynomial of the following form

y = A (x− xi)
2 +B (x− xi) + C (9.5.1)

This parabola passes through the points (xi−2, yi−2) , (xi−1, yi−1) and (xi, yi). So, we must have

yi−2 = A (xi−2 − xi)
2 +B (xi−2 − xi) + C

yi−1 = A (xi−1 − xi)
2 +B (xi−1 − xi) + C

yi = C (9.5.2)
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Solving Eqs. (9.5.2) for the constants A,B and C, we have

A =
(xi−1 − xi) (yi−2 − yi)− (xi−2 − xi) (yi−1 − yi)

(xi − xi−1) (xi−1 − xi−2) (xi−2 − xi)

B =
(xi−2 − xi)

2 (yi−1 − yi)− (xi−1 − xi)
2 (yi−2 − yi)

(xi − xi−1) (xi−1 − xi−2) (xi−2 − xi)

C = yi (9.5.3)

We can obtain the quadratic polynomial (9.5.1) by using the values of constants A,B and C from Eqs. (9.5.3).
The approximation to the root of equation, f(x) = 0 is given by the root of the following quadratic equation

A (x− xi)
2 +B (x− xf) + C = 0

Let xi+1 be the next approximation to the root, i.e.

xi+1 − x1 =
−B ±

√
B2 − 4AC

2A

xi+1 = xi +
−2C

B ±
√
B2 − 4AC

(9.5.4)

Note that the sign in the denominator of the Eq. (9.5.4) is chosen, so that the denominator becomes largest in
the magnitude. It is to reduce the loss of significance in the approximation xi+1. The method can be used to
obtain the complex root, when

√
B2 − 4AC < 0.

Example 9.5.1. Compute the approximate root of the equation x3− 4x− 9 = 0 correct to six decimal places.
Use Muller method with initial approximations 2, 3 and 4.

Solution. Let x0 = 2, x1 = 3 and x2 = 4 be the three Initial approximations for the root of the equation

y = f(x) = x3 − 4x− 9 = 0

This implies
x0 = 2 x1 = 3 x2 = 4
y0 = −9 y1 = 6 y2 = 39

Let y = A (x− x2)
2 + B (x− x2) + C be the parabola passing through the points (x0, y0) , (x1, y1) and

(x2, y2). We have
y0 = A (x0 − x2)

2 +B (x0 − x2) + C

y1 = A (x1 − x2)
2 +B (x1 − x2) + C

y2 = C

Using the values of (x0, y0) , (x1, y1) and (x2, y2), and solving these equations for different constants, we
have

C = 39

− 9 = 4A− 2B + 39

6 = A−B + 39 ⇒ A = 9, B = 42, C = 39

Let x3 be the next approximation. From Eq. (9.5.4), we have

x3 = x2 +
−2C

B +
√
B2 − 4AC

= 4 +
−2(39)

42 +
√
(42)2 − 4(9)(39)

= 2.720759
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Note that the +ve sign in the denominator as the value of B is +ve.

On using the following values of (x1, y1) , (x2, y2) and (x3, y3)

x1 = 3 x2 = 4 x3 = 2.720759
y1 = 6 y2 = 39 y3 = 0.257463

the next approximation of the Muller method (9.5.4) is as follows

x4 = 2.706220

Similarly, we can obtain following approximations

x5 = 2.706528

x6 = 2.706528

Note 9.5.2. 1. It is easy to see that this method extracts a quadratic factor. So we can compute two roots
simultaneously. This method can also be used to compute the complex roots of the nonlinear equation.

2. Muller method has high order of convergence 1.84, and generally gives the root with any initial approx-
imation. The method can also be used to obtain complex roots.

Exercise 9.5.3. 1. Find the roots of the equation f(x) = (x2 − 3x + 1)2 = 0 using accelerated New-
ton–Raphson method, correct to four significant figures. Assuming multiplicity m = 2 and starting
with the initial approximation x0 = 0, 2.

2. Show that the equation (1−x) sin(1−x) = 0 has a double root at the point x = 1. Compute the root by
using the Newton–Raphson method and modified Newton–Raphson method with m = 2. Take initial
approximation x0 = 0 for both the methods.

3. Perform three iterations of the Muller method to compute the approximate root of the equation, cosx−
5x+ 1 = 0. Assume the first three initial approximations for the root are 0, 1 and 2.

4. Compute all the three roots of the cubic equation x3−3x2−5x+1 = 0 with the aid of Muller method,
which are in the intervals (−2,−1), (0, 1) and (4, 5).



Unit 10

Course Structure

• Inverse interpolation method, error estimations and convergence analysis.

10.1 Inverse Interpolation

Inverse interpolation is the process of finding the value of the argument corresponding to a given value of the
function when the function is intermediate between two tabulated values. For this purpose, we shall assume
that the function y = f(x) has a unique inverse x = f−1(y) = F (y) (say) within the range of the table.

The problem of inverse interpolation can be solved by several methods, but in this unit we shall explain
only two.

1. By Lagrange’s formula: In the Lagrange’s method we just interchange x and y and the method will be

x =

n∑
i=0

w(y) · xi
(y − yi)w′ (yi)

= w(y)

n∑
i=0

xi
Di

where D′
i = (y − yi)× w′ (yi) for i = 0, 1, . . . n and we can use the table for inverse interpolation as

y0 y1 · · · · · · · · · yn−1 yn D′
i xi xi/D

′
i

y0 y − y0 y0 − y1 · · · · · · · · · y0 − yn−1 y0 − yn D′
0 x0 x0/D

′
0

y1 y1 − y0 y − y1 · · · · · · · · · y1 − yn−1 y1 − yn D′
1 x1 x1/D

′
1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
yn yn − y0 yn − y1 · · · · · · · · · yn − yn−1 y − yn D′

n xn xn/D
′
n

The product of the principal diagonal elements (underlined) is w(y) and making product of row elements
we get D′′

1’s (i = 0, . . . n).

2. By Divided difference formula, similarly as in Lagarange’s method we just interchange x and y and the
method will be

x = F (y0) + F [y0, y1] (y− y0) + F [y0, y1, y2] (y − y0)× (y − y1) + . . .

+ F [y0, y1 . . . yn] (y − y0) (y − y1) . . . (y − yn−1)

89
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and the computation for the same will be given as

y F (y) δ δ
2 · · · δ

n

y0 x0
F [y0, y1]

y1 x1 F [y0, y1, y2]
F [y1, y2]

y2 x2 F [y1, y2, y3] · · · F (y0, . . . , yn−1]
...

... F [y2, y3]
...

yn−1 xn−1
... F [yn−2, yn−1, yn]

F [yn, yn−1]
yn xn

Divided difference table for inverse interpolation

y F (y) δ δ
2 · · · δ

n

y0 x0
y0 − y1 F [y0, y1]

y0 − y2 y1 x1
y0 − y3 y2 − y1 F [y1, y2]
· · · · · · · · · y2 x2 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · F [y0, . . . , yn]

yn−3 − yn yn−2 − yn yn−1 xn−1

F [yn−1, yn]
yn−1 − yn yn xn

10.2 An important application of Inverse Interpolation

The inverse interpolation can be fruitfully used in finding a real root of an equation f(x) = 0. Let f(x) be a
function which has a real root in some neighbourhood of x = α, we have to find the values of x in the small
interval [α− δ, α+ δ] and find the corresponding values of f(x) [where f(α− δ)f(α+ δ) < 0] and applying
the inverse interpolation formula (either by Lagarange’s or divided difference) we get the value of x when
f(x) = 0.

Example 10.2.1. From the table compute the value of x for y = 0.2

x y = f(x)

1.1 0.1047
1.2 0.1870
1.4 0.2412
1.6 0.3747
1.7 0.4353
1.9 0.5466

correct upto 4 decimal places.
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Solution: We compute the problem by Lagrange’s Inverse Interpolation formula

x =
5∑

i=0

w(y)xi
(y − yi)w′ (yi)

= w(y)
5∑

i=0

xi
Di

where
w(y) = (y − y0) (y − y1) (y − y2) (y − y3) (y − y4) (y − y5)

Di = (y − yi)w
′ (yi) = (y − yi) · (y − y0) (y − y1) (y − yi−1) (y − yi+1) , . . . (y − yn)

for i = 0, 1, 2, 3, 4, 5.

Computational Scheme for x when y = 0.2

y0 = y1 = y2 = y3 = y4 = y5 = Di xi xi/D
′
i

0.1047 0.0953 0.2412 0.3747 0.4353 0.5466

y0 = 0.1047 0.953 -0.0833 -0.1365 -0.2700 -0.3306 -0.4419 -0.0000427426 1.1 -25735.435
y1 = 0.0953 0.0833 0.0130 -0.0542 -0.01877 -0.2483 -0.3596 0.0000009836 1.2 1219924.436
y2 = 0.2412 0.1365 0.0542 -0.0412 -0.01335 -0.1941 -0.3054 0.0000241215 1.4 580394.178
y3 = 0.3747 0.2700 0.1877 0.1335 -0.1747 -0.0606 -0.1719 -0.0000123126 1.6 -129947.902
y4 = 0.4353 0.3306 0.2483 0.1941 0.0606 -0.2353 -0.1113 0.0000252855 1.7 67232.184
y5 = 0.5466 0.4419 0.3596 0.3054 0.1719 0.1113 -0.3466 -0.0032181947 1.9 -5903.932

Therefore,

w(0.2) = (0.2−0.1047)×(0.2−0.187)(0.2−0.2412)×(0.2−0.3747)×(0.2−4353)×(0.2−5466) = 0.0000007272384

x = 0.0000007272384× 1705963.529 = 1.2406423 ≈ 1.2406 upto 4 decimal places

Example 10.2.2. From the following table compute the value of x for y = .7

x y = f(x)

1.15 .65468
1.16 .70108
1.17 .74727
1.18 .79325
1.19 .83902

Solution. Newton’s Divided Difference formula for Inverse Interpolation :

x = x0+(y−y0)F [y0, y1]+(y−y0)(y−y1)F [y0, y1, y2]+· · ·+{(y−y0)(y−y1) · · · (y−yn−1)}F [y0, y1, . . . , yn]

y x δ(x) δ2(x) δ3(x) δ4(x)

0.65468 1.15
0.2155172

0.70108 1.16 0.0105832
0.2164971 0.0010450

0.74727 1.17 0.0107280 0.0001199
0.2174859 0.0010671

0.79325 1.18 0.0108752
0.2184837

0.83902 1.19
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Computation for x for y = 0.7

x = 1.15 + (0.7− 0.65468)(0.2155172) + (0.7− 0.65468)(0.7− 0.70108)(0.0105832)

+(0.7− 0.65468)(0.7− 0.70108)(0.7− 0.74727)(0.0010450) +

+(0.7− 0.65468)(0.7− 0.70108)(0.7− 0.744727)(0.7− 0.79325)(0.0001199)

= 1.15 + 0.0097672− 0.0000005 + 0.000000024

= 1.1597667

Therefore, x ≈ 1.159767

Example 10.2.3. Find the root of the equation x2 + logk x− 1.6 = 0 where k = 7 by interpolation formula.

Solution. We first find the values of f(x) = x2 + logk x− 1.6

f(0.1) = 0.01 +
loge(0.1)

loge 7
− 1.6 < 0

f(0.2) < 0,

f(1) = −0.6000 < 0

f(1.2) = −0.0066 < 0 The root lies between (1.2 and 1.5)

f(1.5) = +0.8584 > 0

f(1.7) = +1.5627 > 0

Now, f ′(x) = 2x+
1

x loge 7
> 0 for the range [1, 1.7] hence we start to find the root of the equation by inverse

interpolation formula.

1. By Lagrange’s inverse interpolation formula : y = 0,

The computation scheme

Di xi xi/D
′
i

0.6000 −0.5934 −1.4584 −2.1627 −1.12297924 1 −0.0890489
0.5934 +.0066 −0.8650 −1.5693 0.00531635 1.2 225.718773
1.4584 0.8650 −0.8584 −0.7043 0.76267614 1.5 1.966759
2.1627 1.5693 0.7043 −1.5627 −3.73538659 1.7 −0.455107

+227.141376

Therefore, w′(0) = 0.00531203

∴ F (0) = w′(0)× 227.141376 = 1.20658177

∴ x = 1.20658 (upto six significant figure)

The root of the equation is 1.21 (upto three significant figure) and 1.20658 (upto six significant figure).

2. By Newton’s divided difference (inverse) interpolation formula we estimate x for y = 0.
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y x δ δ
2

δ
3

-0.6000 1
0.5934 0.337040

1.4584 -0.0066 1.2 0.115718
2.1627 0.8650 0.346821 -0.072025

1.5693 +0.8584 1.5 -0.040050
0.7043 0.283970

1.5627 1.7

Now,

F (0) = 1 + (0 + 0.6000)× 0.337040 + (0 + 0.6000)× (0 + 0.0066)× 0.115718

+(0 + 0.6000)× (0 + 0.0066)(0− 0.8584)× (−0.072025)

= 1 + 0.202224 + 0.000416584 + 0.0002448

= 1.20289 (upto six significant figure)

∴ The root of the above equation is 1.20 (upto three significant figure) and 1.20289 (upto six significant
figure).

Example 10.2.4. For what value of x is the value of the probability integral given in the following table equal

to
1

2

y =
2√
π

π∫
0

e−x2
dx

y x

0.4846555 0.46
0.4937452 0.47
0.5027498 0.48
0.5116683 0.49

Working Formulae:

1. Inverse Interpolation by Lagrange’s formula:

x =

n∑
r=0

w(y)xr
(y − yr)w′ (yr)

= w(y)

n∑
r=0

xr
Dr

where w(y) = (y − y0) (y − y1) . . . (y − yn)

Dr = (y − yr)w
′ (yr)

2. Inverse Interpolation by divided difference formula:

x = x0 + (y − y0)F (y0, y1) + (y − y0) (y − y1)F [y0, y1, y2] + . . .

+(y − y0) (y − y1) . . . (y − yn−1)F [y0, y1, y2, . . . , yn]

where F [y0, y1, y2, . . . , yr] =
F [y0, y1, y2, . . . , yr−1]− F [y1, y2, . . . , yr]

y0 − yr
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Computation (from 1st formula):

Row Product:
(r ̸= j) (yr − yj) for r = j(y − yj)

y − y0 y0 − y1 y0 − y2 y0 − y3 Dr xr xr/Dr

0.0153445 −0.0090897 −0.0180943 −0.0270128 −0.00000006817 0.46 6747836.292
0.0090897 0.0062548 −0.0090046 −0.0179231 0.00000000918 0.47 51198257.081
0.0180943 0.0090043 0.0027498 −0.0089185 0.00000000400 0.48 120000000.000
0.0270128 0.0179231 0.0089185 −0.0116683 0.00000000038 0.49 −9726081.778

Total 154724339.011

Therefore, w(y) = 0.00000000308

∴ x = (154724339.011)× (0.00000000308) = 0.47655096415 ≃ 0.4766 Ans.

Computation (from 2nd formula):

y x δ δ
2

δ
3

0.484655 0.46
-0.0090897 1.10014631946

-0.0180943 0.4937452 0.47 0.57461081777
-0.0270128 -0.0090046 1.11054349998 0.87261555966

-0.0179231 0.5027498 0.48 0.59818260736
-0.0089185 1.12126478667

0.5116683 0.49

Coefficient Multiplier Positive Term Negative Term

1 0.49 0.490000000000
-0.0116683 1.12126478667 0.01308325391

0.00003208549 0.59818260736 1919298
0.00000020068 0.87261555966 17511

Total = 0.49001936809 0.01308325391
Difference = 0.47693611418 ≈ 0.4769

Therefore, x = 0.4769.

Example 10.2.5. Compute a real root of the following equation lying in (1, 2) correct to 4D by inverse
interpolation;

x3 + 1.6028x2 + 7.8084x− 16.7664 = 0

Solution. We first find out the values of f(x) in (1, 2) an regular interval since the real root we have to find is
in (1, 2).

x 1 1.1 1.2 1.3 1.4 1.5 1.6

f(x) −6.355200 −4.906772 −3.360288 −1.709748 0.050848 1.927500 3.926208
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Since we have already found that f(x) at 1.3 < 0 and f(x) at 1.4 > 0, we concentrate in (1.3, 1.4).

y x = F (y) F [yi, yj ] F [yi, yj , yk] F [yi, yj , yk, yl] F [yi, yj , yk, yl, ym]

-4.906772 1.1
0.064664

-3.360288 1.2 -0.001275
0.060586 0.000033

-1.709748 1.3 - 0.001110 - 0.010001
0.56799 0.000027

0.050848 1.4 - 0.000966
0.053286 0.000156

1.927500 1.5 - 0.000084
-0.050032

3.926208 1.6

Coefficient Multiplier Positive Term Negative Term

1 1.1 1.1
4.906772 0.064663 0.317287

16.488167 -0.001275 0.021022
28.190611 0.000033 0.000930
-1.433436 - 0.000001 0.000001

Total = 1.418218 0.021022

Difference = 1.418218− 0.021022 = 1.397196.
Therefore, the root is 1.3972

Example 10.2.6. Compute the real root of the following equation lying in (1, 2) correct to 4D by inverse
interpolation :

x3 − px2 + 8x− 7 = 0

where p = 3.5 +
2

20
= 3.6

Solution. f(x) = x3 − 3.6x2 + 8x− 7

We tabulate the values of f(x) in the interval (1, 2) with the step length 0.1.

x 1 1.1 1.2 1.3 1.4 1.5

f(x) −1.6 −1.225 −0.856 −0.487 −0.112 0.275

x 1.6 1.7 1.8 1.9 2.0

f(x) 0.68 1.109 1.568 2.063 2.6
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f(x) x δ δ2 δ3

−0.856 1.2
0.26881720

−0.112 1.4 −0.09212440
0.25839793 0.50536432

0.275 1.5 −0.01450044
0.24691358

0.68 1.6

Coefficient Multiplier + ve −ve
1 1.2 1.2
0.856 0.26881720 0.230107523
0.095872 −0.09212440 .00088321505
−0.0263648 −0.01543807 0.0013323829

Total = 1.431439906 0.0008832150

The required root = 1.431439906− 0.0008832150 = 1.430557 ≈ 1.4306.

Exercise 10.2.7. 1. Compute the real root of the following equation lying in (1, 2) correct to 4D by inverse
interpolation

x3 − px2 + 8x− 7 = 0 where p = 3.5 +
1

20
= 3.55.

2. Find the root of xex − 5.4 = 0 in (1, 2) by inverse interpolation.

3. Find a smallest positive root (correct upto three decimal places) of the equation x + log x = 0 using
inverse interpolation.

4. Applying inverse interpolation find a smallest positive root of the following equation (correct upto six
significant figures)

e2.3x + ln(x2 + 7.5)− 3.571 = 0

5. Calculate the real root of the following equation in (1, 2) correct upto 4D by inverse interpolation

x3 − px2 + 8x− 7 = 0,

where p = 3.5 +
A

20
, where A represents the last digit of the AIN number of the student.



Unit 11

Course Structure

• Ordinary Differential Equations: Initial value problems–Picard’s successive approximation method,
error estimation, Single step method.

11.1 Introduction

Many problems in science and engineering can be reduced to the problem of solving differential equations
satisfying certain given conditions. The analytical methods of solution, with which the reader is assumed to
be familiar, can be applied to solve only a selected class of differential equations. Those equations which
govern physical systems do not possess, in general closed-form solutions, and hence recourse must be made
to numerical methods for solving such differential equations. To describe various numerical methods for the
solution of ordinary differential equations, we consider the general first order differential equation

dy

dx
= f(x, y) with the initial condition y(x0) = y0 (11.1.1)

and illustrate the theory with respect to this equation. This methods so developed can, in general, be applied
to the solution of systems of first-order equations.

11.1.1 Picard’s Successive Approximation Method

Integrating the differential equation given in Eq. (11.1.1), we obtain

y = y0 +

x∫
x0

f(x, y) dx. (11.1.2)

Equation (11.1.2), in which the unknown function y appears under the integral sign, is called an integral
equation. Such and equation can be solved by the method of successive approximations in which the first
approximation of y is obtained by putting y0 for y on right side of Eq.(11.1.2), and we write

y(1) = y0 +

x∫
x0

f(x, x0) dx

97
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The integral on the right can now be solved and the resulting y(1) is substituted for y in the integrand of Eq.
(11.1.2) to obtain the second approximation y(2):

y(2) = y0 +

x∫
x0

f(x, y(1)) dx

Proceeding in this way, we obtain y(3), y(4), . . . , y(n−1) and y(n), where

y(n) = y0 +

x∫
x0

f(x, y(n−1)) dx with y(0) = y0 (11.1.3)

Hence this method yields a sequence of approximations y(1), y(2), . . . , y(n) and it can be proved that if the
function f(x, y) is bounded in some region about the point (x0, y0) and if f(x, y) satisfies the Lipschitz
condition, viz

|f(x, y)− f(x, y)| ≤ K|y − y|, K being a constant (11.1.4)

then, the sequence y(1), y(2), . . . converges to the solution of Eq. (11.1.1).

Example 11.1.1. Solve the differential equation
dy

dx
= x+ y2 with initial condition y = 1 when x = 0 using

Picard’s method.

Solution: We start with y(0) = 1 and obtain

y(1) = 1 +

x∫
0

(x+ 1) dx = 1 + x+
1

2
x2.

Then the second approximation is

y(2) = 1 +

x∫
0

[
x+

(
1 + x+

1

2
x2
)]

= 1 + x+
3

2
x2 +

2

3
x3 +

1

4
x4 +

1

20
x5.

Proceeding similarly, we can find the higher order approximations. But, it is obvious that the integration might
become more and more difficult as we proceed to higher approximations.

Example 11.1.2. Given the differential equation
dy

dx
=

x2

y2 + 1
with initial condition y = 0 when x = 0, use

Picard’s method to obtain y for x = 0.25, 0.5 and 1.0 correct to three decimal places.

Solution: We have y =

x∫
0

x2

y2 + 1
dx. Setting y(0) = 0, we obtain

y(1) =

x∫
0

x2 dx =
1

3
x3

and y(2) =

x∫
0

x2

(1/9)x6 + 1
dx = tan−1

(
1

3
x3
)

=
1

3
x3 − 1

81
x9 + . . .
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so that y(1) and y(2) agree to the first term, viz., (1/3)x3. To find the range of values of x so that the series
with the term (1/3)x3 alone will give the result correct to three decimal places, we put

1

81
x9 ≤ 0.0005 which yields x ≤ 0.7

Hence

y(0.25) =
1

3
(0.25)3 = 0.005, y(0.5) =

1

3
(0.5)3 = 0.042, y(1.0) =

1

3
− 1

81
= 0.321

Exercise 11.1.3. 1. Use Picard’s method to obtain a series solution the differential equation
dy

dx
= 1 +

xy, y(0) = 1.

2. Use Picard’s method to obtain y(0.1) and y(0.2) of the problem defined by

dy

dx
= x+ yx4, y(0) = 3

3. Using Picard’s method, find y(0.1), given that

dy

dx
=

y − x

y + x
; y(0) = 1

11.2 Single Step Methods

11.2.1 Euler’s Method

Euler’s method is the most elementary approximation technique for solving initial-value problems. Although
it is seldom used in practice, the simplicity of its derivation can be used to illustrate the techniques involved in
the construction of some of the more advanced techniques, without the cumbersome algebra that accompanies
these constructions.

The object of Euler’s method is to obtain approximations to the well-posed initial-value problem

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α. (11.2.1)

A continuous approximation to the solution y(t) will not be obtained; instead. approximations to y will be
generated at various values, called mesh points, in the interval [a, b]. Once the approximate solution is ob-
tained at the points, the approximate solution at other points in the interval can be found by interpolation.

We first make the stipulation that the mesh points are equally distributed throughout the interval [a, b]. This
condition is ensured by choosing a positive integer N , setting h = (b− a)/N , and selecting the mesh points

ti = a+ ih, for each i = 0, 1, 2, . . . , N.

The common distance between the points h = ti+1 − ti is called the step size. We will use Taylor’s Theorem
to derive Euler’s method. Suppose that y(t), the unique solution to (11.2.1), has two continuous derivatives
on [a, b], so that for each i = 0, 1, 2, . . . , N − 1,

y (ti+1) = y (t1) + (ti+1 − ti) y
′ (ti) +

(ti+1 − ti)
2

2
y′′ (ξi) ,
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for some number ξi in (ti, ti+1). Because h = ti+1 − ti, we have

y (ti+1) = y (ti) + hy′ (ti) +
h2

2
y′′ (ξi) .

and, because y(t) satisfies the differential equation (11.2.1),

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi). (11.2.2)

Euler’s method constructs wi ≈ y (ti), for each i = 1, 2, . . . , N , by deleting the remainder term. Thus, Euler’s
method is

w0 = α,

wi+1 = wi + hf (fi, wi) , for each i = 0, 1, . . . , N − 1. (11.2.3)

Equation (11.2.3) is called the difference equation associated with Euler’s method. In Euler method, we are
using first order Taylor series. It means, we are approximating the solution curve y(x) with the tangent at
initial point x = α.

Example 11.2.1. Use Euler’s method algorithm to approximate the solution to

y′ = y − t2 + 1. 0 ≤ t ≤ 2, y(0) = 0.5.

at t = 2.

Solution. Here we will simply illustrate the steps in the technique when we have h = 0.5.

For this problem, f(t, y) = y − t2 + 1; so,

w0 = y(0) = 0.5w1

w1 = w0 + 0.5
(
w0 − (0.0)2 + 1

)
= 0.5 + 0.5(1.5) = 1.25

w2 = w1 + 0.5
(
w1 − (0.5)2 + 1

)
= 1.25 + 0.5(2.0) = 2.25

w3 = w2 + 0.5
(
w2 − (1.0)2 + 1

)
= 2.25 + 0.5(2.25) = 3.375

and
y(2) ≈ w4 = w3 + 0.5(w3 − (1.5)2 + 1) = 3.375 + 0.5(2.125) = 4.4375.

11.2.2 Error Bounds for Euler’s Method

Although Euler’s method is not accurate enough to warrant its use in practice, it is sufficiently elementary to
analyze the error that is produced from its application. The error analysis for the more accurate methods that
we consider in subsequent sections follows the same pattern but is more complicated.

To derive an error bound for Euler’s method, we need two computational lemmas.

Lemma 11.2.2. For all x ≥ −1 and any positive m, we have 0 ≤ (1 + x)m ≤ emx.

Proof. Applying Taylor’s Theorem with f(x) = ex, x0 = 0, and n = 1 gives

ex = 1 + x+
1

2
x2eξ
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where ξ is between x and zero. Thus,

0 ≤ 1 + x ≤ 1 + x+
1

2
x2eξ = ex,

and, because 1 + x ≥ 0, we have
0 ≤ (1 + x)m ≤ (ex)m = emx.

Lemma 11.2.3. If s and t are positive real numbers, {ai}ki=0 is a sequence satisfying a0 ≥ −t/s, and

ai+1 ≤ (1 + s)ai + t, for each i = 0, 1, 2, . . . , k − 1, (11.2.4)

then

ai+1 ≤ e(i+1)s

(
a0 +

t

s

)
− t

s
.

Proof. For a fixed integer i, Inequality (11.2.4) implies that

ai+1 ≤ (1 + s)ai + t

≤ (1 + s) [(1 + s)ai−1 + t] + t = (1 + s)2ai−1 + [1 + (1 + s)]t

≤ (1 + s)3ai−2 +
[
1 + (1 + s) + (1 + s)2

]
t

...

≤ (1 + s)i+1a0 +
[
1 + (1 + s) + (1 + s)2 + · · ·+ (1 + s)i

]
t.

But

1 + (1 + s) + (1 + s)2 + · · ·+ (1 + s)i =

i∑
j=0

(1 + s)j

is a geometric series with ratio (1 + s) that sums to

1− (1 + s)i+1

1− (1 + s)
=

1

s

[
(1 + s)i+1 − 1

]
.

Thus,

ai+1 ≤ (1 + s)i+1a0 +
(1 + s)i+1 − 1

s
t = (1 + s)i+1

(
a0 +

t

s

)
− t

s
,

and using Lemma 11.2.2 with x = 1 + s gives

ai+1 ≤ e(i+1)s

(
a0 +

t

s

)
− t

s
.

Theorem 11.2.4. Suppose f is continuous and satisfies a Lipschitz condition with constant L on

D = {(t, y) | a ≤ t ≤ b and −∞ < y < ∞}

and that a constant M exists with ∣∣y′′(t)∣∣ ≤ M, for all t ∈ [a, b],
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where y(t) denotes the unique solution to the initial-value problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α.

Let w0, w1, . . . , wN be the approximations generated by Euler’s method for some positive integer N . Then,
for each i = 0, 1, 2, . . . , N ,

|y (ti)− wi| ≤
hM

2L

[
eL(ti−a) − 1

]
(11.2.5)

Proof. When i = 0, the result is clearly true since y (t0) = w0 = α. From Eq. (11.2.2), we have

y (ti+1) = y (ti) + hf (ti, y (ti)) +
h2

2
y′′ (ξi) ,

for i = 0, 1, . . . , N − 1, and from the equations in (11.2.3),

wi+1 = wi + hf (ti, wi) .

Using the notation yi = y (ti) and yi+1 = y (ti+1), we subtract these two equations to obtain

yi+1 − wi+1 = yi − wi + h [f (ti, yi)− f (ti, wi)] +
h2

2
y′′ (ξi)

Hence,

|yi+1 − wi+1| ≤ |yi − wi|+ h |f (ti, yi)− f (ti, wi)|+
h2

2

∣∣y′′ (ξi)∣∣ .
Now f satisfies a Lipschitz condition in the second variable with constant L, and |y′′(t)| ≤ M , so

|yi+1 − wi+1| ≤ (1 + hL) |yi − wi|+
h2M

2

Referring to Lemma 11.2.3 and letting s = hL, t = h2M/2, and aj = |yj − wj |, for each j = 0, 1, . . . , N ,
we see that

|yi+1 − wi+1| ≤ e(i+1)hL

(
|y0 − w0|+

h2M

2hL

)
− h2M

2hL
.

Because |y0 − w0| = 0 and (i+ 1)h = ti+1 − t0 = ti+1 − a, this implies that

|yi+1 − wi+1| ≤
hM

2L

(
e(ii+1−a)L − 1

)
for each i = 0, 1, . . . , N − 1.

The weakness of Theorem 11.2.4 lies in the requirement that a bound be known for the second derivative
of the solution. Although this condition often prohibits us from obtaining a realistic error bound, it should be

noted that if both
∂f

∂t
and

∂f

∂y
exist, the chain rule for partial differentiation implies that

y′′(t) =
dy′

dt
(t) =

df

dt
(t, y(t)) =

∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t)) · f(t, y(t)).

So, it is at times possible to obtain an error bound for y′′(t) without explicitly knowing y(t).
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Example 11.2.5. The solution to the initial value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

was approximated in Example 11.2.1 using Euler’s method with h = 0.2. Use the inequality in Theorem
11.2.4 to find a bound for the approximation errors and compare these to the actual errors.

Solution. Since f(t, y) = y− t2 +1, we have
∂f(t, y)

∂y
= 1 for all y, so L = 1. For this problem, the exact

solution is y(t) = (t+ 1)2 − 0.5et, so y′′(t) = 2− 0.5et and

|y′′(t)| ≤ 0.5e2 − 2, for all t ∈ [0, 2].

Using the inequality in the error bound for Euler’s method with h = 0.2, L = 1, and M = 0.5e2 − 2 gives

|yi − wi| ≤ 0.1(0.5e2 − 2)(eti − 1).

Hence,

|y(0.2)− w1| ≤ 0.1(0.5e2 − 2)(e0.2 − 1) = 0.03752,

|y(0.4)− w2| ≤ 0.1(0.5e2 − 2)(e0.4 − 1) = 0.08334,

and so on. Table 11.2.5 lists the actual error found in Example 11.2.1 together with this error bound. Note that
even though the true bound for the second derivative of the solution was used, the error bound is considerably
larger than the actual error, especially for increasing values of t.

ti Actual Error Error Bound

0.2 0.02930 0.03752
0.4 0.06209 0.08334
0.6 0.09854 0.13931
0.8 0.13875 0.20767
1.0 0.18268 0.29117
1.2 0.23013 0.39315
1.4 0.28063 0.51771
1.6 0.33336 0.66985
1.8 0.38702 0.85568
2.0 0.43969 1.08264

Note 11.2.6. 1. The principal importance of the error-bound formula given in Theorem 11.2.4 is that the
bound depends linearly on the step size h. Consequently, diminishing the step size should give corre-
spondingly greater accuracy to the approximations.

2. Neglected in the result of Theorem 11.2.4 is the effect that round-off error plays in the choice of step
size. As h becomes smaller, more calculations are necessary, and more round-off error is expected. In
actuality then, the difference-equation form

w0 = α,

wi+1 = wi + hf(ti, wi), for each i = 0, 1, . . . , N − 1,
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is not used to calculate the approximation to the solution yi, at a mesh point ti. We use instead an
equation of the form

u0 = α+ δ0,

ui+1 = ui + hf(ti, ui) + δi+1, for each i = 0, 1, . . . , N − 1, (11.2.6)

where δi, denotes the round-off error associated with ui. Using methods similar to those in the proof
of Theorem 11.2.4, we can produce an error bound for the finite-digit approximations to yi given by
Euler’s method.

Theorem 11.2.7. Let y(t) denote the unique solution to the initial-value problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α, (11.2.7)

and u0, u1, . . . , uN be the approximations obtained using Eq. (11.2.6). If |δi| < δ for each i = 0, 1, . . . , N
and the hypotheses of Theorem 11.2.4 hold for Eq. (11.2.7), then

|y (ti)− ui| ≤
1

L

(
hM

2
+

δ

h

)[
eL(ti−a) − 1

]
+ |δ0| eL(ti−a), (11.2.8)

for each i = 0, 1, . . . , N .

Note 11.2.8. The error bound (11.2.8) is no longer linear in h. In fact, since

lim
h→0

(
hM

2
+

δ

h

)
= ∞,

the error would be expected to become large for sufficiently small values of h. Calculus can be used to
determine a lower bound for the step size h. Letting E(h) = (hM/2)+(δ/h) implies that E′(h) = (M/2)−(
δ/h2

)
:

If h <
√
2δ/M, then E′(h) < 0 and E(h) is decreasing.

If h >
√
2δ/M, then E′(h) > 0 and E(h) is increasing. (11.2.9)

The minimal value of E(h) occurs when

h =

√
2δ

M
(11.2.10)

Decreasing h beyond this value tends to increase the total error in the approximation. Normally, however, the
value of δ is sufficiently small that this lower bound for h does not affect the operation of Euler’s method.

11.3 Modified (or) Improved Euler Method (or) Heun Method

Euler method involves the slope at an initial point, (x0, y0). In modified Euler method, we use the average
value of slopes at the initial point (x0, y0) and last point, (x1, y1). It improves the estimate of the slope for the
interval (x0, x1)

y1 = y0 +
h

2
(f (x0, y0) + f (x1, y1))

The right-hand side of the equation involves the yet-to-be-determined value, y1. To start, we can use y1
obtained from Euler method and let it be initial approximation, y(0)1 .

y
(0)
1 = y0 + hf (x0, y0)
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The next approximate value of y1 is computed by modified Euler method as follows

y
(1)
1 = y0 +

h

2

(
f (x0, y0) + f

(
x1, y

(0)
1

))
(11.3.1)

The formula (11.3.1) can be generalized in the following form

y
(k+1)
1 = y0 +

h

2

(
f (x0, y0) + f

(
x1, y

(k)
1

))
, k = 0, 1, 2, . . . (11.3.2)

The process is repeated till the desired decimal points matches in two consecutive iterations. The formula
(11.3.2) can be extended to compute, yi+1, i = 0, 1, · · · , n as follows

y
(0)
i+1 = yi + hf (xi, yi)

y
(k+1)
i+1 = yi +

h

2

(
f (xi, yi) + f

(
xi+1, y

(k)
i+1

))
, k = 0, 1, 2, . . . (11.3.3)

Example 11.3.1. Use modified Euler method to compute y(1) for the following IVP

dy

dx
= x+ y, y(0) = 1

Use step size, h = 0.1.

Solution. We have
x0 = 0, y0 = 1, f(x, y) = x+ y and h = 0.1.

Value of y (x1) = y(0.1) = y1 Using Euler formula, we get following initial approximation y
(0)
1

y (x1) = y(0.1) = y1 = y0 + hf (x0, y0) = y0 + h (x0 + y0) = 1 + (0.1)(0 + 1) = 1.1 = y
(0)
1

Modified Euler method (11.3.2) can be used to improve the estimated value of y(0.1) as follows

y
(1)
1 = y0 +

h

2

(
f (x0, y0) + f

(
x1, y

(0)
1

))
= y0 +

h

2

(
(x0 + y0) +

(
x1 + y

(0)
1

))
= 1 +

0.1

2
((0 + 1) + (0.1 + 1.1)) = 1.11

y
(2)
1 = y0 +

h

2

(
f (x0, y0) + f

(
x1, y

(1)
1

))
= y0 +

h

2

(
(x0 + y0) +

(
x1 + y

(1)
1

))
= 1 +

0.1

2
((0 + 1) + (0.1 + 1.11)) = 1.1105

y
(3)
1 = y0 +

h

2

(
f (x0, y0) + f

(
x1, y

(2)
1

))
= y0 +

h

2

(
(x0 + y0) +

(
x1 + y

(2)
1

))
= 1 +

0.1

2
((0 + 1) + (0.1 + 1.1105)) = 1.110525

Value of y (x1) = y(0.1) = y1 = 1.110525

In these calculations, note that the superscripts are for the iterations of modified Euler method, while sub-
script denotes the variable.

Value of y (x2) = y(0.2) = y2
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Using Euler formula, we have

y2 = y(0.2) = y1 + h (x1 + y1) = 1.110525 + (0.1)(0.1 + 1.110525) = 1.231578 = y
(0)
2

Modified Euler method (11.3.3) for i = 1 gives following iterations

y
(1)
2 = y1 +

h

2

(
f (x1, y1) + f

(
x2, y

(0)
2

))
= y1 +

h

2

(
(x1 + y1) +

(
x2 + y

(0)
2

))
= 1.110525 +

0.1

2
((0.1 + 1.110525) + (0.2 + 1.231578)) = 1.242631

y
(2)
2 = y1 +

h

2

(
f (x1, y1) + f

(
x2, y

(0)
2

))
= y1 +

h

2

(
(x1 + y1) +

(
x2 + y

(1)
2

))
= 1.110525 +

0.1

2
((0.1 + 1.110525) + (0.2 + 1.242631)) = 1.243184

y
(3)
2 = y1 +

h

2

(
f (x1, y1) + f

(
x2, y

(0)
2

))
= y1 +

h

2

(
(x1 + y1) +

(
x2 + y

(2)
2

))
= 1.110525 +

0.1

2
((0.1 + 1.110525) + (0.2 + 1.243184)) = 1.243212

Value of y (x3) = y(0.3) = y3 The initial approximation for y3 = y(0.3) is given by

y
(0)
3 = 1.387534

Using modified Euler formula, we get
y
(1)
3 = 1.399750

y
(2)
3 = 1.400361

y
(3)
3 = 1.400392

Value of y (x4) = y(0.4) = y4

y
(0)
4 = 1.570433

y
(1)
4 = 1.583935

y
(2)
4 = 1.584610

y
(3)
4 = 1.584643

Similarly, we have the following values of y at x = 0.5, 0.6, . . . , 1

y
(0)
5 = 1.783110 y

(1)
5 = 1.798033 y

(2)
5 = 1.798779 y

(3)
5 = 1.798816

y
(0)
6 = 2.028700 y

(1)
6 = 2.045194 y

(2)
6 = 2.046019 y

(3)
6 = 2.046060

y
(0)
7 = 2.310668 y

(1)
7 = 2.328898 y

(2)
7 = 2.329810 y

(3)
7 = 2.329856

y
(0)
8 = 2.632844 y

(1)
8 = 2.652993 y

(2)
8 = 2.654000 y

(3)
8 = 2.654051

y
(0)
9 = 2.999459 y

(1)
9 = 3.021729 y

(2)
9 = 3.022842 y

(3)
9 = 3.022898

y
(0)
10 = 3.415191 y

(1)
10 = 3.439806 y

(2)
10 = 3.441036 y

(3)
10 = 3.441098

It is worth mentioning here that all these iterations are obtained using C-Programs. It is very difficult and
cumbersome to obtain all these manually or using a calculator. Hence it is advisable to solve these types of
questions only for two or three iterations. For example, this question can be solved up to the value of y(0.3).
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Exercise 11.3.2. 1. Given the initial-value problem

y′ =
1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1.

with exact solution y(t) = −1/t:

a. Use Euler’s method with h = 0.05 to approximate the solution and compare it with the actual
values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values
of y and compare them to the actual values.

i.y(1.052) ii.y(1.555) iii.y(1.978)

c. Compute the value of h necessary for |y (ti)− wi| ≤ 0.05 using Eq. (11.2.5).

2. Given the initial-value problem

y′ = −y + t+ 1, 0 ≤ t ≤ 5, y(0) = 1,

with exact solution y(t) = e−t + t:

a. Approximate y(5) using Euler’s method with h = 0.2, h = 0.1, and h = 0.05.

b. Determine the optimal value of h to use in computing y(5), assuming that δ = 10−6 and that Eq.
(11.2.10) is valid.

3. Consider the initial-value problem

y′ = −10y, 0 ≤ t ≤ 2, y(0) = 1,

which has solution y(t) = e−10t. What happens when Euler’s method is applied to this problem with
h = 0.1 ? Does this behavior violate Theorem 11.2.4?



Unit 12

Course Structure

• Runge-Kutta method, error estimations and convergence analysis; Multi-step method –Milne’s predictor-
corrector method, error estimation and convergence analysis.

12.1 Runge–Kutta (RK) Methods

In this section, we will derive certain higher order formulas known as Runge-Kutta methods, which do not
involve the computations of derivative terms. Runge-Kutta methods (RK methods) are used to achieve the
higher order accuracy of Taylor series without computing the higher order derivative terms. For this, we
assume that the solution of the IVP

dy

dx
= f(x, y), y (x0) = y0

is of the form
yi+1 = yi + λ (12.1.1)

where the general form of λ for an accuracy of O (hm) is given by the following expression

λ = w1k1 + w2k2 + w3k3 + · · ·+ wmkm (12.1.2)

The aim is to determine the values of wj ’s and kj ’s in such a manner that we can achieve the desired accuracy.
For this, let us assume kj ’s of the forms

k1 = hf (xi, yi)

k2 = hf (xi + a1h, yi + b1k1)

k3 = hf (xi + a2h, yi + b2k1 + b3k2)

k4 = hf (xi + a3h, yi + b4k1 + b5k2 + b6k3)

... (12.1.3)

where ai ’s and bi ’s are constants to determined.

First Order RK Method (m = 1)

108
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Taylor series expansion is given by

yi+1 = y (xi + h) = y (xi) + hy′ (xi) +
(h)2

2!
y′′ (xi) + · · ·

By neglecting second and higher order terms, we get

yi+1 = y (xi + h) = y (xi) + hy′ (xi) = y (xi) + hf (xi, yi)

On using m = 1 in Eqs. (12.1.1)-(12.1.3), we have

yi+1 = yi + λ = yi + ω1k1 = yi + ω1hf (xi, yi)

We get w1 = 1 by comparing last two equations. So, RK method of order 1 is given by

yi+1 = y (xi) + hf (xi, yi)

So, first order RK method is Euler method.

Second Order RK Method (m = 2)

Consider Eqs. (12.1.1)-(12.1.3) with m = 2, we have

yi+1 = yi + λ, with λ = w1k1 + w2k2

where k1 and k2 are given by
k1 = hf (xi, yi)

k2 = hf (xi + a1h, yi + b1k1)

Accordingly, we have

yi+1 = yi + λ = yi + w1k1 + w2k2

= yi + w1hf (xi, yi) + w2hf (xi + a1h, yi + b1k1) (12.1.4)

Expanding the term f (xi + a1h, yi + b1k1) by the Taylor series for the function of two variables

yi+1 = yi + w1hf (xi, yi) + w2h

(
f (xi, yi) + a1h

∂f
∂x

∣∣∣
(xi,yi)

+ b1k1
∂f
∂y

∣∣∣
(xi,yi)

+ · · ·
)

= yi + w1hf (xi, yi) + w2h

(
f (xi, yi) + a1h

∂f
∂x

∣∣∣
(xi,yi)

+ b1 (hf (xi, yi))
∂f
∂y

∣∣∣
(xi,yi)

+ · · ·
)

= yi + (w1 + w2)hf (xi, yi) + w2h
2

(
a1

∂f
∂x

∣∣∣
(xi,yt)

+ b1 (f (xi, yi))
∂f
∂y

∣∣∣
(xi,y1)

+ · · ·
)

(12.1.5)

Since we have to achieve the accuracy up to O
(
h2
)
, higher order terms can be avoided. Taylor series is given

by

yi+1 = y (xi + h) = y (xi) + hy′ (xi) +
(h)2

2!
y′′ (xi) + · · · (12.1.6)

By using the given equation, y′ = f(x, y), we have

y′ (xi) = f (xi, yi)

y′′ =
∂f

∂x
+

∂f

∂y
y′

⇒ y′′ (xi) =
∂f

∂x

∣∣∣∣
(xi,yi)

+
∂f

∂y

∣∣∣∣
(xi,yi)

y′ (xi) =
∂f

∂x

∣∣∣∣
(xi,yi)

+
∂f

∂y

∣∣∣∣
(xi,yi)

f (xi, yi) (12.1.7)
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Substituting the values of y′ and y′′ from Eqs. (12.1.7) in the Taylor series (12.1.6), we have

yi+1 = y (xi + h) = y (xi) + hf (xi, yi) +
(h)2

2!

(
∂f

∂x

∣∣∣∣
(xi,yi)

+
∂f

∂y

∣∣∣∣
(xi,yi)

f (xi, yi)

)
+ · · · (12.1.8)

Comparing the coefficients of f (xi, yi) ,
∂f

∂x

∣∣∣∣
(xi,yi)

,
∂f

∂y

∣∣∣∣
(xi,yi)

f (xi, yi) from Eqs. (12.1.5) and (12.1.8),

we have

w1 + w2 = 1

w2a1 =
1

2

w2b1 =
1

2
(12.1.9)

The system (12.1.9) has three equations in four unknowns. One variable in system (12.1.9) can assume any
value. Hence, infinite numbers of RK methods can be generated, here we are discussing only following two
cases.

Case 1. w1 =
1

2
(Modified Euler method)

Let w1 =
1

2
, then we have

w2 =
1

2
, a1 = b1 = 1.

Using values w1 = w2 =
1
2 , a1 = b1 = 1, the formula (12.1.4) is given by

yi+1 = yi + λ, with λ =
1

2
(k1 + k2)

where k1 and k2 are given by
k1 = hf (xi, yi)

k2 = hf (xi + h, yi + ki)

It is easy to see that it is modified Euler method.

Case 2 w1 =
1

3
(Ralston and Rabinowitz Method)

For second order RK method, Ralston and Rabinowitz obtained that if we select w1 =
1

3
, then truncation

error has a minimum bound. For this case, we have

w2 =
2

3
, a1 = b1 =

3

4

On substituting the values w1 = 1
3 , w2 = 2

3 , a1 = b1 = 3
4 , the formula (12.1.4) produces following Ralston

and Rabinowitz method for solution of IVP

yi+1 = yi + λ, with λ =

(
1

3
k1 +

2

3
k2

)
where k1 and k2 are given by

k1 = hf (xi, yi)

k2 = hf

(
xi +

3

4
h, yi +

3

4
k1

)
(12.1.10)
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Third Order RK Method (m = 3)

For m = 3, the formulas (12.1.1)-(12.1.3) are given by

yi+1 = yi + λ, with λ = w1k1 + w2k2 + w3k3

where k1, k2 and k3 are as follows

k1 = hf (xi, yi)

k2 = hf (xi + a1h, yi + b1k1)

k3 = hf (xi + a2h, yi + b2k1 + b3k2) (12.1.11)

Therefore, we have

yi+1 = yi + λ = yi + w1k1 + w2k2 + w3k3

= yi + w1hf (xi, yi) + w2hf (xi + a1h, yi + b1k1) + w3hf (xi + a2h, yi + b2k1 + b3k2)

Expanding the term f (xi + a1h, yi + b1k1) and f (xi + a2h, yi + b2k1 + b3k2) by the Taylor series of func-
tion of two variables

yi+1 = yi + w1hf(xi, yi) + w2h

f(xi, yi) + a1h
∂f

∂x

∣∣∣∣∣
(xi,yi)

+ b1k1
∂f

∂y

∣∣∣∣∣
(xi,yi)

+ · · ·


w3h

f(xi, yi) + a2h
∂f

∂x

∣∣∣∣∣
(xi,yi)

+ (b2k1 + b3k2)
∂f

∂y

∣∣∣∣∣
(xi,yi)

+ · · ·

 (12.1.12)

Taylor series expansion is given by

yi+1 = y(xi + h) = y(xi) + hy′(xi) +
h2

2!
y′′(xi) +

h3

3!

By using the given equation y′ = f(x, y) on a similar pattern as RK method of order 2 , we have

yi+1 = y (xi + h) = y (xi) + hf (xi, yi) +
(h)2

2!

(
∂f

∂x

∣∣∣∣
(xi,yi)

+
∂f

∂y

∣∣∣∣
(xi,yt)

f (xi, yi)

)
+ · · · (12.1.13)

Comparing the different coefficients in Eqs. (12.1.12) and (12.1.13), we get the following six equations

w1 + w2 + w3 = 1

b1 − a1 = 0

b2 + b3 − a2 = 0

a1w2 + a2w3 =
1

2

a21w2 + a22w3 =
1

3

a1b3w3 =
1

6
(12.1.14)

The system (??) has six equations in eight unknowns, so any two variables can be set as free variables to
obtain infinite numbers of solutions. One solution is given by

w1 =
1

4
, w2 = w3 =

3

8
, a1 = a2 = b1 =

2

3
, b2 = 0, b3 =

2

3
(12.1.15)
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So, the RK method of order three is given by

yi+1 = yi + λ, with λ =
1

8
(2k1 + 3k2 + 3k3)

where k1, k2 and k3 are as follows

k1 = hf (xi, yi)

k2 = hf
(
xi +

2
3h, yi +

2
3k1
)

k3 = hf
(
xi +

2
3h, yi +

2
3k2
)

(12.1.16)

Fourth Order Runge-Kutta Method

The solution is assumed to be of the following form

yI+1 = y1 + λ, with λ = w1k1 + w2k2 + w3k3 + w4k4

where k1, k2, k3 and k4 are given by

k1 = hf (xi, yi)

k2 = hf (xi + a1h, yi + b1k1)

k3 = hf (xi + a2h, yi + b2k1 + b3k2)

k4 = hf (xi + a3h, yi + b4k1 + b5k2 + b6k3)

Proceeding in a similar manner as in previous methods, following 11 equations in 13 unknowns are obtained

w1 + w2 + w3 + w4 = 1

b1 − a1 = 0

b2 + b3 − a2 = 0

b4 + b5 + b6 − a3 = 0

a1w2 + a2w3 + a3w4 =
1

2

a21w2 + a22w3 + a23w4 =
1

3

a31w2 + a32w3 + a33w4 =
1

4

a1b3w3 + a1b5w4 + a2b6w4 =
1

6

a21b3w3 + a21b5w4 + a22b6w4 =
1

12

a1b3b6w4 =
1

24

a1a2b3w3 + a1a3b5w4 + a2a3b6w4 =
1

8

We can construct infinite numbers of 4th order RK method from solution of this system. But most com-
monly used method is classical RK method or simply known as RK fourth order method with the following
values

w1 = w4 =
1

6
, w2 = w3 =

1

3

a1 = a2 =
1

2
, a3 = 1

b1 = b3 =
1

2
, b2 = b4 = b5 = 0, b6 = 1
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RK fourth order method with these values is given by

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)

where k1, k2, k3 and k4 are as follows

k1 = hf(xi, yi)

k2 = hf

(
xi +

1

2
h, yi +

1

2
k1

)
k3 = hf

(
xi +

1

2
h, yi +

1

2
k2

)
k4 = hf(xi + h, yi + k3) (12.1.17)

Example 12.1.1. Use Runge-Kutta second order method with minimum bound on truncation error (Ralston
and Rabinowitz method) to solve the following IVP

dy

dx
= x+ y, y(0) = 1

Compute y(0.5) with step size h = 0.1.

Solution. Given that x0 = 0, y (x0) = y0 = 1, f(x, y) = x + y and h = 0.1. Ralston and Rabinowitz
formula (12.1.10) is given by

yi+1 = yi +

(
1

3
k1 +

2

3
k2

)
where k1 and k2 are as follows

k1 = hf (xi, yi)

k2 = hf

(
xi +

3

4
h, yi +

3

4
k1

)
Value of y(0.1)

k1 = hf (x0, y0) = 0.1 (x0 + y0) = 0.1(0 + 1) = 0.1

k2 = hf

(
x0 +

3

4
h, y0 +

3

4
k1

)
= 0.1(0.075 + 1.075) = 0.115

y(0.1) = y1 = y0 +

(
1

3
k1 +

2

3
k2

)
= 1 +

(
1

3
(0.1) +

2

3
(0.115)

)
= 1.11

Value of y(0.2)

k1 = hf (x1, y1) = 0.1 (x1 + y1) = 0.1(0.1 + 1.11) = 0.121

k2 = hf

(
x1 +

3

4
h, y1 +

3

4
k1

)
= 0.1(.175 + 1.20075) = .137575

y(0.2) = y2 = y1 +

(
1

3
k1 +

2

3
k2

)
= 1.11 +

(
1

3
(0.121) +

2

3
(0.137575)

)
= 1.242050

Similarly, other iterations are as follows

k1 = 0.144205 k2 = 0.162520 y(0.3) = y3 = 1.398465
k1 = 0.169847 k2 = 0.190085 y(0.4) = y4 = 1.581804
k1 = 0.198180 k2 = 0.220544 y(0.5) = y5 = 1.794894
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Example 12.1.2. Use Runge-Kutta fourth order method with step size h = 0.1 for the IVP
dy

dx
= x −

y2, y(1) = 2, to compute y(1.2)

Solution. RK method of order 4 produces following iterations.

First Iteration

k1 = hf (x0, y0) = 0.1
(
x0 − y20

)
= 0.1

(
1− 22

)
= −0.3

k2 = hf

(
x0 +

1

2
h, y0 +

1

2
k1

)
= 0.1

(
1.05− (1.85)2

)
= −0.237250

k3 = hf

(
x0 +

1

2
h, y0 +

1

2
k2

)
= 0.1

(
1.05− (1.881375)2

)
= −0.248957

k4 = hf (x0 + h, y0 + k3) = 0.1
(
1.1− (1.751043)2

)
= −0.196615

y(1.1) = y1 = y0 +
1

6
(k1 + 2k2 + 2k3 + k4)

= 2 +
1

6
(−0.3 + 2(−0.23725) + 2(−0.248957)− 0.196615)

= 1.755162

Second Iteration

k1 = hf (x1, y1) = 0.1
(
1.1− (1.755162)2

)
= −0.198059

k2 = hf

(
x1 +

1

2
h, y1 +

1

2
k1

)
= −0.159277

k3 = hf

(
x1 +

1

2
h, y1 +

1

2
k2

)
= −0.165738

k4 = hf (x1 + h, y1 + k3) = −0.132627

y(1.2) = y2 = y1 +
1

6
(k1 + 2k2 + 2k3 + k4) = 1.591709

Exercise 12.1.3. 1. Given the problem
dy

dx
= f(x, y) and y(x0) = y0, an approximate solution at x =

x0 + h is given by third order Runge-Kutta formula

y(x0 + h) = y0 +
1

6

[
k1 + 4k2 + k3

]
+R4,

where k1 = hf(x0, y0), k2 = hf

(
x0 +

1

2
h, y0 +

1

2
k1

)
and k3 = hf(x0 + h, y0 + 2k2 − k1). Show

that R4 is of order h4.

2. Use Runge-Kutta fourth order formula to find y(0.2) and y(0.4) given that

dy

dx
=

y2 − x2

y2 + x2
; y(0) = 1

3. Solve the initial value problem
dr

dθ
+ r2 = sin 2θ; r(0) = 0 by using 4th order Runge–Kutta method to

compute the values of r(0.2) and r(0.4).
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12.2 Milne’s Predictor-Corrector Method

Milne’s Predictor-corrector is a multi-step method, i.e., to compute yn+1 a knowledge of preceding values of
y and y′ is essentially required. These values of y to be computed by one of the self starting methods viz.
Euler’s method, Runge-Kutta Method. W.E. Milne uses two types of quadrature formulae, (i) an open-type
quadrature formula to derive the Predictor formula and (ii) a closed-type quadrature formula to derive the
corrector formula.

Let us assume that the values of y and y′ are known (given or computed by the self-starting method)
for xn−2, xn−1, xn and the initial value xn−3. We have the Newton’s forward formula in terms of y′[=
f(x, y(x))] and phase u with starting node point xn−3 as:

y′ = y′n−3 + u ·∆y′n−3 +
u(u− 1)

2!
·∆2y′n−3 +

u(u− 1)(u− 2)

3!
·∆2y′n−2

+
u(u− 1)(u− 2)(u− 3)

4!
·∆4y′n−3 + · · · (12.2.1)

where u =
x− xn−3

h
or x = xn−3 + hu. Therefore dx = h du. Let the differential equation be

dy

dx
= f(x, y) with y(xn−3) = yn−3. (12.2.2)

Now integrating (12.2.2) over the range xn−3 to xn+1, we get

xn+1∫
xn−3

dy =

xn+1∫
xn−3

y′ dx

⇒ yn+1 − yn−3 = h

4∫
0

[
y′n−3 + u ·∆y′n−3 +

u(u− 1)

2!
·∆2y′n−3 +

u(u− 1)(u− 2)

6
·∆2y′n−2

+
u(u− 1)(u− 2)(u− 3)

24
·∆4y′n−3

]
du

⇒ yn+1 − yn−3 = h

[
4y′n−3 + 8∆y′n−3 +

20

3
∆2y′n−3 +

8

3
∆3y′n−3 +

14

45
∆4y′n−3

]
⇒ yn+1 − yn−3 = h

[
4y′n−3 + 8(E − 1)y′n−3 +

20

3
(E − 1)2y′n−3 +

8

3
(E − 1)3y′n−3

]
+

14

45
h∆4y′n−3

⇒ yn+1 − yn−3 = h

[
4y′n−3 + 8{y′n−2 − y′n−3}+

20

3
{y′n−1 − 2y′n−2 + y′n−3}

+
8

3
{y′n − 3y′n−1 + 3y′n−2 − y′n−3}

]
+

14

45
h∆4y′n−3

⇒ yn+1 − yn−3 =
4h

3

[
2y′n−2 − y′n−1 + 2y′n

]
+

14

45
h∆4y′n−3

⇒ yn+1 = yn−3 +
4h

3

[
2y′n−2 − y′n−1 + 2y′n

]
+ E1
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where E1 =
14

45
h∆4y′n−3 =

14

45
h5yv(ξ1), (xn−3 < ξ1 < xn+1), assuming that yv(x) does not vary strongly

in the small interval (xn−3, xn+1). Then the formula

y
(p)
n+1 = yn−3 +

4h

3

[
2y′n−2 − y′n−1 + 2y′n

]
(12.2.3)

is called the Milne’s extrapolation formula or Predictor formula with the error

E1 =
14

45
h∆4y′n−3 =

14

45
h5yv(ξ1), (xn−3 < ξ1 < xn+1) (12.2.4)

To derive the corrector formula, we integrate Eq.(12.2.2) by the Newton’s forward formula with starting node
xn−1, in terms of y′ and u

y′ = y′n−1 + u ·∆y′n−1 +
u(u− 1)

2!
·∆2y′n−1 +

u(u− 1)(u− 2)

3!
·∆2y′n−1

+
u(u− 1)(u− 2)(u− 3)

4!
·∆4y′n−1 + · · · (12.2.5)

where u =
x− xn−1

h
or x = xn−1 + hu, over the range xn−1 to xn+1 as follows:

xn+1∫
xn−1

dy =

xn+1∫
xn−1

y′ dx

⇒ yn+1 − yn−1 = h

2∫
0

[
y′n−1 + u ·∆y′n−1 +

u(u− 1)

2!
·∆2y′n−1 +

u(u− 1)(u− 2)

6
·∆2y′n−1

+
u(u− 1)(u− 2)(u− 3)

24
·∆4y′n−1

]
du

⇒ yn+1 − yn−1 = h

[
2y′n−1 + 2∆y′n−1 +

1

3
∆2y′n−1 −

1

90
∆4y′n−1

]
⇒ yn+1 − yn−1 = h

[
2y′n−1 + 2(E − 1)y′n−1 +

1

3
(E − 1)2y′n−1

]
− h

90
∆4y′n−1

⇒ yn+1 − yn−1 = h

[
2y′n−1 + 2{y′n − y′n−1}+

1

3
{y′n+1 − 2y′n + y′n−1}

]
− h

90
∆4y′n−1

⇒ yn+1 − yn−1 =
h

3

[
y′n−1 + 4y′n + y′n+1

]
− h

90
∆4y′n−1

⇒ yn+1 = yn−1 +
h

3

[
y′n−1 + 4y′n + y′n+1

]
+ E2

where E2 = − h

90
∆4y′n−4 = −h5

90
yv(ξ2), (xn−1 < ξ2 < xn+1), assuming that yv(x) does not vary strongly

in the small interval (xn−1, xn+1). Then the formula

y
(c)
n+1 = yn−1 +

h

3

[
y′n−1 + 4y′n + y′n+1

]
(12.2.6)
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is called the Milne’s corrector formula with the error

E2 = − h

90
yvξ2 , (xn−1 < ξ2 < xn+1) (12.2.7)

The value of yn+1 computed by (12.2.3) may be called it predicted value and that computed by (12.2.6) is
called the corrected value and are respectively denoted by y

(p)
n+1 and y

(c)
n+1. If yv(x) does not vary strongly

in the small interval (xn−3, xn+1) of length 4h, in general we may take yv(ξ1) ≈ yv(ξ2). Thus we have
E1/E2 ≈ −28 ⇒ E1 ≈ −28E2. If Dn+1 be the estimation of error, we have

Dn+1 = Corrected value yn+1 − Predicted value yn+1 = E1 − E2 ≈ −29E2 (12.2.8)

12.2.1 Computational Procedure

• Step 1: Compute y′n−2, y′n−1, y′n by the given differential equation i.e., y′r = f(xr, yr).

• Step 2: Compute y
(p)
n+1 by the predictor formula (12.2.3).

• Step 3: Compute y′n+1 by the given differential equation, by using the predicted value y
(p)
n+1

obtained in Step 2.

• Step 4: Using the predicted value y′n+1 obtained in Step 3, compute y
(c)
n+1 by the corrector formula

(12.2.6).

• Step 5: Compute Dn+1 = corrected value (y
(c)
n+1 - predicted value y

(p)
n+1. If Dn+1 is very small then

proceed for the next interval and Dn+1 is not sufficiently small, then reduce, the value of h by taking its half
etc.

Example 12.2.1. Compute y(2), if y(x) satisfies the equation
dy

dx
=

1

2
(x+y), given that y(0) = 2, y(0.5) =

2.636, y(1.0) = 3.595 and y(1.5) = 4.968, using Milne’s Method.

Solution: We take here x0 = 0, x1 = 0.5, x2 = 1.0, x3 = 1.5 and y(0) = y0 = 2, y(0.5) = y1 = 2.636,
y(1) = 3.595 and y(1.5) = y3 = 4.968. We have to compute y(2.0) = y4.

Putting n = 3 in the predictor formula (12.2.3) and in the corrector formula (12.2.6) we get, respectively,

y
(p)
4 = y0 +

4h

3
[2y′1 − y′2 + 2y′3] (12.2.9)

y
(p)
4 = y2 +

h

3
[y′2 + 4y′3 + y′4] (12.2.10)

From the differential equation
dy

dx
= y′ =

1

2
(x+ y), we get

y′1 =
1

2
(x1 + y1) =

1

2
(0.5 + 2.636) = 1.568

y′2 =
1

2
(x2 + y2) =

1

2
(1.0 + 3.595) = 2.2975

y′3 =
1

2
(x3 + y3) =

1

2
(1.5 + 4.968) = 3.234
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Thus, from (12.2.9), the predicted value

y
(1)p
4 = 2 +

4× 0.5

2
[2× 1.569− 2.2975 + 2× 3.234] = 6.8710

Now by the given differential equation, we have first estimation

y
′(0)
4 =

1

2
[x4 + y

(1)p
4 ] =

1

2
[2 + 6.8710] = 4.4355

Now by (12.2.10), we get first corrected value as

y
(1)c
4 = y2 +

h

3
[y′2 + 4y′3 + y

′(0)
4 ]

= 3.595 +
0.5

3
[2.2975 + 4× 3.234 + 4.4355] = 6.8731667 ≈ 6.87317

Again recomputing y′4 from the differential equation we get,

y
′(1)
4 =

1

2
[x4 + y

(1)
4 ] =

1

2
[2 + 6.87317] = 4.436585

By (12.2.10), we get second corrected value as

y
(2)c
4 = y2 +

h

3
[y′2 + 4y′3 + y

′(1)
4 ]

= 3.595 +
0.5

3
[2.2975 + 4× 3.234 + 4.436585] = 6.8733475 ≈ 6.873

As y(1)c4 = y
(2)c
4 = 6.873, therefore y(2) = 6.873 correct to 3-decimal places.

Exercise 12.2.2. 1. Using Milne’s predictor-corrector method, find y(0.4) for the initial value problem

y′ = x2 + y2, y(0) = 1, with h = 0.1

Calculate all the required initial values by Euler’s method. The result is to accurate to three decimal
places.

2. Compute y(0.5), by Milne’s predictor-corrector method from
dy

dx
= 2ex − y given that

y(0.1) = 2.0100, y(0.2) = 2.0401, y(0.3) = 2.0907, y(0.4) = 2.1621



Unit 13

Course Structure

• Partial Differential Equations: Finite difference methods for Elliptic equations

13.1 Introduction

Most of the mathematical models of the physical systems give rise to a system of linear or nonlinear partial
differential equations. Since analytical methods are not always available for solving these equations, we
attempt to solve by numerical methods. The numerical methods can broadly be classified as finite element
methods and finite difference methods. We shall be considering only the finite difference methods for solving
some of these equations.

13.1.1 Finite difference method for elliptic partial differential equations

We know that a second order partial differential equation Auxx+Buxy+Cuyy+Dux+Euy+Fu+G = 0
is elliptic type if B2 − 4AC < 0. For example, the Laplace’s equation and Poisson’s equation are the elliptic
type partial differential equation. For this, we consider the solution of the following Dirichlet boundary value
problems governed by the given partial differential equations along with suitable boundary conditions

• Laplace’s equation: uxx + uyy = ∇2u = 0, with u(x, y) prescribed on the boundary, that is u(x, y) =
f(x, y) on the boundary.

• Poisson’s equation: uxx + uyy = ∇2u = G(x, y), with u(x, y) prescribed on the boundary, that is
u(x, y) = f(x, y) on the boundary.

Finite difference mehtod

We have a two dimensional domain (x, y) ∈ R. We superimpose on this domain R, a rectangular network or
mesh of lines with step lengths h and k respectively, parallel to the x- and y-axis. The mesh of lines is called
a grid. The points of intersection of the mesh lines are called nodes or grid points or mesh points. The grid
points are given by (xi, yj) (see. Figs. 13.1.1 and 13.1.2), where the mesh lines are defined by

xi = ih, i = 0, 1, 2, . . . ; yj = jk, j = 0, 1, 2, . . .

119
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Figure 13.1.1: Nodes in a rectangle Figure 13.1.2: Nodes in a square

If h = k, then we have a uniform mesh. Denote the numerical solution at (xi, yi) by uij . At the nodes, the
partial derivatives in the differential equation are replaced by suitable difference approximations. That is, the
partial differential equation is approximated by a difference equation at each nodal point. This procedure is
called discretization of the partial differential equation. We use the following central difference approxima-
tions.

(ux)i,j =
1

2h
(ui+1,j − ui−1,j), (uy)i,j =

1

2k
(ui,j+1 − ui,j−1),

(uxx)i,j =
1

h2
(ui+1,j − 2ui,j + ui−1,j), (uyy)i,j =

1

k2
(ui,j+1 − 2ui,j + ui,j−1).

13.1.2 Solution of Laplace’s equation

We apply the Laplace’s equation at the nodal point (i, j). Inserting the above approximations in the Laplace’s
equation, we obtain

(uxx)i,j + (uyy)i,j =
1

h2
(ui+1,j − 2ui,j + ui−1,j +

1

k2
(ui,j+1 − 2ui,j + ui,j−1) = 0

or (ui+1,j − 2ui,j + ui−1,j + p2(ui,j+1 − 2ui,j + ui,j−1) = 0, where p = h/k. (13.1.1)

If h = k, that is, p = 1 (called the uniform mesh spacing), we obtain the difference approximation as

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 0. (13.1.2)

This approximation is called the standard five point formula. We can write this formula as

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1). (13.1.3)

We observe that ui,j is obtained as the mean of the values at the four neighbouring points in the x and y
directions. The nodal points that are used in computations are given in Fig. 13.1.3.

Remark 13.1.1. The nodes in the mesh are numbered in an orderly way. We number them from left to right
and from top to bottom or from bottom to top. A typical numbering is given in Figs. 13.1.4, 13.1.5.

System of equations governing the solutions: The difference approximation (13.1.2), to the Laplace
equation uxx + uyy = ∇2u = 0 is applied at all the nodes and the boundary conditions are used to simplify
the equations. The resulting system is a linear system of algebraic equations Au = d.

Structure of the coefficient matrix: Let us write the system of equations that arise when we have nine
nodes as given in Fig. 13.1.4. Since the boundary values are known, we have the following system of equation.
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Figure 13.1.3: Standard five point formula

Figure 13.1.4: Numbering of nodes Figure 13.1.5: Nodes in a square

At 1: u2 + u4 − 4u1 = b1, or -4u1 + u2 + u4 = b1,
At 2: u1 + u5 + u3 − 4u2 = b2, or u1 − 4u2 + u3 + u5 = b2,
At 3: u2 + u6 − 4u3 = b3, or u2 − 4u3 + u6 = b3,
At 4: u1 + u7 + u5 − 4u4 = b4, or u1 − 4u4 + u5 + u7 = b4,
At 5: u2 + u4 + u8 + u6 − 4u5 = 0, or u2 + u4 − 4u5 + u6 + u8 = 0,
At 6: u3 + u5 + u9 − 4u6 = b6, or u3 + u5 − 4u6 + u9 = b6,
At 7: u4 + u8 − 4u7 = b7, or u4 − 4u7 + u8 = b7,
At 8: u5 + u7 + u9 − 4u8 = b8, or u5 + u7 − 4u8 + u9 = b8,
At 9: u6 + u8 − 4u9 = b2.

where b1, b2, b3, b4, b6, b7, b8, b9 are the contributions from the boundary values. We have the following
linear algebraic system of equations,



−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4





u1
u2
u3
u4
u5
u6
u7
u8
u9


=



b1
b2
b3
b4
0
b6
b7
b8
b9


which is of the form Au = d. It is a band matrix system. The half band width is the number of nodal points
on each mesh line, that is, 3. Therefore, the total band width of the matrix is 3 + 3 + 1 = 7, that is, all the
non-zero elements are located in this band.
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13.1.3 Derivation of error in the approximation for the Laplace’s equation

Consider the case of uniform mesh, that is, h = k. Using the Taylor series expansions in Eq. (13.1.1) with
h = k, we obtain

[{u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)}+ {u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)}]

=

[{(
u+ h

∂u

∂x
+

h2

2

∂2u

∂x2
+

h3

6

∂3u

∂x3
+

h4

24

∂4u

∂x4
+ . . .

)
− 2u

+

(
u− h

∂u

∂x
+

h2

2

∂2u

∂x2
− h3

6

∂3u

∂x3
+

h4

24

∂4u

∂x4
− . . .

)}

+

{(
u+ h

∂u

∂y
+

h2

2

∂2u

∂y2
+

h3

6

∂3u

∂y3
+

h4

24

∂4u

∂y4
+ . . .

)
− 2u

+

(
u− h

∂u

∂y
+

h2

2

∂2u

∂y2
− h3

6

∂3u

∂y3
+

h4

24

∂4u

∂y4
− . . .

)}]
i,j

=

[
h2

(
∂2u

∂x2
+

∂2u

∂y2

)
+

h4

12

(
∂4u

∂x4
+

∂4u

∂y4

)
+ . . .

]
i,j

=
h4

12

(
∂4u

∂x4
+

∂4u

∂y4

)
i,j

+ . . .

(
∵

∂2u

∂x2
+

∂2u

∂y2
= 0

)

The truncation error of the method (13.1.1) when h = k, is given by

T.E. = (ui+1,j − 2ui,j + ui−1,j) + (ui,j+1 − 2ui,j + ui,j−1) =
h4

12

(
∂4u

∂x4
+

∂4u

∂y4

)
i,j

+ . . .

Hence, the truncation error of the method is of order O(h4). The order of the formula (13.1.1) is defined as

Order =
1

h2
(T.E.) = O(h2).

We say that the method is of second order. When a method converges, it implies that the errors in the numerical
solutions → 0 as h → 0. Suppose that a method is of order O(h2). Then, if we reduce the step length h by
a factor, say 2, and recompute the numerical solution using the step length h/2, then the error becomes
O[(h/2)2] = [O(h2)]]/4. Therefore, the errors in the numerical solutions are reduced by a factor of 4.

13.1.4 Solution of Poisson equation

Consider the solution of the Poisson’s equation

uxx + uyy = ∇2u = G(x, y),

with u(x, y) prescribed on the boundary, that is, u(x, y) = g(x, y) on the boundary. Eqs.(13.1.1)-(13.1.3)
becomes

(uxx)i,j + (uyy)i,j =
1

h2
(ui+1,j − 2ui,j + ui−1,j) +

1

k2
(ui,j+1 − 2ui,j + ui,j−1 = Gi,j (13.1.4)

(ui+1,j − 2ui,j + ui−1,j) + p2(ui,j+1 − 2ui,j + ui,j−1 = h2Gi,j , (13.1.5)
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where Gi,j = G(xi, yj) and p = h/k. If h = k, that is, p = 1, we obtain the difference approximation as

ui+1,j + ui−1,j) + ui,j+1 + ui,j−1 − 4ui,j = h2Gi,j , (13.1.6)

This approximation is called the standard five point formula for Poisson’s equation. The formula (13.1.5) is
of order O(h2 + k2) and formula (13.1.6) is of order O(h2). We also call it a second order formula.

Example 13.1.2. Solve uxx + uyy = 0 numerically for the following mesh with uniform spacing and with
boundary conditions as shown below.

Solution: We note that the partial differential equation and the boundary conditions are symmetric about
the diagonals AC and BD. Hence, u1 = u4 and u2 = u3. Therefore, we need to solve for two unknowns u1
and u2. We use the standard five point formula

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 0.

We obtain the following difference equations.

At 1: u2 + 3 + 3 + u3 − 4u1 = 0, or -4u1 + 2u2 = −6, or -2u1 + u2 = −3,
At 2: 6+6+u1 + u4 − 4u2 = 0, or 2u1 − 4u2 = −12.

Adding the two equations, we get −3u2 = −15, or u2 = 5. From the first equation, we get 2u1 = u2+3 =
5 + 3 = 8, or u1 = 4.

Example 13.1.3. Solve uxx + uyy = 0 numerically under the boundary conditions u(x, 0) = 2x, u(0, y) =
−y, u(x, 1) = 2x− 1, u(1, y) = 2− y with square mesh of width h = 1/3.

Solution: The mesh is given in figure below. We need to find the values of the four unknowns u1, u2, u3

and u4. We use the standard five point formula

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 0.
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Using the boundary conditions, we get the boundary values as

u5 = u

(
1

3
, 1

)
=

2

3
− 1 = −1

3
, u6 = u

(
2

3
, 1

)
=

4

3
− 1 =

1

3
, u7 = u

(
0,

2

3

)
= −2

3
,

u8 = u

(
1,

2

3

)
= 2− 2

3
=

4

3
, u9 = u

(
0,

1

3

)
= −1

3
, u10 = u

(
1,

1

3

)
= 2− 1

3
=

5

3
,

u11 = u

(
1

3
, 0

)
=

2

3
, u12 = u

(
2

3
, 0

)
=

4

3
.

At 1: u2 + u5 + u7 + u3 − 4u1 = 0, or -4u1 + 2u2 + u3 = 1
At 2: u8 + u6 + u1 + u4 − 4u2 = 0, or u1 − 4u2 + u4 = −5/3
At 3: u4 + u1 + u9 + u11 − 4u3 = 0, or u1 − 4u3 + u4 = −1/3
At 4: u10 + u2 + u3 + u12 − 4u4 = 0, or u2 + u3 − 4u4 = −3.

We solve the system of equations using the Gauss elimination method. We use the augmented matrix [A|d]
−4 1 1 0 1
1 −4 0 1 −5/3
1 0 −4 1 −1/3
0 1 1 −4 −3

 ;
R1/− 4−−−−−→,


1 −0.25 −0.25 0 −0.25
1 −4 0 1 −5/3
1 0 −4 1 −1/3
0 1 1 −4 −3

 ;

R2 −R1, R3 −R1 →


1 −0.25 −0.25 0 −0.25
0 −3.75 0.25 1 −1.41667
0 0.25 −3.75 1 −0.08333
0 1 1 −4 −3

 ;

R2/− 3.75 →


1 −0.25 −0.25 0 −0.25
0 1 0.06667 −0.26667 0.37778
0 0.25 −3.75 1 −0.08333
0 1 1 −4 −3

 ;

R3 − 0.25R2, R4 −R2 →


1 −0.25 −0.25 0 −0.25
0 1 −0.06667 −0.26667 0.37778
0 0 −3.73333 1.06667 −0.17778
0 0 1.06667 −3.73333 −3.377778

 ;

R3/− 3.73333 →


1 −0.25 −0.25 0 −0.25
0 1 −0.06667 −0.26667 0.37778
0 0 1 −0.28572 −0.04762
0 0 1.06667 −3.73333 −3.377778

 ;

R4 − 1.06667R3 →


1 −0.25 −0.25 0 −0.25
0 1 −0.06667 −0.26667 0.37778
0 0 1 −0.28572 −0.04762
0 0 0 −3.42856 −3.42857

 ;

Last equation gives u4 = 1. Substituting in the third equation, we get u3 = 0.044762 + 0.28572 = 0.33334.
Substituting in the second equation, we get u2 = 0.37778 + 0.06667(0.33334) + 0.26667 = 0.66667. Sub-
stituting in the first equation, we get u1 = −0.25 + 0.25(0.66667 + 0.33334) = 0).
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Example 13.1.4. Solve the boundary value problem for the Poisson equation

uxx + uyy = x2 − 1, |x| ≤ 1, |y| ≤ 1

u = 0 on the boundary of the square

using the five point formula with square mesh of width h = 1/2.

Solution. The mesh is given in the figure below. The partial differential equation and the boundary condi-
tions are symmetric about x-and y-axis. We need to find the values of the four unknowns u1, u2, u3 and u4.
We use the standard five point formula

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = h2Gi,j = 0.25
(
x2i − 1

)
We obtain the following difference equations.
At 1(0, 0) : u2 + u3 + u2 + u3 − 4u1 = −0.25,

or − 2u1 + u2 + u3 = −0.125.

At 2(0.5, 0) : 0 + u4 + u1 + u4 − 4u2 = 0.25(0.25− 1) = −0.1875,

or u1 − 4u2 + 2u4 = −0.1875.

At 3(0, 0.5) : u4 + 0 + u4 + u1 − 4u3 = 0.25(0− 1) = −0.25, or

u1 − 4u3 + 2u4 = −0.25.

At 4(0.5, 0.5) : 0 + 0 + u3 + u2 − 4u4 = 0.25(0.25− 1) = −0.1875, or

u2 + u3 − 4u4 = −0.1875

We solve the system of equations using the Gauss elimination method. We use the augmented matrix [A|d].
−2 1 1 0 −0.125
1 −4 0 2 −0.1875
1 0 −4 2 −0.25
0 1 1 −4 −0.1875

 ;
R1

−2
,


1 −0.5 −0.5 0 0.0625
1 −4 0 2 −0.1875
1 0 −4 2 −0.25
0 1 1 −4 −0.1875

 ;R2 −R1, R3 −R1,
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1 −0.5 −0.5 0 0.0625
0 −3.5 0.5 2 −0.25
0 0.5 −3.5 2 −0.3125
0 1 1 −4 −0.1875

 ;
R2

−3.5
,


1 −0.5 −0.5 0 0.0625
0 1 −0.14286 −0.57143 0.07143
0 0.5 −3.5 2 −0.3125
0 1 1 −4 −0.1875

 ;

R3 − 0.5R2, R4 −R2


1 −0.5 −0.5 0 0.0625
0 1 −0.14286 −0.57143 0.07143
0 0 −3.42857 2.28572 −0.34822
0 0 1.14286 −3.42857 −0.25893

 ;
R3

−3.42857
,


1 −0.5 −0.5 0 0.0625
0 1 −0.14286 −0.57143 0.07143
0 0 1 −0.66667 0.10156
0 0 1.14286 −3.42857 −0.25893

 ; R4 − 1.14286R3,


1 −0.5 −0.5 0 0.0625
0 1 −0.14286 −0.57143 0.07143
0 0 1 −0.66667 0.10156
0 0 0 −2.66667 −0.37500


Last equation gives u4 =

0.37500

2.66667
= 0.14062.

Substituting in the third equation, we get u3 = 0.10156 + 0.66667(0.14062) = 0.19531.
Substituting in the second equation, we get

u2 = 0.07143 + 0.14286(0.19531) + 0.57143(0.14062) = 0.17969.

Substituting in the first equation, we get u1 = 0.5(0.17969 + 0.19531) + 0.0625 = 0.25.

Exercise 13.1.5. 1. Find the solution of the Laplace equation uxx + uyy = 0 in the region R is a square
of side 3 units subject to the given boundary conditions u(0, y) = 0, u(3, y) = 3 + y, u(x, 0) =
x, u(x, 3) = 2x, using the standard five point formula. Assume step length as h = 1.

2. Find the solution of the Laplace equation uxx+uyy = 0 in the region R is a square of side 1 units subject
to the given boundary conditions u(x, y) = x − y, using the standard five point formula. Assume step
length as h = 1/3.

3. Solve the boundary value problem for the Poisson equation

uxx + uyy = x2 + y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

u(x, y) = x2 + y2 on the boundary

using the five point formula with square mesh of width h = 1/3.



Unit 14

Course Structure

• Partial Differential Equations: Finite difference methods for Parabolic partial differential equations.

14.1 Finite difference method for parabolic partial differential equations

Consider a thin homogeneous, insulated bar or a wire of length l. Let the bar be located on the x-axis on the
interval [0, l]. Let the rod have a source of heat. For example, the rod may be heated at one end or at the
middle point or has some source of heat. Let u(x, t) denote the temperature in the rod at any instant of time
t. The problem is to study the flow of heat in the rod. The partial differential equation governing the flow of
heat in the rod is given by the parabolic equation

ut = c2uxx, 0 ≤ x ≤ l, t > 0. (14.1.1)

where c2 is a constant and depends on the material properties of the rod. In order that the solution of the
problem exists and is unique, we need to prescribe the following conditions.

(i) Initial condition At time t = 0, the temperature is prescribed,

u(x, 0) = f(x), 0 ≤ x ≤ l. (14.1.2)

(ii) Boundary conditions Since the bar is of length l, boundary conditions at x = 0 and at x = l are to be
prescribed. These conditions are of the following types:
(a) Temperatures at the ends of the bar is prescribed

u(0, t) = g(t), u(l, t) = h(t), t > 0. (14.1.3)

(b) One end of the bar, say at x = 0, is insulated. This implies the condition that

∂u

∂x
= 0, at x = 0 for all time t.

At the other end, the temperature may be prescribed, u(l, t) = h(t), t > 0. Alternatively, we may have
the condition that the end of the bar at x = l is insulated.

127
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Since both initial and boundary conditions are prescribed, the problem is also called an initial boundary value
problem. For our discussion, we shall consider only the boundary conditions given in (14.1.3).

Mesh Generation

Superimpose on the domain 0 ≤ x ≤ l, t > 0, a rectangular network of mesh lines. Let the interval [0, l] be
divided into M equal parts. Then, the mesh length along the x-axis is h = l/M . The points along the x-axis
are xi = ih, i = 0, 1, 2, ...,M. Let the mesh length along the t-axis be k and define tj = jk. The mesh points
are (xi, tj) We call tj as the j-th time level (see Fig.14.1.1). At any point (xi, tj), we denote the numerical
solution by ui,j and the exact solution by u(xi, tj). Finite difference methods are classified into two Finite
difference methods are classified into two categories: explicit methods and implicit methods.

Figure 14.1.1: Nodes

14.1.1 Explicit Method

In explicit methods, the solution at each nodal point on the current time level is obtained by simple compu-
tations (additions, subtractions, multiplications and divisions) using the solutions at the previous one or more
levels.

Using the relationship between the derivative and forward differences, we have the approximation(
∂u

∂t

)
i,j

≈ 1

k

[
ui,j+1 − ui,j

]
. (14.1.4)

Using central differences, we also have the approximation(
∂2u

∂x2

)
i,j

≈ 1

h2
[
ui+1,j − 2ui,j + ui−1,j

]
. (14.1.5)

Therefore, an approximation to the heat conduction equation (14.1.1) at the point (xi, tj+1), is

1

k

[
ui,j+1 − ui,j

]
=

c2

h2
[
ui+1,j − 2ui,j + ui−1,j

]
=⇒ ui,j+1 − ui,j = λ

[
ui+1,j − 2ui,j + ui−1,j

]
=⇒ ui,j+1 = ui,j + λ

[
ui+1,j − 2ui,j + ui−1,j

]
=⇒ ui,j+1 = λui−1,j + (1− 2λ)ui,j + λui+1,j
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Figure 14.1.2: Schmidt method

where λ = kc2/h2, is called the mesh ratio parameter.

Note that the value ui,j+1 at the node (xi, tj+1) is being obtained explicitly using the values on the previous
time level tj . The nodes that are used in the computations are given in Fig. 14.1.2 This method is called the
Schmidt method. It is a two level method.

14.1.2 Truncation error of the Schmidt method

We have the method as
ui,j+1 − ui,j = λ

[
ui+1,j − 2ui,j + ui−1,j

]
.

Expanding in Taylor’s series, we obtain the left hand and right hand sides as

u(xi, tj + k)− u(xi, tj) =

[{
u+ k

∂u

∂t
+

k2

2

∂2u

∂t2
+ . . .

}
− u

]
=

[
k
∂u

∂t
+

k2

2

∂2u

∂t2
+ . . .

]

and

λ
[
ui+1,j − 2ui,j + ui−1,j

]
=

kc2

h2

[{
u+ h

∂u

∂x
+

h2

2

∂2u

∂x2
+

h3

6

∂3u

∂x3
+ . . .

}
− 2u+

{
u− h

∂u

∂x
+

h2

2

∂2u

∂x2
− h3

6

∂3u

∂x3
+ . . .

}]

=
kc2

h2

[
h2

∂2u

∂x2
+

h4

12

∂4u

∂x4
+ . . .

]
= kc2

[
∂2u

∂x2
+

h2

12

∂4u

∂x4
+ . . .

]

where all the terms on the right hand sides are evaluated at (xi, tj). The truncation error is given by

T.E. = u(xi, tj + k)− u(xi, tj)− λ
[
u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

]
=

[
k
∂u

∂t
+

k2

2

∂2u

∂t2
+ . . .

]
− kc2

[
∂2u

∂x2
+

h2

12

∂4u

∂x4
+ . . .

]

=

[
k
∂u

∂t
− c2

∂2u

∂x2
+ . . .

]
+

k2

2

∂2u

∂t2
− kh2c2

12

∂4

∂x4

Now, using the differential equation

∂u

∂t
= c2

∂2u

∂x2
, and

∂2u

∂t2
=

∂

∂t

(
∂u

∂t

)
= c2

∂

∂t

(
∂2u

∂x2

)
= c4

∂2

∂x2

(
∂2u

∂x2

)
= c4 (14.1.6)
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we obtain

T.E =
k2c4

2

∂4u

∂x4
− kh2c2

12

∂4u

∂x4
+ . . . =

kh2c2

12

(
(6λ− 1)

∂4u

∂x4
+ . . .

)
(14.1.7)

The order of the method is given by

order =
1

k
(T.E) = O(h2 + k). (14.1.8)

Computational procedure

The initial condition u(x, 0) = f(x) gives the solution at all the nodal points on the initial line (level 0).
The boundary conditions u(0, t) = g(t), u(l, t) = h(t), t > 0 give the solutions at all the nodal points on the
boundary lines x = 0 and x = l, (called boundary points), for all time levels. We choose a value for and h.
This gives the value of the time step length k. Alternately, we may choose values for h and k. The solutions at
all nodal points, (called interior points), on level 1 are obtained using the explicit method. The computations
are repeated for the required number of steps. If we perform m steps of computation, then we have computed
the solutions up to time tm = mk. Let us illustrate the method through some problems.

Example 14.1.1. Solve the heat conduction equation ut = uxx, 0 ≤ x ≤ 1, with u(x, 0) = sin(πx), 0 ≤
x ≤ 1, u(0, t) = u(1, t) = 0 using the Schmidt method. Assume h = 1/3. Compute with (i) λ = 1/2
for two time steps, (ii) λ = 1/4 for four time steps, (iii) λ = 1/6 for six time steps. If the exact solution is
u(x, t) = exp(−π2t) sin(πx), compare the solutions at time t = 1/9.

Solution. The Schmidt method is given by

ui,j+1 = λui−1,j + (1− 2λ)ui,j + λui+1,j

We are given h = 1/3. Hence, we have four nodes on each mesh line (see Figure below). We have to find the
solution at the two interior points.

The initial condition gives the values

u

(
1

3
, 0

)
= u1,0 = sin

(π
3

)
=

√
3

2

u

(
2

3
, 0

)
= u2,0 = sin

(
2π

3

)
=

√
3

2
= 0.866025

The boundary conditions give the values u0,j = 0, u3,j = 0, for all j.
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(i) We have λ = 1/2, h = 1/3, k = λh2 = 1/18. The computations are to be done for two time steps, that
is, upto t = 1/9. For λ = 1/2, we get the method

ui,j+1 =
1

2
(ui−1,j + ui+1,j) , j = 0, 1; i = 1, 2.

We have the following values.

For j = 0 : i = 1 :u1,1 = 0.5 (u0,0 + u2,0) = 0.5(0 + 0.866025) = 0.433013.

i = 2 :u2,1 = 0.5 (u1,0 + u3,0) = 0.5(0.866025 + 0) = 0.433013.

For j = 1 : i = 1 : u1,2 = 0.5 (u0,1 + u2,1) = 0.5(0 + 0.433013) = 0.216507.

i = 2 : u2,2 = 0.5 (u1,1 + u3,1) = 0.5(0.433013 + 0) = 0.216507.

After two steps t = 2k = 1/9. Hence,

u

(
1

3
,
1

9

)
= u

(
2

3
,
1

9

)
= 0.216507.

(ii) We have λ = 1/4, h = 1/3, k = λh2 = 1/36. The computations are to be done for four time steps, that
is, upto t = 1/9. For λ = 1/4, we get the method

ui,j+1 =
1

4
(ui−1,j + 2ui,j + ui+1,j) , j = 0, 1, 2, 3; i = 1, 2.

We have the following values.

For j = 0 : i = 1 : u1,1 = 0.25 (u0,0 + 2u1,0 + u2,0) = 0.25[0 + 3(0.866025)] = 0.649519.

i = 2 : u2,1 = 0.25 (u1,0 + 2u2,0 + u3,0) = 0.25[3(0.866025) + 0] = 0.649519.

For j = 1 : i = 1 : u1,2 = 0.25 (u0,1 + 2u1,1 + u2,1) = 0.25[0 + 3(0.649519)] = 0.487139.

i = 2 : u2,2 = 0.25 (u1,1 + 2u2,1 + u3,1) = 0.25[3(0.649519) + 0] = 0.487139.

For j = 2 : i = 1 : u1,3 = 0.25 (u0,2 + 2u1,2 + u2,2) = 0.25[0 + 3(0.487139)] = 0.365354.

i = 2 : u2,3 = 0.25 (u1,2 + 2u2,2 + u3,2) = 0.25[3(0.487139) + 0] = 0.365354.

For j = 3 : i = 1 : u1,4 = 0.25 (u0,3 + 2u1,3 + u2,3) = 0.25[0 + 3(0.365354)] = 0.274016.

i = 2 : u2,4 = 0.25 (u1,3 + 2u2,3 + u3,3) = 0.25[3(0.365354) + 0] = 0.274016.

After four steps t = 4k = 1/9. Hence,

u

(
1

3
,
1

9

)
= u

(
2

3
,
1

9

)
= 0.274016

(iii) We have λ = 1/6, h = 1/3, k = λh2 = 1/54. The computations are to be done for six time steps, that is,
upto t = 1/9. For λ = 1/6, we get the method

ui,j+1 =
1

6
(ui−1,j + 4ui,j + ui+1,j) , j = 0, 1, 2, 3, 4, 5; i = 1, 2.
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We have the following values.

For j = 0 : i = 1 : u1,1 =
1

6
(u0,0 + 4u1,0 + u2,0) =

1

6
[0 + 5(0.866025)] = 0.721688.

i = 2 : u2,1 =
1

6
(u1,0 + 4u2,0 + u3,0) =

1

6
[5(0.866025) + 0] = 0.721688.

For j = 1 : i = 1 : u1,2 =
1
6 (u0,1 + 4u1,1 + u2,1) =

1
6 [0 + 5(0.721688)] = 0.601407

i = 2 : u2,2 =
1

6
(u1,1 + 4u2,1 + u3,1) =

1

6
[5(0.721688) + 0] = 0.601407.

For j = 2 : i = 1 : u1,3 =
1
6 (u0,2 + 4u1,2 + u2,2) =

1
6 [0 + 5(0.601407)] = 0.501173.

i = 2 : u2,3 =
1

6
(u1,2 + 4u2,2 + u3,2) =

1

6
[5(0.601407) + 0] = 0.501173.

For j = 3 : i = 1 : u1,4 =
1
6 (u0,3 + 4u1,3 + u2,3) =

1
6 [0 + 5(0.501173)] = 0.417644.

i = 2 : u2,4 =
1

6
(u1,3 + 4u2,3 + u3,3) =

1

6
[5(0.501173) + 0] = 0.417644.

For j = 4 : i = 1 : u1,5 =
1
6 (u0,4 + 4u1,4 + u2,4) =

1
6 [0 + 5(0.417644)] = 0.348037.

i = 2 : u2,5 =
1

6
(u1,4 + 4u2,4 + u3,4) =

1

6
[5(0.417644) + 0] = 0.348037.

For j = 5 : i = 1 : u1,6 =
1
6 (u0,5 + 4u1,5 + u2,5) =

1
6 [0 + 5(0.348037)] = 0.290031.

i = 2 : u2,6 =
1

6
(u1,5 + 4u2,5 + u3,5) =

1

6
[5(0.348037) + 0] = 0.290031.

After six steps t = 6k = 1/9. Hence,

u

(
1

3
,
1

9

)
= u

(
2

3
,
1

9

)
= 0.290031.

The magnitudes of errors at x = 1/3 and at x = 2/3 are same. The exact solution at t = 1/9 is

u

(
1

3
,
1

9

)
= u

(
2

3
,
1

9

)
= exp

(
−π2

9

)
sin
(π
3

)
= 0.289250.

The magnitudes of errors are the following:

λ = 1/2 : |0.216507− 0.289250| = 0.072743.
λ = 1/4 : |0.274016− 0.289250| = 0.015234.
λ = 1/6 : |0.290031− 0.289250| = 0.000781.

We note that the higher order method produced better results.

Exercise 14.1.2. 1. Solve uxx = 32ut, 0 ≤ x ≤ 1, taking h = 0.5 and u(x, 0) = 0, 0 ≤ x ≤ 1, u(0, t) =
0, u(1, t) = t, t > 0. Use an explicit method with λ = 1/2. Compute for four time steps.

2. Solve ut = uxx, 0 ≤ x ≤ 1, with u(x, 0) = x(1 − x), 0 ≤ x ≤ 1 and u(0, t) = u(1, t) = 0 for all
t > 0. Use explicit method with h = 0.25 and = 0.25. Compute for four time steps.

3. Solve uxx = 16ut, 0 ≤ x ≤ 1, with u(x, 0) = x(1 − x), 0 ≤ x ≤ 1 and u(0, t) = u(1, t) = 0 for all
t > 0. Use Schmidt method with h = 0.25 and λ = 1/6. Compute for four time steps.

4. Solve uxx = 4ut, 0 ≤ x ≤ 1, with u(x, 0) = 2x for x ∈ [0, 1/2] and 2(1 − x) for x ∈ [1/2, 1]; and
u(0, t) = u(1, t) = 0 for all t > 0. Use Schmidt method with h = 0.25 and λ = 0.5. Compute for four
time steps.
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14.1.3 Implicit method

Explicit methods have the disadvantage that they have a stability condition on the mesh ratio parameter λ. We
have seen that the Schmidt method is stable for λ ≤ 0.5. This condition severely restricts the values that can
be used for the step lengths h and k. In most practical problems, where the computation is to be done up to
large value of t, these methods are not useful because the time taken is too high. In such cases, we use the
implicit methods. We shall discuss the most popular and useful method called the Crank-Nicolson method.
There are a number of ways of deriving this method. We describe one of the simple ways. Denote ∇t as the
backward difference in the time direction. We write the relation

k
∂u

∂t
= − log (1−∇t)u =

[
∇t +

1

2
∇2

t +
1

3
∇3

t + . . .

]
u. (14.1.9)

Now, approximate

k
∂u

∂t
≈
[
∇t +

1

2
∇2

t

]
u ≈

[
∇t

1− (1/2)∇t

]
u. (14.1.10)

If we expand the operator on the right hand side, we get

∇t

1− (1/2)∇t
= ∇t

[
1− 1

2
∇t

]−1

= ∇t

[
1 +

1

2
∇t +

1

4
∇2

t + . . .

]
which agrees with the first two terms on the right hand side of (14.1.9). Applying the differential equation at
the nodal point (i, j + 1), (see Fig. 14.1.3), we obtain(

∂u

∂t

)
i,j+1

= c2
(
∂2u

∂x2

)
i,j+1

.

Using the approximation given in (14.1.10) to left hand side and the central difference approximation (14.1.5)
to the right hand side, we obtain

1

k

[
∇t

1− (1/2)∇t

]
ui,j+1 =

c2

h2
δ2xui,j+1

or, ∇tui,j+1 =
kc2

h2

(
1− 1

2
∇t

)
δ2xui,j+1,

or, ∇tui,j+1 = λ

(
δ2xui,j+1 −

1

2
∇tδ

2
xui,j+1

)
,

or, ∇tui,j+1 = λ

(
δ2xui,j+1 −

1

2
δ2x∇tui,j+1

)
.

or, ∇tui,j+1 = λ

(
δ2xui,j+1 −

1

2
δ2x {ui,j+1 − ui,j}

)
,

or, ∇tui,j+1 = λ

(
δ2xui,j+1 −

1

2

{
δ2xui,j+1 − δ2xui,j

})
,

or, ∇tui,j+1 =
λ

2

(
δ2xui,j+1 + δ2xui,j

)
, (14.1.11)

or, ui,j+1 − ui,j =
λ

2

(
δ2xui,j+1 + δ2xui,j

)
,

or, ui,j+1 −
λ

2
δ2xui,j+1 = ui,j +

λ

2
δ2xui,j

or, ui,j+1 −
λ

2
(ui+1,j+1 − 2ui,j+1 + ui−1,j+1 = ui,j +

λ

2
(ui+1,j − 2ui,j + ui−1,j),

or, −λ

2
ui−1,j+1 + (1 + λ)ui,j+1 −

λ

2
ui+1,j+1 =

λ

2
ui−1,j + (1− λ)ui,j +

λ

2
ui+1,j (14.1.12)



134 UNIT 14.

where λ = kc2/h2. This method is called the Crank-Nicolson method. The nodal points that are used in the
method are given in Fig. 14.1.3.

Figure 14.1.3: Nodes in Crank-Nicolson method.

Remark 14.1.3. 1. The order of the Crank-Nicolson method is O(k2 + h2).

2. Implicit methods often have very strong stability properties. Stability analysis of the Crank-Nicolson
method shows that the method is stable for all values of the mesh ratio parameter λ. This implies that
there is no restriction on the values of the mesh lengths h and k. Depending on the particular problem
that is being solved, we may use sufficiently large values of the step lengths. Such methods are called
unconditionally stable methods.

3. The system of equations that is obtained if we apply the Crank- Nicolson method is a tri-diagonal system
of equations. It uses the three consecutive unknowns ui−1,j+1, ui,j+1 and ui+1,j+1 on the current time
level. This is the advantage of the method.

Computational procedure

The initial condition u(x, 0) = f(x) gives the solution at all the nodal points on the initial line (level 0).
The boundary conditions u(0, t) = g(t), u(l, t) = h(t), t > 0 give the solutions at all the nodal points on the
lines x = 0 and x = l for all time levels. We choose a value for λ and h. This gives the value of the time step
length k. Alternately, we may choose the values for h and k. The difference equations at all nodal points on
the first time level are written. This system of equations is solved to obtain the values at all the nodal points
on this time level. The computations are repeated for the required number of steps. If we perform m steps of
computation, then we have computed the solutions up to time tm = mk.

Example 14.1.4. Solve the equation ut = uxx subject to the conditions

u(x, 0) = sin(πx), 0 ≤ x ≤ 1, u(0, t) = u(1, t) = 0

using the Crank-Nicolson method with, h = 1/3, k = 1/36. Do one time step.

Solution. We have

c2 = 1, h =
1

3
, k =

1

36
, λ =

kc2

h2
=

1

36
(9) =

1

4
.

Crank-Nicolson method is given by

−λ

2
ui−1,j+1 + (1 + λ)ui,j+1 −

λ

2
ui+1,j+1 =

λ

2
ui−1,j + (1− λ)ui,j +

λ

2
ui+1,j
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For λ = 1/4, we have the method as

− 1

8
ui−1,j+1 +

5

4
ui,j+1 −

1

8
ui+1,j+1 =

1

8
ui−1,j +

3

4
ui,j +

1

8
ui+1,j

or, − ui−1,j+1 + 10ui,j+1 − ui+1,j+1 = ui−1,j + 6ui,j + ui+1,j , j = 0; i = 1, 2.

The initial condition gives the values

u0,0 = 0, u1,0 = sin(π/3) = (
√
3/2) = u2,0, u3,0 = 0.

The boundary conditions give the values u0,j = 0 = u3,j for all j,
We have the following equations.

For j = 0, i = 1 : −u0,1 + 10u1,1 − u2,1 = u0,0 + 6u1,0 + u2,0

or 10u1,1 − u2,1 =
6
√
3

2 +
√
3
2 = 7

√
3

2 = 6.06218.

i = 2 : −u1,1 + 10u2,1 − u3,1 = u1,0 + 6u2,0 + u3,0

or −u1,1 + 10u2,1 = u1,0 + 6u2,0 =
√
3
2 + 6

√
3

2 = 7
√
3

2 = 6.06218.

Subtracting the two equations, we get 11u1,1 − 11u2,1 = 0.

Hence, u1,1 = u2,1. The solution is given by

u1,1 = u2,1 =
6.06218

9
= 0.67358

Exercise 14.1.5. 1. Solve uxx = ut in 0 < x < 2, t > 0,

u(0, t) = u(2, t) = 0, t > 0andu(x, 0) = sin(πx/2), 0 ≤ x ≤ 2,

using δx = 0.5, δt = 0.25 for one time step by Crank-Nicolson implicit finite difference method.

2. Solve by Crank-Nicolson method the equation uxx = ut subject to

u(x, 0) = 0, u(0, t) = 0 and u(1, t) = t,

for two time steps.
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3. Solve the heat equation ut = uxx, 0 ≤ x ≤ 1, subject to the initial and boundary conditions

u(x, 0) = sin(2πx), 0 ≤ x ≤ 1, u(0, t) = u(1, t) = 0

using the Crank-Nicolson method with, h = 0.25, λ = 0.8. Integrate for two time steps. If the exact
solution of the problem is u(x, t) = exp(−4π2t) sin(2πx), find the magnitudes of the errors on the
second time step.

4. Find the solution of the equation 4ut = uxx, 0 ≤ x ≤ 1 subject to the conditions

u(x, 0) = 3x, for x ∈ [0, 1/2] and 3(1− x), x ∈ [1/2, 1], u(0, t) = 0 = u(1, t)

using the Crank-Nicolson method with h = 0.25, k = 1/32. Integrate for two time steps.
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Unit 1

Course Structure

• Curves in the plane and space

• Surfaces in three-dimension

• Smooth surface

1.1 Curves

What are curves? As we have read so far, the line y− 2x = 1 is a curve (even though its not curved). A curve
can be said to be a generalisation of a straight line whose curvature is not zero. Say a circle x2 + y2 = 1, or
the parabola, y = x2. All these curves can be described by means of their Cartesian equation f(x, y) = c,
where, f is a function of x and y and c is a constant. In this perspective, a curve may be considered as the set
of points, namely

C = {(x, y) ∈ R2|f(x, y) = c}

These are all curves in the R2. In R3, for example, the x-axis is the straight line given by y = 0, z = 0. More
generally, a curve in R3 is defined as a pair of equations

f1(x, y, z) = c1, f2(x, y, z) = c2

There is another way to define curves which is more useful in many situations, which is viewed as the path
traced out by a moving point in space.

Definition 1.1.1. A parametrized curve is a path in the xy-plane traced out by the point (x(t), y(t)) as the
parameter t ranges over an interval I .

C = {(x(t), y(t)) : t ∈ I}

For example, the graph of the function y = f(x), x ∈ I is a curve C parametrised by the equations

x(t) = t, y(t) = f(t), t ∈ I

1
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The above equations give a parametrisation of the curve y = f(x). Also, a given curve may have more than
one parametrisation. For example, the curve y = 2x, x ∈ [1, 3] can be parametrised as

x(t) = t, y(t) = 2t, t ∈ [1, 3]

It can also be parametrised as
x(t) = t+ 1, y(t) = 2t+ 2, t ∈ [0, 2]

Example 1.1.2. Consider the parabola x = 1− y2, −1 ≤ y ≤ 1. Then we can think of two parametrisations
of it as

1. When we set y(t) = t and x(t) = 1 − t2, t ∈ [−1, 1]. Changing the domain to all real t gives us the
whole parabola.

2. When we set y(t) = cos t and x(t) = 1− cos2t, t ∈ [0, π]. Changing the domain to all real t does not
give us any more of the parabola.

Example 1.1.3. Now, consider the circle x2 + y2 = 1. If we take x(t) = t and y(t) =
√
1− t2, then this

will only represent the upper half of the circle since
√
1− t2 ≥ 0 always. Similarly, we could not have taken

y(t) = −
√
1− t2 since that would have traced the lower half of the circle. So, let us take the parametrisation

as x(t) = cos t and y(t) = sin t, where t ∈ [0, 2π]. Then we see that the curve (x(t), y(t)) traces the whole
of the circle as t traverses [0, 2π].

There are other several examples which we will omit now since we have already studied those in DG I. We
will straightaway move on to surfaces in three dimensions.

1.1.1 Surface in Three Dimensions

Just like a curve is the basic building block for figures in a plane, a surface is the basic building block for
figures in space. A surface is essentially a curve with depth. Curves and surfaces are analogous in many ways.
If you think of a curve as being the trace of the motion of a point in a plane, a surface is like the trace of the
motion of a curve in space. Surfaces are continuous, meaning that given two points on a surface, you can
start from one and reach the other without leaving that surface. Just like a curve is still one-dimensional, a
surface, although it exists in three dimensions, is still two-dimensional. For example, when you build a curve
by tracing the motion of a point, that curve, although it spans both length and width, has no width of its own.
The curve doesn’t have area, it only has length, one dimension. Similarly, a surface can span more than one
plane, but it still does not have depth of its own. It only has two dimensions, length and width. We will
work mostly with the simplest surface, a plane. Before formally defining a surface, we will see certain useful
definitions.

Definition 1.1.4. A subset U of Rn is called Open if, whenever a is a point in U , there exists a positive ϵ such
that

a ∈ U and ||u − a|| < ϵ implies u ∈ U

The whole of Rn is an open set. Also, the open ball

Dr(a) = {u ∈ Rn : ||u − a|| < r},

with centre at a and radius r > 0. However, the set

Dr(a) = {u ∈ Rn : ||u − a|| ≤ r}

is not open.
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Definition 1.1.5. If X and Y are subsets of Rm and Rn respectively, a map f : X → Y is said to be
continuous at a point a ∈ X if given any ϵ > 0, there exists a δ > 0 such that

u ∈ X and ||u − a|| < δ implies ||f(u)− f(a)|| < ϵ

If f is continuous at every point of X , then it is said to be continuous on X . Composites of continuous maps
are continuous.

Continuous maps can also be equivalently defined as follows:
f is continuous if and only if, for any open set V ∈ Rn, there is an open set U in Rm such that U ∩X = {x ∈
X|f(x) ∈ V }.

Let us now formally define a surface in R3.

Definition 1.1.6. A subset S of R3 is a surface if, for every p ∈ S, there is an open set U in R2 and an open
set W in R3 containing p such that S ∩W is homeomorphic to U . A subset of a surface S of the form S ∩W ,
where W is an open subset of R3, is called an open subset of S. A homeomorphism σ : U → S ∩W as in
this definition is called a surface patch or parametrisation of the open subset S ∩W of S. A collection of such
surface patches whose images cover the whole of S is called an atlas of S.

A surface in three dimensions is often presented by a defining equation; one can also describe it by param-
eters, but one requires two of them: varying one parameter can only produce a one dimensional figure, some
sort of curve.

Example 1.1.7. Every plane in R3 is a surface with an atlas consisting of a single surface patch. In fact, let a
be a point on the plane, and let p and q be two unit vectors that are parallel to the plane and perpendicular to
each other. If v is any point of the plane, v-a is parallel to the plane, and so

v-a = up + vq

for some scalars u and v. Thus, the desired surface patch is

σ(u, v) = a + up + vq

and its inverse map is
σ−1(v) = ((v-a).p, (v-a).q).

These formulae make it clear that σ and σ−1 are continuous, and hence σ is a homeomorphism.

Example 1.1.8. A circular cylinder is the set of points of R3 that are at a fixed distance (the radius of the
cylinder) from a fixed straight line (its axis). For example, the circular cylinder of radius 1 and axis the
z–axis, which we shall call the unit cylinder, is

S = {(x, y, z) ∈ R3|x2 + y2 = 1}

It can be parametrised as
σ(u, v) = (cosu, sin v, v)

Clearly, σ(u, v) ∈ S for all (u, v) ∈ R2, and every point of S is of this form. Moreover σ is continuous. But
it is not injective, and so is not a homeomorphism because σ(u, v) = σ(u + 2π, v) for all (u, v). To get an
injective map we can restrict u to lie in an interval of length ≤ 2π, say 0 ≤ u < 2π. However, although the
restriction σ|V to σ where

V = {(u, v) ∈ R2|0 ≤ u < 2π}
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is injective, V is not an open subset of R2 and so σ|V is not a surface patch. The largest open subset of R2

contained in V is
U = {(u, v) ∈ R2|0 < u < 2π}

and the restriction σ|U to U is a surface patch. However, σ|U does not cover the whole of S, but only the open
subset obtained by removing the line x = 1, y = 0 from S.

To get an atlas for S, we therefore need at least one more surface patch. We can take σ|Ũ , where

Ũ = {(u, v) ∈ R2| − π < u < π}

which covers the open subset of S obtained by removing the line x = −1, y = 0. Every point of S is in the
image of at least one of the surface patches σ|U , σ|Ũ . So, {σ|U , σ|Ũ} is an atlas for S, and S is a surface.

1.1.2 Smooth Surfaces

In Differential Geometry we use calculus to analyse surfaces (and other geometric objects). We must be able
to make sense of the statement that a function on a surface is differentiable, for example. For this, we have to
consider surfaces with some extra structure.

First, if U is an open subset of Rm, we say that a map f : U → Rn is smooth if each of the n components
of f , have continuous partial derivatives of all orders. For example, if m = 2 and n = 3, and

f(u, v) = (f1(u, v), f2(u, v), f3(u, v)),

then
∂f

∂u
=

(
∂f1
∂u

,
∂f2
∂u

,
∂f3
∂u

)
,
∂f

∂v
=

(
∂f1
∂v

,
∂f2
∂v

,
∂f3
∂v

)
and similarly for higher derivatives. We often use the following abbreviations:

∂f

∂u
= fu,

∂f

∂v
= fv,

∂2f

∂u2
= fuu,

∂2f

∂u∂v
= fuv,

∂2f

∂v∂u
= fvu,

∂2f

∂v2
= fvv,

and so on. From advanced calculus we know that fuv = fvu, if f is smooth.
It now makes sense to say that a surface patch σ : U → R3 is smooth. We have further definitions.

Definition 1.1.9. A surface patch σ : U → R3 is called regular if it is smooth and the vectors σu and σv
are linearly independent at all points (u, v) ∈ U . Equivalently, σ should be smooth and the vector product
σu × σv should be non-zero at every point of U .

Definition 1.1.10. If S is a surface, an allowable surface patch for S is a regular surface patch σ : U → R3

such that σ is a homeomorphism from U to an open subset of S. A smooth surface is a surface S such that,
for any point p ∈ S, there is an allowable surface patch σ such that p ∈ σ(U). A collection A of allowable
surface patches for a surface S such that every point of S is in the image of at least one patch in A is called
an atlas for the smooth surface S.

Example 1.1.11. The plane we have dealt with earlier is a smooth surface, since

σ(u, v) = a + up + vq

is clearly smooth and σu = p and σv = q are linearly independent because p and q were chosen to be
perpendicular unit vectors.
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Example 1.1.12. The unit cylinder we have previously dealt with is also a smooth surface since

σ(u, v) = (cosu, sinu, v)

is clearly smooth and
σu = (− sinu, cosu, 0), σv = (0, 0, 1)

are obviously linearly independent for all (u, v), so σ|U and σ|Ũ are regular surface patches.

We have the following important result in this connection:

Theorem 1.1.13. Let U and Ũ be open subsets of R2 and let σ : U → R3 be a regular surface patch. Let
Φ : Ũ → U be a bijective smooth map with smooth inverse map Φ−1 : U → Ũ . Then, σ̃ = σ ◦ Φ : Ũ → R3

is a regular surface patch.

Proof. The patch σ̃ is smooth because any composite of smooth maps is smooth. As for regularity, let (u, v) =
Φ(ũ, ṽ). By the chain rule,

σ̃ũ =
∂u

∂ũ
σu +

∂v

∂ũ
σv, σ̃ṽ =

∂u

∂ṽ
σu +

∂v

∂ṽ
σv,

so,

σ̃ũ × σ̃ṽ =

(
∂u

∂ũ

∂v

∂ṽ
− ∂u

∂ṽ

∂v

∂ũ

)
σu × σv (1.1.1)

The scalar on the right-hand side of this equation is the determinant of the Jacobian matrix

J(Φ) =

[
∂u
∂ũ

∂v
∂ũ

∂u
∂ṽ

∂v
∂ṽ

]
of Φ. We recall from calculus that, if ψ and ψ̃ are two smooth maps between open sets of R2,

J(ψ̃ ◦ ψ) = J(ψ̃)J(ψ)

Taking ψ = Φ and ψ̃ = Φ−1, we see that J(Φ−1) = J(Φ)−1. In particular, J(Φ) is invertible, so its
determinant is non-zero and equation (1.1.1) shows that σ̃ is regular.

If regular surface patches σ and σ̃ related as in this theorem, then σ̃ is said to be a reparametrisation of σ,
and that Φ is a reparametrisation map.

Exercises

1. Show that the curcular cylinder S = {(x, y, z) ∈ R3|x2 + y2 = 1} can be covered by a single surface
patch, and so is a surface.

2. Define a surface patch σx± : U → R3 for the unit sphere by solving the equation x2 + y2 + z2 = 1 for
x in terms of y and z :

σx±(u, v) = (±
√

1− u2 − v2, u, v),

defined on the open set U = {(u, v) ∈ R2 < 1}. Define σy± and σz± respectively. Show that these six
patches give the sphere the structure of a surface.

3. Show that if f(x, y) is a smooth function, its graph {(x, y, z) ∈ R3|z = f(x, y)} is a smooth surface
with atlas consisting of the single regular surface patch σ(u, v) = (u, v, f(u, v)).
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4. If S is a smooth surface, define the notion of a smooth function S → R. Show that if S is a smooth
surface, each component of the inclusion map S → R3 is a smooth function S → R.

5. Show that translation and invertible linear transformations of R3 take smooth surfaces to smooth sur-
faces.



Unit 2

Course Structure

• Tangents and derivatives

• Normal and orientability

2.1 Tangents and Derivatives

Definition 2.1.1. A tangent vector to a surface S at a point p ∈ S is the tangent vector at p of a curve in S
passing through p. The tangent space TpS of S at p is the set of all tangent vectors to S at p.

To understand the tangent space TpS, choose a surface patch σ : U → R3 of S such that p is the image of
σ, say σ(u0, v0) = p. If a curve γ lies in S and passes through p when t = t0, say, there are functions u(t)
and v(t) such that

γ(t) = σ(u(t), v(t)) (2.1.1)

for all values of t close to t0, and u(t0) = u0, v(t0) = v0. The functions u and v are necessarily smooth;
conversely, it is obvious that if t 7→ (u(t), v(t)) is smooth, then equation (2.1.1) defines a curve lying in S.

Theorem 2.1.2. Let σ : U → R3 be a patch of a surface S containing a point p ∈ S, and let (u, v) be
coordinates in U . The tangent space to S at p is the vector subspace of R3 spanned by the vectors σu and
σv(the derivatives are evaluated at the point (u0, v0) ∈ U such that σ(u0, v0) = p).

Proof. Let γ be a smooth curve in S, say

γ(t) = σ(u(t), v(t)).

Denoting d/dt be a dot, we have, by the chain rule,

γ̇ = σuu̇+ σvv̇.

Thus, γ̇ is a linear combination of σu and σv.
Conversely, any vector in the vector subspace of R3, spanned by σu and σv is of the form λσu + µσv for

some scalars λ and µ. Define
γ(t) = σ(u0 + λt, v0 + µt).

7
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Then, γ is a smooth curve in S and at t = 0, that is, at the point p ∈ S, we have

γ̇ = λσu + µσv

This shows that every vector in the span of σu and σv is the tangent vector at p of some curve in S.

Since σ is assumed to be regular, σu and σv v are linearly independent so the tangent space is two-
dimensional, and will be called the tangent plane from now on.

As a first application of the tangent plane to a smooth surface, we shall explain what is meant by the
derivative of a smooth map between surfaces. Suppose then that f : S → S̃ is such a map. The derivative of
f at a point p ∈ S should measure how the point f(p) ∈ S̃ changes when p moves to a nearby point, say q of
S. If the points p and q are very close together, the straight line through them should be nearly tangent to S at
p. So we should expect that the derivative of f at p associates to any tangent vector to S at p a tangent vector
to S̃ at f(p), in other words, the derivative of f at p should be a map Dpf : TpS → Tf(p)S̃.

To give a precise definition of Dpf we let w ∈ TpS be a tangent vector to S at p. By definition, w is the
tangent vector at p of a curve γ in S passing through p, say w = γ̇(t0). Then, γ̃ = f ◦ γ is a curve in S̃
passing through f(p) when t = t0, so w̃ = ˙̃γ(t0) ∈ Tf(p)S̃.

Definition 2.1.3. With the above notation, the derivative Dpf of f at the point p ∈ S is the map Dpf :
TpS → Tf(p)S̃ such that Dpf(w) = w̃ for any tangent vector w ∈ TpS.

The first thing we must do now is to show that this definition makes sense, that is, that Dpf(w) depends
only on f,p, and w: there are (infinitely) many curves γ with the correct tangent vector w at p and a priori
Dpf(w) could depend on which curve is chosen.

Let σ : U → R3 be a surface patch of S containing p, say p = σ(u0, v0), and let α, β be the smooth
functions on U such that

f(σ(u, v)) = σ̃(α(u, v), β(u, v)).

Let w = λσu + µσv be the tangent vector at p of a curve γ(t) = σ(u(t), v(t)), where u and v are smooth
functions such that u̇(t0) = λ, v̇(t0) = µ. Since the corresponding curve on S̃ is γ̃(t) = σ̃(ũ(t), ṽ(t)), where
ũ(t) = α(u(t), v(t)) and ṽ(t) = β(u(t), v(t)), we have

Dpf(w) = ˙̃uσ̃ũ + ˙̃vσ̃ṽ

= (u̇αu + v̇αv)σ̃ũ + (u̇βu + v̇βv)σ̃ṽ,

the derivative of u and v being evaluated at t0. Thus,

Dpf(w) = (λαu + µαv)σ̃ũ + λβu + µβv)σ̃ṽ. (2.1.2)

The RHS depends only on p, f, λ and µ, that is, on p, f and w as desired. The equation (2.1.2) also establishes
the following theorem

Theorem 2.1.4. If f : S → S̃ is a smooth map between surfaces and p ∈ S, the derivative Dpf : TpS →
Tf(p)S̃ is a linear map.

Theorem 2.1.5. 1. If S is a surface and p ∈ S, the derivative at p of the identity map S → S is the identity
map TpS → TpS.

2. If S1, S2, S3 are surfaces and f1 : S1 → S2 and f2 : S2 → S3 are smooth maps, then for all p ∈ S1,

Dp(f2 ◦ f1) = Df1(p)f2 ◦Dpf1.
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3. If f : S1 → S2 is a diffeomorphism, then for all p ∈ S1, the linear map Dpf : TpS1 → Tf(p)S2 is
invertible.

Proof. Part 1 is obvious. For 2, let w ∈ TpS1 be the tangent vector at p of a curve γ1 on S1. Then γ2 = f1 ◦γ1
is a curve on S2 with tangent vector Dpf1(w) at f1(p), so γ3 = f2 ◦ γ2 = (f2 ◦ f1) ◦ γ1 is a curve on S3 with
tangent vector Df1(p)f2(Dpf1(w)) at f2(f1(p)). But the tangent vector of γ3 at p is also Dp(f2 ◦ f1)(w).

Finally, for 3, let g : S3 → S1 1 be the inverse map of f , so that g ◦ f and f ◦ g are the identity maps
S1 → S1 and S2 → S2, respectively. Parts 1 and 2 show that Df(p)g g is the inverse of the linear map
Dpf .

2.1.1 Normals and Orientability

Since the tangent plane TpS of a surface S at point p ∈ S passes through the origin of R3, it is completely
determined by giving a unit vector perpendicular to it, called a unit normal to S at p. There are, of course, two
such vectors, but by a previous theorem, choosing a surface patch σ : U → R3 containing p leads to a definite
choice, namely

Nσ =
σu × σv

||σu × σv||
(with the derivatives evaluated at the point of U corresponding to p), for this is clearly a unit vector perpen-
dicular to every linear combination of σu and σv. This is called the standard unit normal of the surface patch
σ at p. Unlike the tangent plane, however, Nσ is not quite independent of the choice of patch σ containing p.
In fact, if σ̃ : Ũ → R3 is another surface patch in the atlas of S containing p that

σ̃ũ × σ̃ṽ = det(J(Φ))σu × σv

where J(Φ) is the Jacobian matrix of the transition map Φ from σ to σ̃. So the the standard unit normal of σ̃
is

Nσ̃ =
σ̃ũ × σ̃ṽ

||σ̃ũ × σ̃ṽ||

= ± σu × σv
||σu × σv||

= ±Nσ,

where the sign is that of the determinant of J(Φ). This leads to the following definition.

Definition 2.1.6. A surface S is said to be orientable if there exists an atlas A for S with the property that, if
Φ is the transition map between any two surface patches in A, then det(J(Φ)) > 0, where Φ is defined.

The preceding discussion gives the following theorem.

Theorem 2.1.7. Let S be an orientable surface equipped with an atlas A as in the above definition. Then,
there is a smooth choice of unit normal at any point of S; take the standard unit normal of any surface patch
in A.

An oriented surface is a surface S together with a smooth choice of unit normal N at each point, i.e., a
smooth map N : S → R3 (meaning that each of the three components of N is a smooth function S → R)
such that, for all p ∈ S, N(p) is a unit vector perpendicular to TpS. Any oriented surface is orientable. To
see this, start with the maximal atlas of S and retain a patch σ(u, v) if σu × σv is a positive multiple of N
at all points in the image of σ, otherwise discard it. The patches that remain form an atlas A satisfying the
condition in the previous definition.
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Example 2.1.8. The Möbius band is the surface obtained by rotating a straight line segment l around its
midpoint p at the same time as p moves around a circle C, in such a way as p moves once around C, l makes a
half-turn about p. If we take C to be the circle x2 + y2 = 1 in the xy-plane, and l to be a segment of length 1
that is initially parallel to the z-axis with its midpoint p at (1, 0, 0), and then after p has rotated by an angle θ
around the z-axis, l should have rotated by θ/2 around p in the plane containing p and the z-axis. The point
of l initially at (1, 0, t) is then at the point

σ(t, θ) =

((
1− t sin

θ

2

)
cos θ,

(
1− t sin

θ

2

)
sin θ, t cos

θ

2

)
.

We take the domain of definition of σ to be

U = {(t, θ) ∈ R2| − 1/2 < t < 1/2, 0 < θ < 2π}

We can define a second patch σ̃ by the same formula as σ but with domain of definition

Ũ = {(t, θ) ∈ R2| − 1/2 < t < 1/2, − π < θ < π}

It can be checked that these two patches form an atlas for the Möbius band consisting of regular surface
patches, making the Möbius band into a smooth surface S.

We compute the standard unit normal Nσ at points on the median circle (where t = 0). At such points, we
have

σt =

(
− sin

θ

2
cos θ,− sin

θ

2
sin θ, cos

θ

2

)
, σθ = (sin θ, cos θ, 0),

So,

σt × σθ =

(
− cos θ cos

θ

2
,− sin θ cos

θ

2
,− sin

θ

2

)
.

This is a unit vector, so it is equal to Nσ.
If the Möbius band was orientable, there would be a well-defined unit normal N defined at every point of

S and varying smoothly over S. At a point σ(0, θ) on the median circle, we would have

N = λ(θ)Nσ,

where λ : (0, 2π) → R is smooth and λ(θ) = ±1 for all θ. It follows that either λ(θ) = +1 for all θ ∈ (0, 2π),
or λ(θ) = −1 for all θ ∈ (0, 2π). Replacing N by −N if necessary, we can assume that λ = 1. At the point
σ(0, 0) = σ(0, 2π), we would have (since N is smooth)

N = lim
θ↓0

Nσ = (−1, 0, 0) and also N = lim
θ↑2π

Nσ = (1, 0, 0).

This contradiction shows that the Möbius band is not orientable.

If a surface S is oriented, it is possible to give a sign to the angle between two tangent vectors at a point of
S.

Let p ∈ S and let N be the chosen unit normal at p. A rotation in the tangent plane TpS is said to be in the
positive sense, or anticlockwise, if rotation in this sense of a right-handed screw held perpendicular to TpS
would cause it to advance in the direction of N . Put another way, the choice of N enables us to distinguish
the two ‘sides’ of TpS: the ‘positive’ side is the half-space into which N points. Then, if we view TpS from
a point on the positive side, a positive rotation in TpS would be seen as anticlockwise in the usual sense.

If v and w are non-zero vectors in TpS, the oriented angle (which we shall sometimes just call the angle)
between v and w is the angle through which v must be rotated in the positive sense in order for the resulting
vector to be a positive scalar multiple of w. We shall denote this angle by v̂w. Note that

ŵv = −v̂w,

and that the sign of v̂w will change if we change the choice of unit normal to TpS. Note also that v̂w is
determined only up to the addition of an integer multiple of 2π.
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2.1.2 Examples of Surfaces

Level Surfaces

Surfaces are often given to us as level surfaces

{(x, y, z) ∈ R3|f(x, y, z) = 0}

where f is a smooth function. The following result gives general conditions under which a level surface is a
smooth surface.

Theorem 2.1.9. Let S be a subset of R3 with the following property: for each point p ∈ S, there is an open
subset W of R3 containing p and a smooth function f :W → R such that

1. S ∩W = {(x, y, z) ∈W |f(x, y, z) = 0}

2. ∇f = (fx, fy, fz) of f does not vanish at p.

Exercises

1. Find the equation of the tangent plane of the surface σ(r, θ) = (r cosh θ, r sinh θ, r) at (1, 0, 1).

2. Show that
σ(u, v) = (sechu cos v, sechu sin v, tanhu)

is a regular surface patch for the unit sphere. Show that meredians and parallels on the sphere correspond
under σ to perpendicular straightlines in the plane.

3. Consider the surface obtained by rotating the curve x = cosh z in the xz-plane around the z-axis.
Describe an atlas for this surface.

4. Show that a Mobius band is not an orientable surface.

5. If σ(u, v) is a surface patch, show that the set of linear combinations of σu and σv is unchanged when
σ is reparametrized.



Unit 3

Course Structure

• The first Fundamental form

• Length of curves on surfaces

• Isometries of surfaces

• Conformal mapping of surfaces

Introduction

In our Euclidean plane we use the quadratic form ds2 = dx2 + dy2 for the purpose of measurement. This
formula is valid in R2 with rectangular cartesian coordinate system. The expression ds =

√
dx2 + dy2 is

called Euclidean metric. Observe that ds2 = dx2 + dy2 may be expressed as

ds2 =
[
dx dy

] [1 0
0 1

] [
dx
dy

]
The matrix in the above equation is called the Euclidean matrix.

But, if our coordinate system is not rectangular, then the metric is not Euclidean. On a surface we can’t
define rectangular cartesian coordinate system. The coordinate system on surface is a type of curvilinear
coordinate system.

In this chapter we shall deduce a quadratic form on a surface which is known as the First Fundamental form
and is used to measure lengths and angles on surfaces.

3.0.1 Lengths of curves on surfaces

If γ(t) = σ(u(t), v(t)) is a curve in a surface patch σ, its arc length starting at a point γ(t0) is given by

s =

∫ t

t0

||γ̇(u)||du

By chain rule,
γ̇2 = σuu̇+ σvv̇

12
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Hence

||γ̇||2 = (σuu̇+ σvv̇)(σuu̇+ σvv̇)

= (σuσu)u̇
2 + 2(σuσv)u̇v̇ + (σvσv)v̇

2

= Eu̇2 + 2Fu̇v̇ +Gv̇2

where E = ||σu||2, F = σuσv, G = ||σv||2. So

s =

∫ t

t0

(Eu̇2 + 2Fu̇v̇ +Gv̇2)1/2dt

Comparing the above equation with

s =

∫ t

t0

(
√
ds)2

We have,
ds2 = Edu2 + 2Fdudv +Gdv2

This is called the First Fundamental Quadratic form on surface.

3.0.2 First Fundamental form on Sphere

For the sphere in latitude longitude coordinates

σ(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ),

We have

σθ = (− sin θ cosϕ,− sin θ sinϕ, cos θ)

σϕ = (− cos θ sinϕ, cos θ cosϕ, 0)

Hence, E = ||σθ||2 = 1, F = σθσϕ = 0, G = ||σϕ||2 = cos2 θ. So the First Fundamental form is
dθ2 + cos2 θdϕ2.

Exercise 3.0.1. 1. Find the First Fundamental form on cylinder.

2. Calculate the First Fundamental form on σ(u, v) = (u− v, u+ v, u2 + v2).

3. Show that applying rigid motion to a surface does not change its First Fundamental form.

Definition 3.0.2. If S1 and S2 are surfaces, a diffeomorphism f : S1 → S2 is called an isometry if it takes
curves in S1 to curves of same length in S2. If an isometry f : S1 → S2 exists, then we say that S1 and S2
are isomorphic.

Theorem 3.0.3. A diffeomorphism f : S1 → S2 is an isometry if and only if, for any surface patch σ1 of S1,
the patches σ1 and f ◦ σ1 of S1 and S2 respectively, have the same first fundamental form.

Proof. Suppose the length of any curve can be computed as the sum of the lengths of curves each lying in a
single surface patch, we can assume that S1 and S2 are covered by single surface patches. Moreover, since f
is a diffeomorphism, we can assume that these patches are of the form σ1 : U → R3 (for S1) and f ◦ σ1 = σ2
(for S2). We have to show that f is an isometry if and only if σ1 and σ2 have the same first fundamental form.
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Suppose first that σ1 and σ2 have same first fundamental form. If t → (u(t), v(t)) is any curve in U , say
γ1(t) = σ1(u(t), v(t)) and γ2(t) = σ2(u(t), v(t)) are the corresponding curves in S1 and S2, then f takes γ1
to γ2, since

f1(γ1(t)) = f(σ1(u(t)), σ1(v(t)))

= σ2(u(t), v(t))

= γ2(t)

It is clear that γ1 and γ2 have the same length, since both lengths are found by integrating the expression
(Eu̇2 + 2Fu̇v̇ +Gv̇2)1/2, where Edu2 + 2Fdudv +Gdv2 is the common first fundamental form of S1 and
S2.

Conversely suppose that f is an isometry. If f 7→ (u(t), v(t)) is any curve in U defined for t → (α, β),
say, the curve γ1(t) = σ1(u(t), v(t)) and γ2(t) = (σ2(u(t)), σ2(v(t))) have the same length. Hence∫ t1

t0

(E1u̇
2 + 2F1u̇v̇ +G1v̇

2)1/2dt =

∫ t0

0
(E2u̇

2 + 2F2u̇v̇ +G2v̇
2)1/2dt

for all t0, t1 ∈ (α, β), where E1, F1 and G1 are the coefficients of the first fundamental form of σ1 and E2, F2

and G2 are those of σ2. This implies that the two integrands are the same and hence that

E1u̇
2 + 2F1u̇v̇ +G1v̇

2 = E2u̇
2 + 2F2u̇v̇ +G2v̇

2

Fix t0 ∈ (α, β) and let u0 = u(t0), v0 = v(t0). We now apply the above equation for the following three
choices of the curve t→ (u(t), v(t)) in U :

(i) u = u0 + t− t0; v = v0 =⇒ E1 = E2

(ii) v = v0 + t− t0; u = u0 =⇒ G1 = G2

(iii) u = u0 + t− t0; v = v0 + t− t0. This gives E1 + 2F1 +G1 = E2 + 2F2 +G2 and hence F1 = F2.

3.0.3 Conformal Mappings

A mapping from a surface σ1 to another surface σ2 is called conformal if angle between two intersecting
curves is preserved under the mapping.

Angle between two curves on a surface

Suppose that two curves γ and γ̃ on a surface S intersect at a point p that lies in a surface patch σ on S. Then
γ(t) = σ(u(t), v(t)) and γ̃(t) = σ(ũ(t), ṽ(t)) for some smooth functions u, v, ũ, ṽ and for some parameter
values t0 and t̃0, we have σ(u(t0), v(t0)) = P = σ(ũ(t0), ṽ(t0)).

The angle θ between the curves γ and γ̃ is given by

cos θ =
γ̇. ˙̃γ

||γ̇||.|| ˙̃γ||

By chain rule

γ̇ = σuu̇+ σvv̇

˙̃γ = σu ˙̃u+ σv ˙̃v
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So

γ̇. ˙̃γ = (σuu̇+ σvv̇)(σu ˙̃u+ σv ˙̃v)

= (σuσu)u̇ ˙̃u+ (σuσv)(u̇ ˙̃v + ˙̃uv̇) + (σvσv)v̇ ˙̃v

= Eu̇ ˙̃u+ F (u̇ ˙̃v + ˙̃uv̇) +Gv̇ ˙̃v

Similarly, ||γ̇|| =
√
γ̇.γ̇ and || ˙̃γ|| =

√
˙̃γ. ˙̃γ can be evaluated and finally

cos θ =
Eu̇ ˙̃u+ F (u̇ ˙̃v + ˙̃uv̇) +Gv̇ ˙̃v

(Eu̇2 + 2Fu̇v̇ +Gv̇2)1/2(E ˙̃u2 + 2F ˙̃u ˙̃v +G ˙̃v2)1/2

Theorem 3.0.4. The parameter curves on a surface patch σ(u, v) can be parametrized by γ(t) = σ(a, t), γ̃ =
σ(t, b) receptively, where a is the constant value of u and b the constant value of v in the two cases. Thus
u(t) = a, v(t) = t, ũ(t) = t, ṽ(t) = b, u̇ = 0, v̇ = 1, ˙̃u = 1, ˙̃v = 0. These parameter curves intersect at
the point σ(a, b) of the surface and their angle of intersection θ is given by

cos θ =
F√
EG

In particular, the parameter curves are orthogonal if and only if F = 0.

Definition 3.0.5. If S1 and S2 are surfaces, a diffeomorphism f : S1 → S2 is said to be conformal if,
whenever f takes two intersecting curves γ1 and γ̃1 on S1 to curves γ2 and γ̃2 on S2, the angle of intersection
of γ1 and γ̃1 is equal to the angle of intersection of γ2 and γ̃2.

Theorem 3.0.6. A diffeomorphism f : S1 → S2 is conformal if and only if, for any surface patch σ1 on S1,
the first fundamental forms of σ1 and f ◦ σ1 are proportional.

Proof. Assume that S1 and S2 are covered by the single surface patches σ1 : U → R3 and σ2 = f ◦ σ1,
respectively. Suppose that their first fundamental forms E1du

2+2F1dudv+G1dv
2 and E2du

2+2F2dudv+
G2dv

2 are proportional, say

E1du
2 + 2F1dudv +G1dv

2 = λ(E2du
2 + 2F2dudv +G2dv

2)

for some smooth function λ(u, v), where (u, v) are coordinates on U . Note that λ > 0 everywhere, since (for
example) E1 and E2 are both greater than 0. If γ(t) = σ1(u(t), v(t)) and γ̃(t) = σ1(ũ(t), ṽ(t)) are curves in
S1, then f takes γ and γ̃ to the curves σ2(u(t), v(t)) and σ2(ũ(t), ṽ(t)) in S2, respectively. Now,

cos θ =
E2u̇ ˙̃u+ F2(u̇ ˙̃v + ˙̃uv̇) +G2v̇ ˙̃v

(E2u̇2 + 2F2u̇v̇ +G2v̇2)1/2(E2
˙̃u2 + 2F2

˙̃u ˙̃v +G2
˙̃v2)1/2

=
λE1u̇ ˙̃u+ λF1(u̇ ˙̃v + ˙̃uv̇) + λG1v̇ ˙̃v

(λE1u̇2 + 2λF1u̇v̇ + λG1v̇2)1/2(λE1
˙̃u2 + 2λF1

˙̃u ˙̃v + λG1
˙̃v2)1/2

=
E1u̇ ˙̃u+ F1(u̇ ˙̃v + ˙̃uv̇) +G1v̇ ˙̃v

(E1u̇2 + 2F1u̇v̇ +G1v̇2)1/2(E1
˙̃u2 + 2F1

˙̃u ˙̃v +G1
˙̃v2)1/2

Hence f is conformal.

For the converse, we must show that if

E1u̇ ˙̃u+ F1(u̇ ˙̃v + ˙̃uv̇) +G1v̇ ˙̃v

(E1u̇2 + 2F1u̇v̇ +G1v̇2)1/2(E1
˙̃u2 + 2F1

˙̃u ˙̃v +G1
˙̃v2)1/2

=

E2u̇ ˙̃u+ F2(u̇ ˙̃v + ˙̃uv̇) +G2v̇ ˙̃v

(E2u̇2 + 2F2u̇v̇ +G2v̇2)1/2(E2
˙̃u2 + 2F2

˙̃u ˙̃v +G2
˙̃v2)1/2

(3.0.1)
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for all pairs of intersecting curves

γ(t) = σ1(u(t), v(t))

and γ̃(t) = σ1(ũ(t), ṽ(t))

in S1, then the first fundamental form of σ1 and σ2 are proportional. Fix (a, b) ∈ U and consider the curves

γ(t) = σ1(a+ t, b)

γ̃(t) = σ1(a+ t cosϕ, b+ t sinϕ)

where ϕ is a constant, for which

u̇ = 1, v̇ = 0, ˙̃u = cosϕ, ˙̃v = sinϕ

Using these in (3.0.1), we get
E1 cosϕ+ F1 sinϕ√

E1(E1 cos2 ϕ+ 2F1 sinϕ cosϕ+G1 sin
2 ϕ)

=
E2 cosϕ+ F2 sinϕ√

E2(E2 cos2 ϕ+ 2F2 sinϕ cosϕ+G2 sin
2 ϕ)

(3.0.2)

Squaring both sides of equation (3.0.2) and writing

(E1 cosϕ+ F1 sinϕ)
2 = E1(E1 cos

2 ϕ+ 2F1 sinϕ cosϕ+G1 sin
2 ϕ)− (E1G1 − F 2

1 ) sin
2 ϕ,

we get

(E1G1−F 2
1 )E2((E2 cos

2 ϕ+2F2 sinϕ cosϕ+G2 sin
2 ϕ) = (E2G2−F 2

2 )E1(E1 cos
2 ϕ+2F1 sinϕ cosϕ+G1 sin

2 ϕ),

or setting

λ =
(E2G2 − F 2

2 )E1

(E1G1 − F 2
1 )E2

,

we get
(E2 − λE1) cos

2 ϕ+ (2F2 − λF1) sinϕ cosϕ+ (G2 − λG1) sin
2 ϕ = 0

Taking ϕ = 0 and ϕ = π/2 gives E2 = λE1, G2 = λG1. Then by the last equation, F2 = λF1.

Exercises

1. Calculate the first fundamental form of the surface

σ(u, v) = (sinhu sinh v, sinhu cosh v, sinhu).

2. Show that applying a rigid motion to a surface does not change its first fundamental form.

3. Show that every isometry is a conformal map. Give an example of a conformal map that is not an
isometry.

4. Show that every isometry is a conformal map. Give an example of a conformal map that is not an
isometry.

5. Show that the map
σ(u, v) = (sechu cos v, sechu sin v, tanhu)

is conformal.

Summary

In this unit, we have determined the expression of first fundamental form of surfaces. We have calculated first
fundamental form of sphere. We have also discussed about conformal maps.



Unit 4

Course Structure

• Introduction

• Curvature of curves on surfaces

• Second Fundamental form

Introduction

To introduce the notion of curvature on surfaces, we start by finding a new interpretation of the curvature of a
plane curve. Suppose that γ is a unit speed curve in R2. As the parameter t of γ changes to t+∆t, the curve
moves away from its tangent line at γ(t) by a distance (γ(t+∆t)− γ(t)).η, where η is the principal normal
to γ at γ(t). By Taylor’s theorem,

γ(t+∆t) = γ(t) + γ̇(t)∆t+
1

2
+ γ̈(t)(∆t)2 + remainder,

where remainder/(∆t)2 tends to 0 as ∆t → 0. Now, η is perpendicular to the unit tangent vector t = γ̇ and
γ̈ = ṫ = κη, where κ is the curvature of γ. Hence, γ̈.η = κ and the derivative of γ forms its tangent line is

(γ̇(t)∆t+
1

2
+ γ̈(t)(∆t)2 + · · · ).η =

1

2
κ(∆t)2 + remainder (4.0.1)

Now let σ be a surface patch in R3 with standard unit normal N (surface normal). As the parameters (u, v)
of σ changes to (u + ∆u, v + ∆v), the surface moves away from its tangent plane at σ(u, v) by a distance
(σ(u+∆u, v +∆v)− σ(u, v)).N . By the two variable form of Taylor’s theorem,

σ(u+∆u, v +∆v)− σ(u, v) = σu∆u+ σv∆v +
1

2
(σuu(∆u)

2 + 2σuv∆u∆v + σvv(∆v)
2) + remainder,

where (remainder)/[(∆u)2 + (∆v)2] tends to zero as (∆u)2 + (∆v)2 → 0. Now, σu and σv are tangents to
the surface, hence perpendicular to N , so the derivation of σ from its tangent plane is

1

2
(L(∆u)2 + 2M∆u∆v +N (∆v)2) + remainder (4.0.2)

17
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where, L = σuu.N , M = σuv.N , N = σvv.N . Comparing equation (4.0.2) with equation (4.0.1), we see
that the expression is the analogue for the surface of the curvature term κ(∆t)2 in the case of a curve. One
calls the expression

Ldu2 + 2Mdudv +Ndv2 (4.0.3)

is called the second fundamental form of σ. As in the case of the first fundamental form we regard the
expression (4.0.3) simply as a convenient way of keeping track of the three functions L, M and N . We shall
soon see that a knowledge of these functions (together with that of first fundamental form) will enable us to
compute the curvature of any curve on the surface.

Note 4.0.1. L = σuu.N , M = σuv.N , N = σvv.N , where

N =
σu × σv

||σu × σv||
.

Exercise 4.0.2. Calculate the second fundamental form of unit sphere and right circular cylinder.

4.0.1 Normal and geodesic curvature of a curve on a surface

If γ(t) = σ(u(t), v(t)) is a unit speed curve in a surface patch γ, then γ̇ is a unit vector, and is by definition,
a tangent vector to σ. Hence γ̇ is perpendicular to the standard unit normal N of σ, so γ̇, N and N × γ̇ are
mutually perpendicular unit vectors. Again, since γ is unit speed, γ̈ is perpendicular to γ̇ and hence is a linear
combination of N and N × γ̇. So,

γ̈ = κnN + κN × γ̇ (4.0.4)

The scalars κn and κg are called the normal curvature and the geodesic curvature of γ respectively. Since N
and N × γ̇ are perpendicular unit vectors, equation (4.0.4) implies κn = γ̈.N , κg = γ̈.(N × γ̇) and,

||γ̈||2 = κ2n + κ2g (4.0.5)

Hence the curvature κ = ||γ̈|| of γ is given by

κ2 = κ2n + κ2g

Moreover, if η is principal normal of γ, so that γ̈ = κη, we have

κη = κη.N = κ cosψ

where ψ is the angle between η and N . Then from equation (4.0.5)

κg = ±κ sinψ

It is clear from their definition that κη and κg either stay the same or both change sign when σ is reparametrized.

When ψ = 0, the curve is called a normal section. Then κη = ±κ, κg = 0.

Theorem 4.0.3. If γ(t) = σ(u(t), v(t)) is a unit speed curve on a surface patch σ, its normal curvature is
given by

κη = Lu̇2 + 2Mu̇v̇ +N v̇2,

where Lu̇2 + 2Mu̇v̇ +N v̇2 is the second fundamental form of σ.
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Proof. We have, with N denoting the standard unit normal of σ,

κη = N.γ̈

= N.
d

dt
(γ̇)

= N.
d

dt
(σuu̇+ σvv̇)

= N.(σuü+ σvv̈ + (σuuu̇+ σuvv̇)u̇+ (σuvu̇+ σvvv̇)v̇)

= Lu̇2 + 2Mu̇v̇ +N v̇2

Theorem 4.0.4. (Meusnier’s Theorem) Let P be a point on a surface S and let V be a unit vector to S at P .
Let πθ be the plane containing the line through P parallel to V and making an angle θ with the tangent plane
to S at P . Suppose that πθ intersects S in a curve with curvature κθ. Then κθ sin θ is independent of θ.

Proof. Assume that γθ is a unit speed parametrisation of the curve of intersection of πθ and S. Then at P ,
γ̇θ = ±v, so γ̈θ is perpendicular to v and is parallel to πθ. Thus if ψ is the angle between η and N , then
ψ = π/2− θ. Again, we know

κη = κ cosψ

Hence,
κη = κ sin θ = κθ sin θ

(since, here κ = κθ by notation).

4.0.2 Matrix Representation of Normal Curvature

To analyse κ further, it is useful to use matrix notation. If Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +
Ndv2 are the first and second fundamental forms of a surface σ, we introduce the following symmetric 2× 2
matrices

F1 =

[
E F
F G

]
, FII =

[
L M
M N

]
Let

t1 = ξ1σu + η1σv, t2 = ξ2σu + η2σv

be two tangent vectors at some point of σ. Then

t1.t2 = (ξ1σu + η1σv)(ξ2σu + η2σv)

= Eξ1ξ2 + F (ξ1η2 + ξ2η1) +Gη1η2

=
[
ξ1 η1

] [E F
F G

] [
ξ2
η2

]
Thus writing

T1 =

[
ξ1
η1

]
, T2 =

[
ξ2
η2

]
(4.0.6)

we get t1.t2 = T t
1F1T2. On the other hand, tangent vector

γ̇ = u̇σu + v̇σv
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and if

T =

[
u̇
v̇

]
then by using theorem 4.0.3, we see that

κη = T tFIIT

Exercise 4.0.5. Compute the normal curvature of the circle γ(t) = (cos t, sin t, 1) on the elliptic paraboloid
σ(u, v) = (u, v, u2 + v2).

Exercises

1. Compute the second fundamental form of the elliptic paraboloid

σ(u, v) = (u, v, u2 + v2).

2. Compute the normal curvature of the circle γ(t) = (cos t, sin t, 1) on the elliptic paraboloid σ(u, v) =
(u, v, u2 + v2).

3. Show that if a curve on a surface has zero normal and geodesic curvature everywhere, it is part of a
straightline.

4. Show that a curve on a surface has zero normal and geodesic curvature everywhere, it is part of a
straightline.

5. Show that the normal curvature of any curve on a sphere of radius r is ±1
r .



Unit 5

Course Structure

• Introduction

• Geodesic curvatures

• Gaussian and Mean Curvatures

5.1 Introduction

In the present unit, we shall study curvature of surfaces using curvature of curves defined on surfaces.

In the previous unit, we have seen the normal curvature of a curve defined on a surface is given by

κη = L(u̇)2 + 2Mu̇v̇ +N (v̇)2

So,

κη = L
(
du

ds

)2

+ 2Mdu

ds

dv

ds
+N

(
dv

ds

)2

=
L(du)2 + 2Mdudv +N (dv)2

ds2

=
L(du)2 + 2Mdudv +N (dv)2

E(du)2 + 2Fdudv +G(dv)2

Hence
L(du)2 + 2Mdudv +N (dv)2 = κη(E(du)2 + 2Fdudv +G(dv)2) (5.1.1)

From equation (5.1.1), after some calculations, we can show that κη has maximum or minimum value if

|FII − κηFI | = 0

The maximum or minimum values of κη are called principal curvatures of the surface (not curve).

21
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Definition 5.1.1. The principal curvatures of a surface patch are the roots of the equation∣∣∣∣ L − κE M− κF
M− κF N − κG

∣∣∣∣ = 0

If κ1 and κ2 are the roots, then κ1κ2 is called Gaussian curvature of the surface and κ1+κ2
2 is called mean

curvature of the surface.

Theorem 5.1.2. Let κ1 and κ2 be the principal curvatures at a point P of a surface patch σ. Then

1. κ1 and κ2 are real numbers

2. If κ1 = κ2 = κ, say, then FII = κFI and hence every tangent vector to σ at P is principal vector

3. If κ1 ̸= κ2, then any two non-zero principal vectors d1 and d2 corresponding to κ1 and κ2, respectively,
are perpendicular.

(For case 2, P is called an umbilic).

Proof. For 1, let t1 and t2 be any two perpendicular unit tangent vectors to the surface at P (not yet known to
be principal vectors). Define ξi, ηi, Ti for i = 1, 2 as done in the previous unit. Let

A =

[
ξ1 ξ2
η1 η2

]
By multiplying out the matrices, it is easy to check that

AtFIA =

[
T t
1FIT1 T t

1FIT2
T t
2FIT1 T t

2FIT2

]
=

[
t1.t1 t1.t2
t2.t1 t2.t2

]
=

[
1 0
0 1

]
Since t1 and t2 are perpendicular unit vectors.
Let GII = AtFIIA. Then GII is still (real and) symmetric because

Gt
II = AtFII(A

t)t

= AtFIIA

= GII

From the theory of Linear algebra, we can say, there is an orthogonal matrix B such that

BtGIIB =

[
λ1 0
0 λ2

]
for some real numbers λ1 and λ2. Let C = AB. Then

CtFIC = Bt(AtFIA)B

= BtB

=

[
1 0
0 1

]
, (5.1.2)
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because B is orthogonal, and

CtFIIC = Bt(AtFIIA)B

= BtGIIB

=

[
λ1 0
0 λ2

]
(5.1.3)

Now, C is invertible. So,

det(FII − κFI) = 0 if and only if det(Ct(FII − κFI)C) = 0,

hence,
det(FII − κFI) = 0 if and only if

det

([
λ1 0
0 λ2

]
− κ

[
1 0
0 1

])
= 0

Hence the principal curvatures are the roots of∣∣∣∣λ1 − κ 0
0 λ2 − κ

∣∣∣∣ = 0,

For 2„ suppose that the principal curvatures are equal to κ1, say. Then λ1 = λ2 = κ, and equations (5.1.2)
and (5.1.3) give

CtFIC = I, CtFIIC = κI

Hence

Ct(FII − κFI)C = 0

=⇒ FII − κFI = 0

=⇒ FII = κFI

since C and Ct are invertible.

Obviously, if D is any 2× 1 column matrix,

(FII − κFI)D = 0

It follows that every tangent vector to σ at P is a principal vector.

Finally, for 3, let

di = αiσu + βiσv

Di =

[
αi

βi

]
,

for i = 1, 2. Then by t1.t2 = T t
1FIT2, d1d2 = Dt

1FID2. From the definition of principal vector

FIID1 = κ1F1D1, FIID2 = κ2F1D2

Hence,

Dt
2FIID1 = κ1(d1d2)

Dt
2FIID2 = κ2(d1d2) (5.1.4)
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But since Dt
1FIID2 is a 1× 1 matrix, it is equal to its transpose

Dt
1FIID2 = (Dt

1FIID2)
t

= Dt
2F

t
IID1

= Dt
2FIID1,

the last equality comes from the fact that FII is symmetric. Hence equation (5.1.4) gives

κ1(d1d2) = κ2(d1d2)

So, κ1 ̸= κ2 implies d1d2 = 0, that is, d1 and d2 are perpendicular.

Example 5.1.3. Find the Gaussian curvature of the right circular cylinder.

We consider the circular cylinder of radius 1 and axis z-axis, parametrized in the usual way

σ(u, v) = (cos v, sin v, u).

Here,
E = σuσu = 1, F = σuσv = 0, G = σvσv = 1

Also
L = 0, M = 0, N = 1.

So, the principal curvatures are the roots of ∣∣∣∣0− κ 0
0 1− κ

∣∣∣∣ = 0

Hence
κ(κ− 1) = 0, or, κ = 0, or 1

Hence the principal curvatures are 0 and 1. Thus,

Gaussian curvature = 0× 1 = 0

Mean Curvature =
0 + 1

2
=

1

2

Exercise 5.1.4. Find the Gaussian curvature of the unit sphere.

Note 5.1.5. In the following, we shall study Euler’s theorem which will relate the curvature of a surface and
curvature of a curve defined on a surface.

Theorem 5.1.6. (Euler’s Theorem) Let γ be a curve on a surface patch σ, and let κ1 and κ2 be the principal
curvatures of σ, with non-zero principal non-zero vectors t1 and t2. Then the normal curvature of γ is

κη = κ1 cos
2 θ + κ2 sin

2 θ

where θ is the angle between γ̇ and t1.
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[thick,->] (0,0) – (6,0) node[anchor=north west] t1; [thick,->] (0,0) – (0,6) node[anchor=south east] t2;
[thick,->] (0,0) – (4,5); (0.5,0) arc (0:50:0.5cm) node [anchor=east] θ; [dashed] (4,0) – (4,5);

Proof. We can assure that γ is a unit speed. Let t be the tangent vector of γ, and let

t = ξσu + ησv,

T =

[
ξ
η

]
Suppose that

κ1 = κ2 = κ, say.

Now,

κη = T tFIIt

= κT tFIT

= κt.t

= κ

This agrees with the formula in the statement since

κ1 cos
2 θ + κ2 sin

2 θ = κ(cos2 θ + sin2 θ)

= κ

Now, assume that κ1 ̸= κ2, so that t1 and t2 are perpendicular. We might as well assume that t1 and t2 are
unit vectors.

ti = ξiσu + ηiσv

Ti =

[
ξi
ηi

]
for i = 1, 2. Now

γ̇ = cos θt1 + sin θt2

So,
cos θ(ξ1σu + η1σv) + sin θ(ξ2σu + η2σv) = ξσu + ησv

Hence

ξ1 cos θ + ξ2 sin θ = ξ

η1 cos θ + η2 sin θ = η

Thus, [
ξ
η

]
= cos θ

[
ξ1
η1

]
+ sin θ

[
ξ2
η2

]
Therefore,

T = cos θT1 + sin θT2.
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Hence

κη = T tFIIT

= (cos θT t
1 + sin θT t

2)FII(cos θT1 + sin θT2)

= cos2 θT t
1FIIT1 + cos θ sin θ(T t

1FIIT2 + T t
2FIIT1) + sin2 T t

2FIIT2

Now,

T t
i FIITj = κiT

t
i FIITj = κi, if i = j

= 0, otherwise

Hence
κη = κ1 cos

2 θ + κ2 sin
2 θ

Theorem 5.1.7. Let σ(u, v) be a surface patch with first and second fundamental forms Edu2 + 2Fdudv +
Gdv2 and Ldu2 + 2Mdudv +Ndv2, respectively. Then

1. κ = LN−M2

EG−F 2

2. H = LG−2MF+NE
2(EG−F 2)

3. The principal curvatures are
H ±

√
H2 − κ.

Proof. The principal curvatures are the roots of∣∣∣∣ L − κE M− κF
M− κF N − κG

∣∣∣∣ = 0

Hence
(EG− F 2)κ2 − (LG− 2MF +NE)κ+ LN −M2 = 0, (5.1.5)

The above equation is quadratic in κ. Hence

κ1 + κ2 =
LG− 2MF +NE

(EG− F 2)

Hence,

H =
κ1 + κ2

2
=

LG− 2MF +NE

2(EG− F 2)
(5.1.6)

and

K = κ1κ2 =
LN −M2

EG− F 2
(5.1.7)

K is the Gaussian curvature. Then, from equations (5.1.5), (5.1.6) and (5.1.7),

κ2 − 2Hκ+K = 0.

Hence
H ±

√
H2 − κ

are the principal curvatures.

Definition 5.1.8. A surface is called flat if its Gaussian curvature is zero.
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Exercises

1. Compute Gaussian curvature of a sphere.

2. Calculate the principal curvatures of a helicoid.

3. Calculate the principal curvatures of catenoid.

4. Let γ(t) = σ(u(t), v(t)) be a regular, but not necessarily unit speed curve on a surface σ and denote
d/dt by a dot. Prove that the normal curvature of γ is

κn =
Lu̇2 + 2Mu̇v̇ +Nv̇2

Eu̇2 + 2Fu̇v̇ +Gv̇2
.

5. Show that a curve on a surface is a line of curvature if and only if its geodesic torsion vanishes every-
where.

Summary

In this unit we have learnt how to calculate the Gaussian and mean curvatures of a surface.



Unit 6

Course Structure

• Introduction

• Geodesics on surfaces

• Differential equation for geodesics on surfaces

6.1 Introduction

In simple language a geodesic means the line of shortest distance between two points. In our Euclidean plane,
a geodesic is a straight line. In this unit, we shall see that on a sphere, geodesics are great circles. Here, we
will first deduce the differential equation of geodesics on a surface.

6.1.1 Geodesics on Surface

Definition 6.1.1. A curve γ on a surface S is called a geodesic if γ̈(t) is zero or perpendicular to the surface
at the point γ(t), that is, parallel to its unit normal, for all values of the parameter t.

Theorem 6.1.2. Any geodesic has constant speed.

Proof. Let γ(t) be a geodesic on a surface S. Then denoting d
dt by a dot, we have

d

dt
||γ̇||2 = d

dt
(γ̇.γ̇) = 2γ̈.γ̇

Since γ is a geodesic, γ̈ is perpendicular to the tangent plane and is therefore perpendicular to the tangent
vector γ̇. So, γ̈.γ̇ = 0 and the last equation shows that ||γ̈|| is constant.

Theorem 6.1.3. A curve on a surface is a geodesic if and only if its geodesic curvature is zero.

Proof. It is sufficient to consider a unit speed curve γ contained in a patch σ of the surface. Let N be the
standard unit normal of σ, so that

κg = γ̈.(N × γ̇) (6.1.1)

28
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If γ̈ is parallel to N , it is obviously perpendicular to N × γ̇, so by (6.1.1),

κg = 0.

Conversely, suppose that κg = 0. Then γ̈ is perpendicular to N × γ̇. But then, since γ̇, N and N × γ̇ are
perpendicular unit vectors in R3, and since γ̈ is perpendicular to γ̇, it follows that γ̈ is perpendicular toN .

Exercise 6.1.4. 1. Prove that for normal section, κg = 0.

2. All great circles on a sphere are geodesics.

6.1.2 Geodesic Equations

A curve γ on a surface S is a geodesic if and only if for any part γ(t) = σ(u(t), v(t)) of γ contained in a
surface patch σ of S, the following two equations are satisfied

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)

d

dt
(Fu̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2)

where Edu2 + 2Fdudv +Gdv2 is the first fundamental form of σ.

Proof. Since {σu, σv} is a basis of the tangent plane of σ, γ is a geodesic if and only if γ̈ is perpendicular to
σu and σv. Since

γ̇ = σuu̇+ σvv̇,

this is equivalent to (
d

dt
(σuu̇+ σvv̇)

)
.σu = 0 (6.1.2)(

d

dt
(σuu̇+ σvv̇)

)
.σv = 0 (6.1.3)

we show that these two equations are equivalent to the two geodesic equations. The left hand side of equation
(6.1.2) is equal to

d

dt
(σuu̇+ σvv̇).σu)− (σuu̇+ σvv̇)).

σu
dt

=
d

dt
(Eu̇+ F v̇)− (σuu̇+ σvv̇)(σuuu̇+ σvvv̇)

=
d

dt
(Eu̇+ F v̇)

− (u̇2(σuσuu)u̇v̇(σuσuv + σvσuu) + v̇2(σvσuv)) (6.1.4)

Now,

Eu = (σu.σu)u

= σuuσu + σuσuu

= 2σuσuu

So,

σuσuu =
1

2
Eu
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Similarly,

σvσuv =
1

2
Gu

Finally,
σvσuv + σvσuu = (σu.σu)u̇ = Fu

Substituting these values in equation (6.1.4), gives(
d

dt
(σuu̇+ σvv̇)

)
.σu =

d

dt
(Eu̇+ F v̇)− 1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2).

This shows that the equation (6.1.2) is equivalent to the first geodesic equation. Similarly the other.

Example 6.1.5. Determine the geodesics on S2 by solving the geodesic equations.

For the usual parametrisation by latitude and longitude coordinate

σ(u, v) = (cos θ cosϕ, cos θ sinϕ, sin θ),

we know that the first fundamental form of S2 is

dθ2 + cos2 θdϕ2

We might as well restrict ourselves to unit speed curves

γ(t) = σ(θ(t), ϕ(t)),

so that
θ̇2 + ϕ̇2 cos2 θ = 1,

and if γ is a geodesic the second geodesic equation gives

d

dt
(ϕ̇ cos2 θ) = 0,

so that,
ϕ̇ cos2 θ = Ω,

where, Ω is a constant. If Ω = 0, then ϕ̇ = 0, so ϕ is constant and γ is part of a meridian. We assume that
Ω ̸= 0 from now on.

The unit speed condition gives

θ̇ = 1− ϕ̇2 cos2 θ

θ̇2 = 1− Ω2

cos2 θ
,

so along the geodesics we have (
dϕ

dθ

)2

=
ϕ̇2

θ̇2
=

1

cos2 θ
(
cos2 θ
Ω2 − 1

)
and hence

±(ϕ− ϕ0) =

∫
dθ

cos θ
√

cos2 θ
Ω2 − 1

,
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where, ϕ0 is a constant. The integral can be evaluated by making the substitution u = tan θ. This gives

±(ϕ− ϕ0) =

∫
du√

1
Ω2 − 1− u2

arcsin

 u√
1
Ω2 − 1

 ,

and hence

tan θ = ±
√

1
1
Ω2 − 1

sin(ϕ− ϕ0).

This implies that the coordinates x = cos θ cosϕ, y = cos θ sinϕ, z = sin θ of γ(t) satisfy z = ax+ by.

Hence the geodesics are the intersection of the sphere and planes passing through the centre. So geodesics
are the great circles.

Exercises

1. Let p be a point of a surface S, and let t be a unit tangent vector to S at p. Then show that there exists a
unique unit speed geodesic γ on S which passes through p and has tangent vector t there.

2. Show that, if p and q are distinct points of a circular cylinder, there are either two or infinitely many
geodesics on the cylinder joining p and q. Which pairs p, q have the former property?

3. Find the geodesics on circular cylinder by solving the geodesic equations.

4. Show directly that the parameter of any curve satisfying the geodesic equations is proportional to arc
length.

5. Find geodesics on unit spheres.

Summary

In this unit, we have studied properties of geodesics and have deduced differential equations of geodesics and
have seen examples for the same.



Unit 7

Course Structure

• Introduction

• Plateau’s Problem

• Examples of minimal surface

• Exercises

7.1 Introduction

It is known that on a surface the curve with shortest length between two given points is a geodesic. Similarly,
in this chapter we shall study the problem of finding a surface patch of minimal area with a fixed curve as its
boundary. Such a problem is known as Plateau’s Problem. We shall see that solution of Plateau’s problem is a
surface patch whose mean curvature is zero everywhere. A surface whose mean curvature is zero everywher
is known as minimal surface.

7.2 Plateau’s Problem

Consider a family of surface patches στ : U → R3, where U is an open subset of R2 independent of τ, and
τ lies in some open interval (−δ, δ), for some δ > 0. Consider σ = σ0. The family is required to be smooth,
i.e., the map (u, v, τ) → στ (u, v) from the open subset {(u, v, τ)|(u, v) ∈ U, τ ∈ (−δ, δ)} of R3 to R3 is
smooth. The surface variation of the family is the function ϕ : U → R3 given by

ϕ = σ̇τ |τ=0,

where a dot denotes derivative with respect to τ.
Suppose π is a simple closed curve which is contained in U along with its interior. Then π corresponds to a

simple closed curve γ6τ = στoπ in the surface patch στ , and we define the area function A(τ) to be the area
of the part of στ inside γτ :

A(τ) =

∫ ∫
imt(π)

dAστ .

Observe that if we are considering a family of surfaces with a fixed boundary curve γ, then γτ = γ for all τ
and hence ϕτ (u, v) = 0, when (u, v) is a point on the curve π.

32
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Theorem 7.2.1. If the surfac variation ϕτ vanishes along the boundary curve π, then

Ȧ(0) = −2

∫ ∫
int(π)

H(EG− F 2)
1
2αdudv,

where H is the mean curvature of σ, E, F and G are the coefficients of its first fundamental form, α = ϕ.N,
and N is the standard unit normal of σ.

Proof. Let ϕτ = σ̇τ , so that ϕ0 = ϕ, and letN τ be the standard unit normal of στ . There are smooth functions
ατ , βτ and γτ of (u, v, τ) such that

ϕτ = ατN τ + β6τστu + γτστv ,

so that α = α0. To simplify the notation, we ommit the superscript τ in the remaining part of the proof. At
the end of the proof we take τ = 0.

We see that
A(τ) =

∫ ∫
−nt(π)

||σu × σv||dudv =

∫ ∫
∫
(π)
N.(σu × σv)dudv,

so
Ȧ =

∫ ∫
int(π)

∂

∂τ
(N.(σu × σv))dudv. (7.2.1)

Now,
∂

∂τ
(N.(σu × σv)) = Ṅ(σu × σv) + Ṅ(σ̇u × σv) +N.(σu × σ̇v). (7.2.2)

Since N is a unit vector,
Ṅ .(σu × σv) = Ṅ .N ||σu × σv|| = 0.

On the other hand,

N.(σ̇u × σv) =
(σu × σv).(σ̇u × σv)

||σu × σv||

=
(σu.σ̇u)(σv.σv)− (σv.σv)(σv.σ̇u)

||σu × σv||

=
G(σu.σ̇u)− F (σv.σ̇u)

(EG− F 2)
1
2

,

since it is known that ||σu × σv|| = (EG− F 2)
1
2 .

Similarly

N.(σu × σ̇v) =
E(σv.σ̇v)− F (σu.σ̇v)

(EG− F 2)
1
2

.

Substituting these results in (7.2.2) we get

∂

∂τ
(N.(σu × σv)) =

E(σv.σ̇v)− F (σ̇u.σv + σuσ̇v) +G(σu.σ̇u)

(EG− F 2)
1
2

(7.2.3)

Now
σ̇u = ϕu = σuN + βuσu + γuσv + αNu + βσuu + γσuv.

So
σu.σ̇u = Eβu + Fγu + (σu.Nu)α+ (σu.σuu)β + (σu.σuv)γ.
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Since σu.Nu = −σuu.N = −L, σu.σuu = 1
2Eu and σu.σuv = 1

2Ev, we get

σu.σ̇u = Eβu + Fγu − Lα+
1

2
Euβ +

1

2
Evγ.

Similarly

σv.σ̇u = Fβu +Gγu −Mα+ (Fu − 1

2
Ev)β +

1

2
Guγ.

σu.σ̇v = Eβv + Fγv −Mα+
1

2
Evβ + (Fv −

1

2
Gu)γ.

σv.σ̇v = Fβv +Gγv −Nα+
1

2
Guβ +

1

2
Gvγ.

Substituting these last four equations into the right hand side of equation (7.2.3), simplifying, and using the
formula for the mean curvature H , we see that

∂

∂τ
(N.(σu × σv)) = (β(EG− F 2)

1
2 )u + (γ(EG− F 2)

1
2 )v − 2αH(EG− F 2)

1
2 . (7.2.4)

Comparing with equation (7.2.1) and reinstating the superscripts, we note that we must prove that∫ ∫
∫
(π)

((β0(EG− F 2)
1
2 )u + (γ0(EG− F 2)

1
2 )v)dudv = 0.

But by Green’s Theorem, this integral is equal to∫
π
(EG− F 2)

1
2 (β0dv − γ0du),

and this obviously vanishes because β0 = γ0 = 0 along the boundary curve π. This completes the proof.

Example 7.2.2. The simplest minimal example is plane for which both principal curvatures are zero every-
where.

Example 7.2.3. A catenoid is obtained by rotating a curve x = 1
acoshaz in the xz-plane around the z axis,

where a > 0 is a constant. It can be shown that this is a minimal surface. The catenoud is a surface of
revolution. In fact, apart from the plane, it is the only surface of revolution.

Proposition 7.2.4. Any minimal surface of revolution is either part of a plane or can be obtained by applying
a rigid motion to part of a catenoid.

Proof. By applying a rigid motion, we can assume that the axis of the surface S is the z-axis and the profile
curve lies in the xz-plane. We parametrise S in the usual way

σ(u, v) = (f(u)cosv, f(u)sinv, g(u)),

where the profile curve u → (f(u), 0, g(u)) is assumed to be unit speed and f > 0. We can calculate the
first and second fundamental form as du2+ f(u)2dv2 and (ḟ g̈− f̈ ġ)du2+ fġdv2, respectively, a dot denotes
derivative with respect to u. Using the formula for the mean curvature we get

H =
1

2
(ḟ g̈ − f̈ ġ +

ġ

f
).
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Consider that for some value of u, say u−u0, we have ġ(u0) ̸= 0. We shall then have ġ(u) ̸= 0 for u in some
open interval containing u0. Let (α, β) be the largest such interval. Supporting now that u ∈ (α, β), the unit
speed condition ḟ2 + ġ2 = 1 gives

ḟ g̈ − f̈ ġ = − f̈
ġ
,

So, we get

H =
1

2
(
ġ

f
− f̈

ġ
).

Since ġ2 = 1− ḟ2, S is minimal if and only if

ff̈ = 1− ḟ2. (7.2.5)

To solve the differential equation (7.2.5), put h = ḟ . We note that

f̈ =
dh

dt
=
dh

df

df

dt
= h

dh

df
.

Hence equation (7.2.5) becomes

fh
dh

df
= 1 = h2.

We note that since ġ ̸= 0, we have h2 ̸= 1, so we can integrate this equation as follows:∫
hdh

1− h2
=

∫
df

f
.

So
1√

1− h2
= af,

Thus, h =

√
a2f2−1
af , where a is a non-zero constant. Writing h = df

du and integrating again∫
afdf√
a2f2 − 1

=

∫
du,

So
f =

1

a

√
1 + a2(u+ b)2,

where b is a constant . By change of parameter u → u+ b, we can assume that b = 0. So f = 1
a

√
1 + a2u2.

To compute g we have

ġ2 = 1− ḟ2 = 1− h2 =
1

a2f2
.

So
dg

du
= ± 1√

1 + a2u2

So
g = ±1

a
sinh−1(au) + c

So
au = ±sinh(a(g − c)),
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So
f =

1

a
cosh(a(g − c)).

Thus the profile curve of S is

x =
1

a
cosh(a(z − c)).

By the translation along the z-axis, we can assume that c = 0. So we have a catenoid.
Now, suppose β < ∞. Then if the profile curve is defined for values u ≥ β, we must have ġβ = 0, for

otherwise ġ would be non-zero on an open interval containing β, which would contradict our assumption that
(α, β) is the largest open interval containing u0 on which ġ ̸= 0. But the formulas above show that

ġ2 =
1

1 + a2u2

if u ∈ (α, β), so, since ġ is a continuous function of u, ġ(β) = ±(1 + α2β2)−
1
2 ̸= 0. This contradiction

shows that the profile curve is not defined for values of u ≥ β. Of course, this also holds trivially ifβ = ∞.
A similar argument applies to α, and shows that (α, β) is the entire domain of definition of the profile curve.
Hence the whole of S is part of a catenoid.

The only remaining case to consider is that in which ġ(u) = 0 for all values of u for which the profile curve
is defined. But then g(u) is a constant, say,d, and S is part of the plane z = d.

Exercises

1. Show that any rigid motion of R3 takes a minimal surface to another minimal surface, as does any
dilation (x, y, z) → α(x, y, z), where a is a non-zero constant.

2. Show that z = f(x, y), where f is a smooth function of two variables, is a minimal surface if and only
if

(1 + f2y )fxx − 2fxfyfxy + (1 + f2x)fyy = 0.

3. Show that every umbilic on a minimal surface is a planar point.

4. Show that the Gaussian curvature of a minimal surface is ≤ 0 everywhere and that it is zero everywhere
if and only if the surface is part of a plane.

5. Show that there is no compact minimal surface.

6. Show that a ruled minimal surface is part of a plane or part of a helicoid.

7. Show that the surface σ(u, v) = (u− 1
3u

3 + uv2, v − 1
3v

3 + vu2, u2 − v2) is minimal.

8. Show that the helecoid is a minimal surface.

9. Show that a generalised cylinder is a minimal surface only when the cylinder is part of a plane.

10. A translation surface is a surface of the form z = f(x) + g(y), where f and g are smooth functions.
Show that this is a minimal surface if and only if

d2f/dx2

1 + (df/dx)2
= − d2g/dy2

1 + (dg/dy)2
.
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11. Test whether the Catalan’s surface

σ(u, v) = (u− sinucoshv, 1− cosucosv,−4sin
u

2
sinh

v

2
)

is a conformally parametrised minimal surface.

Summary

In this chapter concept of minimal surfaces has been given. Some standard results associated with minimal
surfaces have been established. Some examples have been provided. A list of exercieses has been given for
further practice.
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Course Structure

• Introduction

• Gausse’s theorema Egregium

• Gauss-Bonnet Theorem

• Exercises

8.1 Introduction

‘Egregium’ means remarkable. So ‘Gaussse’s Theorema Egregium’ means Gausse’s remarkable theorem. In
this unit, we shall study the remarkable theorem of Gauss. The statement of the theorem is following.

8.2 Gausse’s remarkable theorem

Theorem 8.2.1. The Gaussian curvature of a surface is preserved by isometries.

(Note. Since isometry depends on only first fundamental form of a surface, the alternative statement of
the above theorem is : The gaussian curvature of a surface depends only on the first fundamental form of the
surface.)
Proof. A diffeomorphism f : S1 → S2 is an isometry if and only if, for any surface patch σ1 of S1, the patches
σ1 and foσ1 of S1 and S2, respectively, have the same first fundamental form. So to prove the theorem, it
is enough to consider the case of a surface patch σ on S1 and to prove that, if σ and foσ have the same first
fundamental forms, then they have the same Gaussian curvature. We know that the Gaussian curvature K is
given by

K =
LN −M2

EG− F 2

So we see that the denominator of the above expression depends on the 1st fundamental form but the numerator
depends on the 2nd fundamental form. So we have to show that the expression LN −M2 can be expressed in
terms of coefficients of 1st fundamental form. To prove the theorem, we shall make use of smooth orthonormal
basis {e′, e′′} of the tangent plane at each point of the surface patch, where ‘smooth’ means e′ and e′′ are

38
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smooth functions of the surface parameters (u, v). Then {e′, e′′, N} is an orthonormal basis of R3. N is
standard unit normal of σ. We shall assume it is right handed i.e., N = e′ × e′′. This can always be achieved
by interchanging by e′ and e′′ if necessary. Note that here dash is just a symbol not derivative.

We can express the partial derivatives of e′ and e′′ with respect to u and v interms of the orthonormal
basis{e′, e′′, N}. Since both partial derivatives of e′ are perpendicular to e′ , the e′ components of e′u and e′v
are zero. Similar for e′′. Thus,

e′u = αe′′ + λ′N,

e′v = βe′′ + µ′N,

e′′u = −α′e′ + λ′′N,

e′′v = −β′e′ + µ′′N,

for some scalars α, β, α′, β′, λ′, µ′, λ′′, µ′′(which may depend on u and v.) Moreover, by differentiating the
equation e′.e′′ = 0 with respect to u, we see that e′u.e

′′ = −e′.e′′u., i.e., α′ = α and similarly β′ = β. Thus

e′u = αe′′ + λ′N,

e′v = βe′′ + µ′N,

e′′u = −αe′ + λ′′N, (8.0)

e′′v = −βe′ + µ′′N.

To complete the proof of the theorem let us fisrst state and prove the following lemma.

Lemma 8.2.2. If {e′, e′′, N} is an orthonormal basis of R3, then

e′ue
′′
v − e′′u.e

′
v = λ′µ′′ − λ′′µ′ (8.2.1)

= αv − βu (8.2.2)

=
LN −M2

(EG− F 2)
1
2

(8.2.3)

Proof of the lemma. Equation (8.2.1) follows from (8.0), since e′, e′′ and N are perpendicular unit vectors.
Next, we compute

αv − βu =
∂

∂u
(e′, e′′v)−

∂

∂v
(e′.e′′u) by(8.0)

= e′u.e
′′
v + e′.e′′v − e′ve

′′
u − e′e′′uv

= e′u.e
′′
v − e′v − e′ve

′′
v .

This proves (8.2.2). To prove equation (8.2.3), we use the formula

Nu ×Nv = Kσu × σv

Combining this with the formulas N = σu×σv
||σu×σv || , ||σu × σv|| = (EG− F 2)

1
2 . we get

Nu ×Nv =
LN −M2

(EG− F 2)
1
2

N

and hence

(Nu ×Nv).N =
LN −M2

(EG− F 2)
1
2

(8.2.4)
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Since N = e′ × e′′, we get

(Nu ×Nv).N = (Nu ×Nv).(e
′ × e′′) (8.2.5)

= (Nu.e
′)(Nv.e

′′)− (Nu.e
′′)(Nv.e

′)

= (N.e′u)(N.e
′′
v)− (N.e′′u)(N.e

′
v)

= λ′µ′′ − λ′′µ′ (8.2.6)

In the above equations, we usedNu.e
′ = −N.e′u, Nu.e

′′ = −N.e′′u, Nv, e
′ = −N.e′v, Nv.e

′′ = −N.e′′v . which
follows from fifferentiating N.e′ = 0 = N.e′′ with respect to u and v. Putting equations (8.2.4) and (8.2.6)
together shows that the right hand side of equation (8.2.1) and (8.2.3) are equal. Since equation (8.2.1) has
already been established, this equation (8.2.3). This completes the proof of the lemma. Now we go th prove
the main theorem in the following:

Combining equations (8.2.2) and (8.2.3), we get

K =
αv − βu

(EG− F 2)
1
2

, (8.2.7)

so to prove the theorem it suffices to show that, for a suitable choice of {e′, e′′} the scalars α and β depend
only on E,F and G. We shall construct {e′, e′′} by applying Gram-Schmidt orthogonalization process to the
basis {σu, σv} of the tangent plane. and will then show that they have the desired property. So, we first define

e′ =
σu

||σu||
= ϵσu,

where ϵ = E− 1
2 . Now, we look for a vector e′′ = γσu+ δσv, for some scalars γ, δ such that e′′ is a unit vector

perpendicular to e′. These conditions give

E− 1
2 (γE + δF ) = 0, γ2E + 2γδF + δ2G = 1.

The first equation gives γ = −δF/E, and substituting in the second equation then gives

δ2(
F 2

E
− 2

F 2

E
+G) = 1,

So

δ =
E

1
2

(EG− F 2)
1
2

, γ = − FE− 1
2

(EG− F 2)
1
2

, ϵ = E− 1
2 . (8.2.8)

Thus
e′ − ϵσu, e

′′ = γσu + δσv, (8.2.9)

where γ, δ and ϵ depend only on E,F and G. We now compute α and β. First

α = e′u.e
′′

= (ϵuσu + ϵσuu).(γσu + δσv)

=
ϵu
ϵ
(ϵσu).(γσu + δv) + ϵγσuu.σv

=
ϵu
ϵ
e′e′′ +

1

2
ϵγ(σu.σu)u + ϵδ((σu.σv)u − σu.σuv)

=
1

2
ϵγEu + ϵδ(Fu − 1

2
Ev) (8.2.10)
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And finally,

β = e′v.e
′′

= (ϵvσu + ϵσuv).(γσu + δσv)

=
ϵv
ϵ
e′.e′′ + ϵγσuv.σu + ϵδσuv.σv.

=
1

2
ϵγEv +

1

2
ϵδGu, (8.2.11)

which also depends on E,F and G. This completes the proof of Gausse’s Theorema Egregium.

8.3 Gauss-Bonnet Theorem.

In the previous section, we have studied Gausse’s Theorema Egrigium which tells us that the Gaussian cur-
vature of a surface depents on the metrici.e. the first fundamental form of the surface. So Gaussian curvature
of two isometric surfaces are same. On the other hand Gauss-Bonnet theorem gives the relation between the
topological and geometric properties of a surface. In the following we shall prove the Gauss Bonnet theorem
for simple closed curves and the only state the Gauss-Bonnet theorem for compact surfaces.

Definition 8.3.1. a curve γ(t) = σ(u(t), v(t)) on a surface patch σ : U → R3 is called a simple closed curve
with period π(t) = (u(t), v(t)) is simple closed curve in R2 enclosed by π is entirely contained in U. The
curve γ is said to be positively oriented if π is positively oriented. Finally, the image of int(π) under the map
σ is defined to be the interior int(γ) of γ.

Theorem 8.3.2. Let γ(s) be a unit-speed simple closed curve on a surface σ of length l(γ), and assume that
γ is positively oriented. Then ∫ l(γ)

0
kgds = 2π −

∫ ∫
int(γ)

KdAσ,

where kg is the Gaussian curvature of γ, K is the Gaussian curvature of σ and dAσ = (EG − F 2)
1
2dudv is

the area element of σ.

Proof. Choose a smooth orthonormal basis {e′, e′′} of the tangent plane of σ at each point such that {e′, e′′, N}
is right handed orthonormal basis of R3, where N is the unit normal to σ. Consider the following integral

I =

∫ l

0
(γ)e′.e′′ds

=

∫ l

0
(γ)e′(e′′uu̇+ e′′v v̇)ds

=

∫
π
(e′.e′′)du+ (e′.e′′)dv

By Green’s Theorem, this can be rewritten as double integral

I =

∫ ∫
int(π)

{(e′.e′′v)u − (e′.e′′u)v}dudv.

Simplifying the above

I =

∫ ∫
int(π)

KdAσ. (8.3.1)
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Now θ(s) be the angle between the unit tangent vector γ̇ of γ at γ(s) and the unit vector e′at the same point .
More precisely, θ is the angle, uniquely determined up to a multiple of 2π such that

γ̇ = cosθe′ + sinθe′′ (8.3.2)

Then,
N × γ̇ = −sinθe′ + cosθe′′ (8.3.3)

Now by equation (8.3.2)
γ̈ = cosθė′ + sinθė′′ + θ̇(−sinθe′ + cosθe′′) (8.3.4)

So by equation (8.3.3) and (8.3.4) the geodesic curvature of γ is kg = (N × γ̇).γ̈ Simplifying we get

kg = θ̇ − e′.ė′′.

Hence, by definition

I =

∫ l(γ)

0
(θ̇ − kg)ds.

Now by Hopf Umlaufstatz theorem
∫ l(γ)
0 θ̇ds = 2π. Hence the theorem follows by equation (8.3.1).

In the following, the statement of Gauss-Bonnet theorem for compact surfaces is given.

Theorem 8.3.3. Let S be a compact surface. Then∫ ∫
S
KdA = 2πχ,

where χ is the Euler number of the surface.

Exercises

1. Show that any point of a surface of constant Gaussian curvature is contained in a patch that is isometric
to part of a plane, a sphere or a pseudosphere.

2. If a surface patch has first fundamental form eλ(du2 + dv2), where λ is a smooth function of u and v,
show that its Gaussian curvature K satisfies δλ+ 2Keλ = 0.

3. Show that every compact surface whose Gaussian curvature is constant is a sphere.

4. A surface patch σ has Gaussian curvature ≤ 0 everywhere. prove that there are no simple closed
geodesic in σ. How do you reconcile this with the fact that the parallels of a circular cylinder are
geodesics?

Summary

In this unit we have proved Gausse’s Theorema Egrigium and an elementary version of Gauss-Bonnet theorem
associated with simple closed curve. Some exercises are given.
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9.1 Introduction

In the definition of surface, we have seen that for each point p ∈ S, where, S is a surface, there is an open
neighbourhood of p which is homeomorphic to an open subset of R2. Also, we have taken the surface S as a
subset of R3.

If instead of taking Sas a subset of R3, we take S as a topological space and for if every point p ∈ S, there
is a neighbourhood which is homeomorphic to an open set of Rn, then S will be called a topological manifold
or simply a manifold.

Like the concept of smooth surface, there is a concept of smooth manifold or differentiable manifold. In
the following, we give definition of smooth manifold.

9.1.1 Smooth Manifold

Definition 9.1.1. Let M be a topological space. If each point p ∈ M has an open neighbourhood which is
homeomorphic to an open subset of Rn, then M is called a topological manifold of dimension n. In order to
ensure existence of metric on a topological manifold, we assume the topological manifold as Hausdorff and
second countable.

Definition 9.1.2. A topological space is called locally Euclidean if each point p ∈M has an open neighbour-
hood which is homeomorphic to an open subset of Rn.
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Definition 9.1.3. Let M be a locally Euclidean , Hausdorff, second countable topological manifold. let
p ∈ M has two neighbourhoods U and V which are homeomorphic to two different open subsets of Rn. Let
f(U ∩ V ) = A and g(U ∩ V ) = B. If the transitions maps gof−1 : A → B and fog−1 : B → A are
differentiable, then the manifold is called differentiable manifold.

The pairs (U, f) and (V, g) are known as coordinate charts. The collection of all charts of the manifold is
called an atlas of the manifold.

Example 9.1.4. A circle is a differentiable manifold of dimension 1. We know that a circle S1 is a topological
space by subspace topology of R2. Define a map f : (0, 2π) → S1 by f(t) = (cost, sint). Image of f is
S1 − {(1, 0)} = A (say). Since the one pointic set {(1, 0)} is closed, so A is open.

We see that
f is defined from an open set of R to an open set of S1.

f is continuous.
f is bijective
f−1(cost, sint) = t is continuous.
Therefore f is a homeomorphism. Define another map g : (−π, π) → S1 by g(t) = (cost, sint). The

image of g is S1 − {(−1, 0)} = B say. Clearly B is an open set. Like f , g is also a homeomorphism.
Hence, for any point of S1, there exists atleast one open set containing the point which is homeomorphic to
an open set of R. So S1 is a topological manifold. Now we see that Image of f is A and image of g is B. So
A ∩ B − S1 − (1, 0), (−1, 0). Now f−1(A ∩ B) = (0, π) ∪ (π, 2π) and g−1(A ∩ B) = (−π, 0) ∪ (0, π).
Hence the transition maps are g−1of and f−1og. We see that g−1of is defined from (0, π) ∪ (π, 2π) to
(−π, 0) ∪ (0, π) and f−1og is defined from (−π, 0) ∪ (0, π) to (0, π) ∪ (π, 2π).

See that

g−1of(t) = g−1f(t) =

{
t, t ∈ (0, π)
t+ 2π, t ∈ (π, 2π)

And

f−1og(t) = f−1g(t) =

{
t, t ∈ (0, π)
t+ 2π, t ∈ (−π, 0)

It is clear that the above maps are differentiable. Therefore circle is a differentiable manifold of dimension 1.

Example 9.1.5. A sphere is a differentiable manifold of dimension 2:
We know that the sphere S2 is a Hausdorff, 2nd countable topological space by subspace topology of R3.

Let us define a map f : R2 → S2 by

f(u, v) =
( 2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
We see that Image of f is S2 − {(0, 0, 1)} We see that f is continuous, f is bijective. We find the the inverse
of f is given by

f−1(x, y, z) =
( x

1− z
,

y

1− z

)
.

Let N = (0, 0, 1) and S = (0, 0,−1). Since both S2 − N and R2 are open, so f is continuous. So f is
homeomorphism. Let us define another map g : R2 → S2 given by

g(u, v) =
( 2u

u2 + v2 + 1
,− 2v

u2 + v2 + 1
.

So as before, g is continious and image of g S2 − S. Like, f , g is also a homeomorphism.
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See that Image of f ∩ Image of g = S2 − {N,S}. Denote Image of f ∩ Image of g by A. So

f−1(A) = R2 − {(0, 0)}

and
g−1(A) = R2 − {(0, 0)}.

Here the transition maps are g−1of and f−1og are defined from R2 − {(0, 0)} to R2 − {(0, 0)} by

f−1og(u, v) =
( u

u2 + v2
,

v

u2 + v2

)
.

Hence S2 is a differentiable manifold of dimension 2.

Example 9.1.6. The open interval is a differentiable manifold of dimension 1. Any open set of R2 is a
differentiable manifold of R2. Any n-dimensional vector space is a differentiable manifold of dimension n.

Example 9.1.7. Let P3(R) be the set of all polynomials of degree less than three. Then it is a vector space of
dimension three. So it is a differentiable manifold of dimension three.

Exercises

1. Show that a circle is a smooth manifold.

2. Show that a sphere is a smooth manifold.

3. Show that the set of all n× n matrices is a smooth manifold.

4. Show that the set of all polynomials with real coefficient and degree less than three is a smooth manifold.

5. Show that an open interval of R is a smooth manifold.

6. Show that Rn is a smooth manifold.
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10.1 Introduction

We all are familiar with tangent vector to a curve at any point of plane. The idea of tangent vecto to a curve is
generalized as tangent plane of any surface at any point on the surface. This is further generalized as tangent
space on arbitrary manifolds. In this unit se shall study tangent space on a manifolds. In the following, let us
first have the idea of tangent vectors on manifolds.

Definition 10.1.1. Let γ : (−ϵ, ϵ) → Rn be a smooth curve. Let γ(0) = (p1, p2, ..., pn) := p By tangent
vector on Rn at p, we mean γ′(t)|t=0.

Example 10.1.2. Let f : Rn → R be a differentiable function. let α = (α1, ..., αn) be a given point on Rn.
Show that there exists a curve γ : (ϵ, ϵ) → Rn passing through α such that

Dvf(α) =
d

dt
(foγ(t))|t=0

Also show that Dvf(α) = Df.v, where v = γ′(t)|t=0.

Soln. Here α = (α1, α2, ..., αn). By definition of directional derivative at α along a vector v = (v1, v2, .., vn),
we get

Dvf(α) = lim
t→0

f(α+ tv)− f(α)

t

= lim
t→0

f(α1 + tv1, α2 + tv2, ..., αn + tvn)− f(α1, .., αn)

t
(10.1.1)

46
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Define the curve γ : (−ϵ, ϵ) → Rn by γ(t) = α+ tv From 10.1.1, we have

Dvf(α) = lim
t→0

f(γ(t))− f(γ(0))

t

=
d

dt
{f(γ(t))}|t=0

=
∂f

∂α1

d

dt
(γ1(t)) + ....+

∂f

∂n

d

dt
(γn(t))

=
∂f

∂α1
v1 + ...+

∂f

∂n
vn

= (
∂f

∂α1
, .....,

∂f

∂n
)(v1, v2, ..., vn).

= Df.v

Note: From the relation Dvf(α) = d
dt{f(γ(t))}|t=0 and the definition of tangent vectors in Rn we see

that each directional derivative operator assigns a tangent vector to Rn. Hence we can identify directional
derivative operators and tangent vectors in Rn.

Definition 10.1.3. Let p be a point of Rn. The set of all tangent vectors passing through p is called tangent of
Rn at p and it is denoted by TpRn.

Example 10.1.4. Show that tangent space at any point of Rn is Rn itself.

Soln. Let P = (p1, p2, .., pn) be a given point of Rn. We have to show that TpRn = Rn. Let v =
(v1, v2, ..., vn) be any arbitrary vector of Rn. Define a curve, γ(t) = p + tv where γ(0) = p. Therefore
γ passes through p.

γ(t) = (p1 + tv1, ..., pn + tvn)

γ′(t) = (v1, v2, .., vn).

So γ′(t)|t=0 = (v1, v2, .., vn). Therefore any vector of Rn is tangent vector of Rn. Hence TpRn = Rn.

Example 10.1.5. Find the tangent space of GL2(R) at I2.

soln. Let us first show that, ifX is a 2×2 matrix such that ||X|| < 1, then I2+X ∈ GL2(R). LetA = I2+X.
Let us consider the matrix B = I2 −X +X2 −X3 + .... Now,

Sm = I2 −X +X2 −X3 + ...+ (−1)m−1Xm−1

Sm+k = I2 −X +X2 − ....+ (−1)m−1Xm−1 + ...+ (−1)m+k−1Xm+k−1

So

Sm+k − Sm = (−1)mXm + (−1)m+1Xm+1 + ...+ (−1)m+k−1.

= (−1)mXm(I2 −X +X2 − ...−+(−1)k−1Xk−1)

So

||Sm+k − Sm|| = ||Xm||||I2 −X +X2 −−...+ (−1)k−1Xk−1||
≤ ||Xm||(1 + ||X||+ ||X2||+ ...+ ||Xk−1||)
≤ ||Xm||(1 + ||X||+ ||X2||+ ....+ ||Xk−1||)
→ 0 as ||X|| < 1 asm→ ∞.
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Hence B exists. Now

AB = (I2 +X)(I2 −X +X2 −X3 + ...)

= (I2 +X)(I2 −X)−1

= I2.

So A is invertible, hence A ∈ GL2(R). Let M be any matrix of M2(R), t ∈ (−ϵ, ϵ), ϵ → 0. So ||tM || < 1.
So I2 + tM ∈ GL2(R). Now define a curve γ(t) = I2 + tM, t ∈ (−ϵ, ϵ), M ∈ M2(R). For t = t0 = 0,
γ(t0) = I2. So γ passes through I2. Now γ′(t) =M . So γ′(t)|t=0 +M. So tangent space of GL2(R) at I2 is
M2(R).

Definition 10.1.6. We have seen that directional derivative operators are identified with tangent vectors. Hence
we shall call directional derivatives are tangent vectors of Rn. Generalizing this property we shall call any
operator which satisfies properties of directional derivatives are tangent to any abstract manifolds.

Exercises

1. LetM be a differentiable manifold. If p ∈M has local coordinates x1, x2, .., xn, show that { ∂
∂x1

, ...., ∂
∂xn

}
is a basis of TpM.

2. Let M be a differentiable manifold. if p ∈ M and g, h are two smooth functions defined from a
neighbourhood of p to R and if γ is a smooth curve passing through p show that

γ′(0)(ag + bh) = aγ′(0)g + bγ′(0)h,

where a, b are real numbers.

3. Find the tangent space of unit sphere at the point (0, 0, 1).
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11.1 Introduction

The intermediate value theorem is a very important property of the continuous functions in the real line. It
says that if a function : [a, b] → R is continuous, and if r is a real number between f(a) and f(b), then there
exists an element c ∈ [a, b] such that f(c) = r. Can you see the geometric interpretation of this theorem?
What if we define a continuous function on the interval [1, 2] ∪ [3, 4], then is the theorem true for this domain
also? You will notice that its not. The intermediate value theorem is true for [a, b] due to a particular property
of the interval which is rightly termed as "connectedness" of the interval. As the name suggests, the interval
is not "broken" or "separated" in some sense. In this unit, we will learn the concept of connectedness and its
properties.

Objectives

After reading this unit, you will be able to

• define connected sets and differentiate between connected and separated sets.

• learn various equivalent definitions for connected spaces.

• learn the characteristics of connected sets.

• know the structure of connected sets in the real line.

• learn examples of connected and separated sets.
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11.1.1 Connected Spaces

Roughly speaking, a topological space is said to be connected if it does not allow itself to be partitioned into
two disjoint proper open subsets of itself. In an arbitrary topological space, we have we have only the open
sets at our disposal. So we first define separated set as follows:

Definition 11.1.1. Let (X, τ) be a topological space. Then, X is said to be disconnected if there exists two
open sets U and V , such that

1. U ∩ V = ϕ.

2. U ∪ V = X .

Then the pair (U, V ) is said to form a disconnection of X .

Definition 11.1.2. A topological space X is said to be connected if it does not admit of a disconnection.

Does the closed interval [a, b] admit of a disconnection?

Connectedness is obviously a topological property since its defined in terms of open sets entirely. In other
terms, we can say that if X is connected,then any space homeomorphic to X is also connected. In fact, if X
and Y are homeomorphic, then there exists a homeomorphism f : X → Y . If X is not connected, then it
does not have a disconnection. If possible, let Y is disconnected. Then there exists disjoint open sets, say U
and V . Since f is continuous, so f−1(U) and f−1(V ) are open sets in X that forms a disconnection for X
(verify!). Which is a contradiction. Hence Y is also connected.

Consider a subset A of a topological space X , which is both open and closed. We know that in any
topological space X , the empty set ∅ and X are always both open and closed. Does there exist any other
subset in X with the property? Consider the following example:

Example 11.1.3. The set Y = [0, 1]∪ [3, 4] is a subspace of the real space with the usual topology. Then, the
sets [0, 1] = Y ∩ (−1/2, 3/2) is open in Y . Similarly, [3, 4] = Y ∩ (3/2, 9/2) is open in Y . Also, see that
[0, 1] = Y \ [3, 4] and [3, 4] = Y \ [0, 1]. Hence, both are closed also. Thus the subspace Y has two proper
subsets which are both open and closed.

As you can probably figure out, the subspace Y is not connected (the sets [0, 1] and [3, 4] forms a discon-
nection for Y ). In fact, for connected space, we won’t find any other proper subset which is both open and
closed. We have the following equivalent definition for connectedness of a space X .

Theorem 11.1.4. A space X is said to be connected if and only if X and ∅ are the only subsets of X which
are both open and closed.

Proof. Let X be connected and if possible, let A be a subset of X which is both open and closed. Since A is
closed, X \A is open. Also, A and X \A are disjoint open sets whose union is X . Thus A and X \A forms
a disconnection of X , a contradiction. Thus no proper subset of X can be both open and closed.
Conversely, suppose X is disconnected. Let U and V forms a disconnection of X . Then X = U ∪ V . Which
means, U = X \V and V = X \U implying that U and V are both open and closed. Hence the theorem.

Example 11.1.5. 1. Let X be a two-point set with the indiscrete topology. Then X has no separation. In
fact, any set with the indiscrete topology is always connected. But what happens if we take the discrete
topology?
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2. Consider R with co-finite topology. Then R is connected. If possible, let A and B be a separation of R.
Then A ∩ B = ∅ and R \ A and R \ B are both finite sets. So, (R \ A) ∪ (R \ B) is a finite set. That
is, R \ (A ∩ B) is a finite set, that is, R is a finite set, since A ∩ B = ∅. Thus, R is connected with the
co-finite topology.

3. R with the usual topology is also connected.(can you prove it?)

Definition 11.1.6. Let A and B be two subsets of a topological space (X, τ). Then A and B are said to be
separated if A ∩B = ∅ and A ∩B = ∅ simultaneously hold.

Definition 11.1.7. Let Y be a subspace of a topological space (X, τ). Then Y is said to be connected if it is
connected with respect to the topology induced by τ , that is, if there does not exist disjoint open sets A and B
in Y such that Y = A ∪B.

Is a subspace of a connected space always connected? Let’s consider the following example:

Example 11.1.8. The subspace of all rationals is disconnected with the usual topology. Let x, y ∈ Q such
that x < y. Then, there exists an irrational number a such that x < a < y. Then we can write

Q = {(−∞, a) ∩Q)} ∪ {(a,∞) ∩Q}

The sets {(−∞, a)∩Q)} and {(a,∞)∩Q} are non-empty since x ∈ {(−∞, a)∩Q)} and y ∈ {(a,∞)∩Q}
and open in the subspace topology. Thus Q is disconnected. Can you give other examples of disconnected
subspaces of a connected topological space?

Note that, by choosing different a ∈ Q, we can get a different disconnection for Q. In fact, in this way,
we can get infinite number of disconnections for Q. We could similarly show that the set of irrationals is also
disconnected. Also we see that the union of rationals and irrationals give us R. Thus, we can conclude that
two the union of two disconnected sets may be connected. Some additional properties are required for the
union to be disconnected too. We have the following theorem in this direction:

Theorem 11.1.9. If A and B are two separated non-empty sets of (X, τ), then A ∪B is disconnected.

Proof. Let A and B are two separated non-empty sets of (X, τ). Then we have A ∩ B = ∅ and A ∩ B = ∅.
Put G = X \B and H = X \A. Then G and H are disjoint non-empty sets in X . Then we have

(A ∪B) ∩G) = (A ∩G) ∪ (A ∩G)
= A ∪ ∅
= A

Similarly, we have
(A ∪B) ∩H = B

Thus,
A ∪B = ((A ∪B) ∩G) ∪ ((A ∪B) ∩H)

Hence, (A ∪B) ∩G and (A ∪B) ∩H clearly forms a disconnection for A ∪B. Hence the result.

Theorem 11.1.10. A subset Y of (X, τ) is disconnected if and only if Y is the union of two non-empty
separated sets.
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Proof. The sufficient condition immediately follows from the previous theorem.

For the necessary part, let Y be disconnected. Then Y can be partitioned as

Y = (Y ∩A) ∪ (Y ∩B)

where A and B are open sets in X whose intersections with Y are non-empty. We will check for the separat-
edness of Y ∩ A and Y ∩ B. If possible, let a be a limit point of Y ∩ A and a ∈ Y ∩ B. Since B is an open
set containing a, so

B ∩ {(Y ∩A) \ {a}} ≠ ∅

which is a contradiction since

B ∩ (Y ∩A) = (Y ∩A) ∩ (Y ∩B) = ∅.

Hence Y ∩A and Y ∩B are separated sets.

Example 11.1.11. 1. We told that the set Y = [0, 1] ∪ [3, 4] is disconnected. But in light of the previous
theorem, we can see that [0, 1] and [3, 4] forms a disconnection for Y in which neither of them contains
a limit point of the other.

2. The set Y = [−1, 0) ∪ (0, 1] of the real line is disconnected since [−1, 0) and (0, 1] are separated sets
whose union is Y (neither of them contains a limit point of the other).

3. The set Y = [0, 2] of the real line is connected. The sets [0, 1) and [1, 2] are of course disjoint whose
union gives Y . But [1, 2] is not open in the subspace Y . So this does not form a disconnection for Y .
In fact, by the previous theorem, we can say that since [0, 1) and [1, 2] are not separated, so it does not
form a disconnection for Y .

Now we will see certain results for connectedness in series.

Lemma 11.1.12. If the sets C and D form a disconnection for X and Y is a connected subspace of X , then
Y is either in C or D.

Proof. Since C andD are disjoint open sets inX , the sets C∩Y andD∩Y are open in Y . These two sets are
disjoint and their union is Y . If they were both non-empty, they would constitute a separation for Y . Hence,
one of them should be empty. Hence Y entirely lies either in C or D.

Theorem 11.1.13. The union of a collection of connected subspaces of X that have a point in common is
connected.

Proof. Let {Aα} be a collection of connected subspaces of a space X and let ∩αAα = p. We prove that the
space Y = ∪αAα is connected. If possible, let C and D form a separation for Y . Then p lies in either C or
D. Without any loss of generality, let us assume that p ∈ C. For each α, Aα must lie entirely on C or D since
it is connected and it can’t be in D since p ∈ C. Since all Aα ∈ C, so ∪αAα ⊂ C and hence Y ∩D = ∅. We
arrive at a contradiction. Hence Y is connected.

Theorem 11.1.14. Let A be a connected subspace of X and if A ⊂ B ⊂ A, then B is connected.

Proof. Let A be connected and let A ⊂ B ⊂ A. Suppose that B = C ∪ D be a separation for B. Then,
A must lie entirely in either C or D. Suppose A ⊂ C. Then A ⊂ C. Since C and D are disjoint, B can’t
intersect D. This contradicts the fact that D is a non-empty subset of B.

Corollary 11.1.15. Closure of a connected set is connected in a Topological space
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Theorem 11.1.16. The continuous image of a connected space is connected.

Proof. Let f : X → Y be a continuous function and let X be connected. We show that the space Z = f(X)
is connected. If not, then there exists a separation Z = C ∪ D of Z. Since f is continuous, so f−1(C)
and f−1(D) are both disjoint open sets in X , whose union is X . Then they form a disconnection for X , a
contradiction. Hence Z = f(X) has to be connected.

Let us consider a topological space consisting of two members {a, b} with the discrete topology, a, b ∈ R.
Then the discrete two-point space is disconnected since {a, b} = {a} ∪ {b} is clearly a disconnection for the
space. One can characterize a connected space as follows.

Theorem 11.1.17. A space X is disconnected if and only if there is a continuous function f : X → {a, b},
which is onto.

Proof. Left as an exercise.

Theorem 11.1.18. A topological space (X, τ) is connected if and only if given any two distinct points in X ,
there is a connected subspace of X containing both.

Proof. Let (X, τ) be connected. Given any two distinct points in X , then X itself is the required subspace
containing both.

Conversely, let the given condition holds. If possible, let X is disconnected. Then there exist a disconnec-
tion C, D for X such that X = C ∪ D. Let c ∈ C and d ∈ D. Since C and D are disjoint, so c ̸= d. By
the hypothesis, there exists a connected subspace of X , say G that contains both c and d. Clearly, G ⊂ C or
G ⊂ D. Let G ⊂ C. Then we get d ∈ (C ∩D) = ∅, which is absurd. Hence, X has to be connected.

11.1.2 Connected Sets on the Real line

We will now deal with the connected sets in the real line with the usual topology. With all the examples that
we have so far seen, you must have got an idea about the connected sets on the real line. Yes. They are
intervals: (a, b), [a, b], [a, b), (a, b], (a,∞), [a,∞), (−∞, b), or (−∞, b], whatever may be the form. The
following theorem guarantees the fact.

Theorem 11.1.19. A subset of R is connected if and only if it is an interval.

Proof. Suppose E is a connected subset of R without being an interval. Then we find a pair of distinct mem-
bers a, b ∈ E such that [a, b] ̸⊂ E. Thus, there is a member u such that a < u < b and u ̸∈ E. Then we write
E = ((−∞, u)∩E)∪ ((u,∞)∩E) and that is a disconnection for E, a contradiction. Hence E has to be an
interval.

Conversely suppose that I be an interval of the reals. If possible, let I has a disconnection

I = A ∪B,

where, A and B are a pair of non-empty disjoint closed sets in I . Take x ∈ A and z ∈ B. Since A ∩ B = ∅,
x ̸= z, and without any loss of generality, assume that x < z. Because I is an interval we have the closed
interval [x, z] ⊂ I . Thus

[x, z] ⊂ A ∪B

Put y = sup([x, z] ∩A). Then x ≤ y ≤ z, so y ∈ I . Since A is closed in I , we have,

y ∈ A (11.1.1)
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Therefore y ̸= z and we have y < z. By the property of supremum, for large natural numbers n, all numbers
y + 1

n belong to B and since B is closed, taking limit as n tends to infinity, we have

lim
n→∞

(
y +

1

n

)
= y ∈ B

But this contradicts (11.1.1) because A ∩B = ∅. Hence proved.

We can say from the theorem that R is connected.

Exercise 11.1.20. 1. Let τ and σ be two topologies on X . If σ ⊃ τ , what does connectedness of one
topology imply about the connectedness of the other?

2. Let {An} be a sequence of connected subspaces of X , such that An ∩ An+1 ̸= ∅ for all n. Show that⋃
nAn is connected.

3. Let {Aα} be a collection of connected subspaces of X and let A be a connected subspace X . If
A ∩Aα ̸= ∅ for all α, then show that A ∪ (

⋃
αAα) is connected.
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Introduction

Given any arbitrary space X , there is a natural way to break it into pieces as we shall see in this unit. Those
pieces are called components. We will study various components of a topological space and further charac-
terisations of connectedness of a topological space. Let us start with the idea of components of a topological
space.

12.1 Components

Definition 12.1.1. Given a topological space X , define an equivalence relation on X as follows

x ∼ y if and only if there is a connected subspace containing both of them.

The equivalence classes are called the components of X .

The proof that ’∼’ is an equivalence relation has been left as en exercise.

Theorem 12.1.2. The components of X are connected disjoint subspaces of X whose union in X; such that
every non-empty connected subspace of X is contained in exactly one of them.

The statement of the theorem says that the components of X partition X into disjoint sets. The proof is as
follows

55
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Proof. Since the components are equivalence classes, they are disjoint and their union is X . For the second
part, let A be a connected subspace of X . If possible, let A intersects tow of the components, say C and D at
points, say c and d respectively. Then by the definition of ∼, we can say that c ∼ d and A is the connected
subspace containing both. This can’t be true unless C = D.

To show that a component C is connected, choose a point x0 ∈ C. For each point x ∈ C, we know that
x0 ∼ x, so there is a connected subspace Ax of X containing x0 and x. By the result just proved, Ax ⊂ C.
Hence,

C =
⋃
x∈C

Ax.

Since the subspace C is the union of connected subspaces containing a common point x0, their union is
connected.

Theorem 12.1.3. A component is a maximal connected subspace of X , that is, it is not contained in a con-
nected subspace of X .

Proof. If possible let a component C be properly contained in a connected subspace D of X . Then there
exists a d ∈ D such that d ̸∈ C. Since X is partitioned into components, so d is contained in some other com-
ponent,say E of X . Now, let c ∈ C. Since C ⊂ D, so c ∈ D. Thus, c ∼ d and D is the connected subspace
of X containing both c and d. Also, D intersects both the components C and E which is a contradiction by
the previous theorem. Hence C can’t be contained in any connected subspace of X .

Theorem 12.1.4. A connected set in X that is both open and closed is a component of X .

Proof. Let E be a connected set in X which is both open and closed. Now, since each connected set is
contained in a component of X , so E ⊂ C for some component C of X . Suppose E is a proper subset of C.
Then we can write

C = (C ∩ E) ∪ (C ∩ (X \ E)).

Since E is both open and closed, so the above decomposition yields a disconnection for C, a contradiction.
Hence, E can’t be a proper subset of C and so E = C.

Theorem 12.1.5. Every component of X is a closed set.

Proof. Let Cbe a component of X without being closed. So C is strictly contains C. But, we know that the
closure of connected set is connected and thus it contradicts the maximality of C. Hence C is closed.

Definition 12.1.6. A topological space (X, τ) is said to be totally disconnected if for every pair of disjoint
points x, y ∈ X , X has a disconnection X = G ∪H with x ∈ G and y ∈ H .

Does the above definition remind you of some similar definition that you have learnt earlier?

Of course a totally disconnected space is always disconnected.

Example 12.1.7. The real numbers with the upper limit topology is totally disconnected.

We know that the upper limit topology for R is generated by the left-open intervals like (a, b] for a, b ∈ R
with a < b. Let x, y ∈ R with x < y. Then we can write

R = (−∞, x] ∪ (x,∞)

where the sets in the r.h.s of the above equation are clearly disjoint open sets in the upper limit topology
containing x and y respectively. So, R is totally disconnected.
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Theorem 12.1.8. The components for a totally disconnected space are its singletons.

Proof. Let X be totally disconnected and C be a component of X . We show that C can’t have more than one
point. Let x, y ∈ C with x ̸= y. Since X is totally disconnected, it has a disconnection as

X = G ∪H

where G and H are disjoint non-empty open sets such that x ∈ G and y ∈ H . We write

C = C ∩X
= C ∩ (G ∪H)

= (C ∩G) ∪ ((C ∩H)

each of which are disjoint open sets in C thus yielding a disconnection for C,a contradiction. Hence the
theorem.

Definition 12.1.9. A topological space X is said to be locally connected at x ∈ X , if every neighbourhood
of x contains an open connected neighbourhood of x. And X is said to be locally connected if it is locally
connected at each of its point.

It is interesting to note that neither local-connectedness implies connectedness nor conversely.

Example 12.1.10. If X = (0, 1) ∪ (2, 3) be a space with usual topology, then it is locally connected without
being connected. Take a real number a with 1 < a < 2. We write

X = ((−∞, a) ∩X) ∪ ((a,∞) ∩X),

and this forms a disconnection for X . Also let u ∈ X and let 0 < u < 1, and given a neighbourhood Nu of u
inX , we can find an open interval like (u−δ, u+δ), δ > 0 such that (u−δ, u+δ) ⊂ Nu. Since open intervals
of reals with the usual topology are connected, so Nu contains an open neighbourhood of u, and hence X is
locally connected at u. Since u is arbitrary, so X is locally connected at each point of (0, 1). By similar
argument, we can show that X is locally connected at each point of (2, 3). Hence X is locally-connected
without being connected.

Can you think of a space which is connected without being locally-connected?

Theorem 12.1.11. A topological space X is locally-connected if and only if the components of each open
subspace of X are open in X .

Proof. Let X be locally-connected and let Y be an open subspace of X . Suppose C is a component of Y .
Take x ∈ C Since X is locally-connected at x, there is an open connected set U in X such that x ∈ U ⊂ Y .
Now, x ∈ C ∩U , where U and C are connected and hence C ∪U is connected and C ∪U ⊂ Y . Since C is a
component, by maximality of C, we have C ∪U = C or U ⊂ C. Hence, x ∈ U ⊂ C. Since x is arbitrary, so
we conclude that C is open.

Conversely let the given condition holds. Let x ∈ X and let Nx be an open neighbourhood of x in X .
Take C as a component such that x ∈ C ⊂ Nx. By hypothesis, C is open. This shows that there is an open
connected neighbourhood C of x such that C ⊂ Nx. Thus X is locally-connected at x. Since x is arbitrary,
so X is locally-connected.



58 UNIT 12.

12.1.1 Path Connectedness

Let us first define path in a topological space.

Definition 12.1.12. Let X be a topological space and let x, y ∈ X . A path in X from x to y is a continuous
map γ : [a, b] → X satisfying γ(a) = x and γ(b) = y. Here, a, b ∈ R and a < b.

Definition 12.1.13. We define another equivalence relation on X as follows:

x ∼ y if and only if there is a path between the two.

Hence the equivalence classes for ’∼’ partitions X , and they are called the path-components of X .

The proof of the equivalence of the relation is easy and has been left as an exercise.

Definition 12.1.14. A topological space X is path-connected if for any x, y ∈ X , there exists a path from x
to y.

Theorem 12.1.15. Let X be a path-connected space. Then X is connected.

Proof. Let X be path-connected. We will use paths in X to show that if X is not connected then [0, 1] is not
connected, which of course is a contradiction, so X has to be connected.

Suppose X is not connected, so we can write

X = U ∪ V,

where U and V are non-empty disjoint open sets of X . Let x ∈ U and y ∈ V . Then, there is a path
γ : [0, 1] → X such that γ(0) = x and γ(1) = y. The partition of X into U and V leads via this path to a
partition of [0, 1].

[0, 1] = A ∪B,

where, A = γ−1(U) and B = γ−1(V ). Note that 0 ∈ A and 1 ∈ B, so A and B are non-empty subsets
of [0, 1]. Obviously A and B are disjoint, since no point in [0, 1] can have a common γ value in both U
and V . Since γ is continuous and U and V are both open in X , A and B are open in [0, 1]. Thus we get a
disconnection for [0, 1], a contradiction. Hence, X has to be connected.

The converse does not hold in general.

Example 12.1.16. The space

A = {(x, y) ∈ R2|x > 0, y = sin
1

x
} ⊂ R2

is path-connected and hence connected. So, its closure

A = A ∪ ({0} × [−1, 1])

is connected. But A is not path-connected.

Though the converse is sometimes true in special cases. We have the following theorem in this direction.

Theorem 12.1.17. If a non-empty open subset of Rn is connected, then it is path-connected.

We will omit the proof of the theorem.
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Theorem 12.1.18. The path components of a topological space X are path connected disjoint subspaces of
X whose union is X , such that every non-empty path-connected subspace intersects only one of them.

Proof. Since the path components are equivalence classes of the equivalence relation for paths, so each of the
components are disjoint subspaces whose union is X . Let A be a non-empty path-connected subspace of X .
If possible, let A intersects two path-components P and S of X , say at points p and s respectively. Then,
since A is path-connected, and s and p are in A, so there exists a path between s and p. But by the definition
of path-components, this is impossible unless P = S. Thus A can intersect only one of the path-components.

Let P be a path-component of X . Then by the definition of path components, for any two distinct points of
P , there exists a path between the two. Then it is obviously path-connected.

We saw in case of components that they are closed. But they need not be open. But in case of path-
components, we can say nothing about this. They need be neither open nor closed.

Example 12.1.19. In the subspace of rationals Q of R, each component consists of a single point and hence
is not open in Q.

Definition 12.1.20. A space X is said to be locally path-connected at a point x ∈ X if for every neigh-
bourhood U of x, there exists a path-connected neighbourhood V of x contained in U . If X is locally path-
connected at each of its points, then it is called locally path-connected.

Theorem 12.1.21. A space X is locally path-connected if and only if for every open set U of X , each path
component of U is open in X .

Proof. The proof is similar as that in the case of local connectedness and has been left as an exercise.

Theorem 12.1.22. If X is a topological space, each path component of X lies in a component of X .

Proof. Let C be a component of X and let x ∈ C. Let P be the path component of X containing x. Since P
is connected, so by maximality of C, P ⊂ C. Hence proved.

Theorem 12.1.23. If X is locally path-connected, then the components and path-components are the same.

Proof. Let C be a component and P be a path-component as in the previous theorem. Then by the previous
theorem , we have

P ⊂ C.

If possible, let P ̸= C. Let Q denotes the union of all path-components of X that are different from P and
intersect C; each of them necessarily lie in C, so that

C = P ∪Q.

Since X is locally path-connected, each path-component of X is open in X . Hence, P and Q (which is the
union of path-components) are open in X , so they constitute a disconnection of C, a contradiction. Thus P
has to be equal to C. Hence the theorem.
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12.1.2 Quasicomponents

Definition 12.1.24. Let X be a space. We define a relation ’∼’ as follows: x ∼ y if and only if there is no
separation

X = A ∪B,

where A and B are disjoint open sets in X such that x ∈ A and y ∈ B. Then it is an equivalence relation on
X and the equivalence classes are called quasicomponents of X .

Theorem 12.1.25. In a space X , each component lies in a quasicomponent of X .

Proof. If X is connected then the result is trivially true. Let X be not connected and let C be a component of
X . Let c ∈ C and also let Q be the quasicomponent of X containing c. We show that C ⊂ Q. If not, then
there exists at least a pair of elements x, y ∈ C for which there exists a disconnection

X = A ∪B

such that x ∈ A and y ∈ B. Then, we will get

C = (C ∩X)

= C ∩ (A ∪B)

= (C ∩A) ∪ (C ∩B)

which yields a disconnection forC, a contradiction. Hence our assumption is wrong andC has to be inQ.

Exercise 12.1.26. 1. Examine if the real number space with the lower limit topology is connected.

2. Show that the set of irrational numbers with the usual topology is disconnected.

3. Show that a totally disconnected space is T2.

4. Show that continuous image of a locally connected space may not be so.

5. Show that any ball in R2 with usual topology is connected.
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Introduction

As we have seen, the closed interval [a, b] has certain crucial properties which has many applications such
as the maximum value theorems. But for a long time it was not clear how to formulate it in any arbitrary
topological space. Mathematicians formulated it in terms of open coverings of the space. This formulation is
what is called compactness. We do have preliminary ideas about compactness when we learned real analysis
and metric spaces. We are very familiar with the Heine-Borel theorem which says that any closed and bounded
set is compact in the real line R. In fact, the theorem is true for any Rn. By virtue of this, it can be said that
[a, b] is compact in R. Let’s look at it in a more general way, that is, for any arbitrary topological space and
lets find out whether we can connect with whatever we have learned earlier.

Objectives

After reading this unit, you will be able to

• learn compactness in a more general setting

• relate the definitions with the earlier ones that you have learnt

• learn various characterizations and properties of compact spaces

• see certain examples of compact sets in familiar spaces

• learn about sequential compactness

• learn about various applications of compact spaces

61



62 UNIT 13.

13.1 Compact Spaces

Before starting with the definitions of compact spaces, lets go with the tradition of defining open covers, and
subcovers first.

Definition 13.1.1. A collection A of subsets of a space X is said to cover X if X is equal to the union of the
elements of A. And A is called open cover if each of the elements of A are open sets of X .

Definition 13.1.2. A finite subfamily of A that also covers X is called a finite subcover for X .

Example 13.1.3. For example, the family of open intervals A = {(−n, n)|n ∈ N}, forms an open cover for
R. Also the subfamily Ae = {(−2n, 2n)|n ∈ N} forms a subcover for R.

We now define compactness of a space X .

Definition 13.1.4. A topological space (X, τ) is said to be compact if each open cover of X has a finite
subcover.

Example 13.1.5. Let X be an infinite set with the co-finite topology. Then X is compact. Let

A = {Uα|α ∈ I}

be an open cover for X . Take any Uα ∈ A. Then, by the definition of co-finite topology, X \Uαis a finite set,
say

X \ Uα = {a1, a2, . . . , an}

Since A covers X so for each i = 1(1)n, there exists a Uαi ∈ A such that ai ∈ Uαi . So clearly, the finite
subcollection {Uα, Uα1 , Uα2 , . . . , Uαn} covers X . Hence X with the co-finite topology is compact.

Definition 13.1.6. A subset A of a topological space X is said to be compact if it is compact as a subspace of
X with the topology induced by the topology on X .

Example 13.1.7. 1. The real line with the usual topology is not compact since the open cover

A = {(n, n+ 2)|n ∈ Z}

does not have any finite subcover.

2. The interval (0, 1] is not compact. The open covering

A = {(1/n, 1]|n ∈ Z+}

contains no finite subcover for (0, 1].

3. The closed interval [0, 1] is compact and it is by the well known Heine Borel theorem for R.

Lemma 13.1.8. Let A be a subspace of X . Then A is compact if and only if every open covering of A by the
sets open in X contains a finite subcollection covering A.

Proof. Let A be compact and let A = {Aα|α ∈ I} be an open covering for X by open sets in X . Then the
family

{Aα ∩A|α ∈ I}

is an open covering for X by open sets in A. Then there exists a finite subcollection {Aα1 ∩ A,Aα2 ∩
A, . . . , Aαn ∩A} which covers A. Thus, the subcollection {Aα1 , Aα2 , . . . , Aαn} covers A by means of open



13.1. COMPACT SPACES 63

sets in A.

Conversely, suppose that the given condition holds. We prove that A is compact. Let {Bα|α ∈ J} be an
open cover for A by open sets in A. For each α,choose a set Aα open in X such that

Bα = A ∩Aα

Then the collection {Aα|α ∈ J} is an open cover for A by open sets in X . By hypothesis, there exists
a finite subcollection of {Aα|α ∈ J}, say {Aα1 , Aα2 , . . . , Aαn} that covers A. Thus the subcollection
{Bα1 , Bα2 , . . . , Bαn} covers A. Thus, A is compact.

The usefulness of the above lemma lies in the fact that whenever we are dealing with the compactness of a
subspace, then it becomes redundant to differentiate between open cover by the open sets in X or in A.

Theorem 13.1.9. Every closed subspace of a compact space is compact.

Proof. Let C be a closed subspace of a compact topological space X . Let A be an open cover of C by open
sets in X . Then the family of open sets in A along with the open set X \ C forms an open cover of X . Since
X is compact, so the said family has a finite subcover say

{G1, G2, . . . , Gn} ∪ (X \ C)

of X . Thus, the subfamily
{G1, G2, . . . , Gn}

clearly covers C. Thus, C is compact.

Theorem 13.1.10. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of a Hausdorff spaceX . We will prove thatX\Y is open. Let a ∈ X\Y .
For each point y ∈ Y , we will get disjoint open neighbourhoods Uy and Vy of the points a and y respectively.
The collection {Vy|y ∈ Y } is a cover of Y by open sets in X , and hence we will get a finite subfamily of it,
say {Vy1 , Vy2 , . . . , Vyn} that cover Y . The open set

V = Vy1 ∪ Vy2 ∪ . . . ∪ Vyn

contains Y and it is disjoint from the open set

U = Uy1 ∩ Uy2 ∩ . . . ∩ Uyn

formed by taking the corresponding intersection of the open neighbourhoods of a. For if z ∈ V , then z ∈ Vyi
for each i and hence z ̸∈ Uyi for each i and hence z ̸∈ U . Thus U is the required neighbourhood of a that is
disjoint from Y , that is U ⊂ X \ Y . Hence X \ Y is open and thus, Y is closed.

In the course of proving the above theorem we have proved the following lemma.

Lemma 13.1.11. If Y is a compact subspace of a Hausdorff space X and a ̸∈ Y . Then there exist disjoint
open sets U and V of X containing a and Y respectively.

Theorem 13.1.12. The image of a compact space under a continuous map is compact.



64 UNIT 13.

Proof. Let f : X → Y be continuous and X be compact. Let A be an open covering of the set f(X) by sets
open in Y . Then the collection

{f−1(A)|A ∈ A}
is a collection of open sets covering X . Thus, due to the compactness of X , there is a finite subfamily, say

{f−1(Ai)|i = 1(1)n}

that covers X . Then the subfamily {A1, A2, . . . , An} that cover f(X).

An important application of the above theorem can be stated as the following theorem.

Theorem 13.1.13. Let f : X → Y be a bijective continuous map where X is compact and Y is Hausdorff.
Then f is a homeomorphism.

Proof. We will prove that the images of a closed sets of X under f are closed in Y . If A is closed in X , then
its compact. Thus, by the previous theorem, f(A) is compact. Since Y is Hausdorff, so f(A) is closed in
Y .

We are now heading to prove another equivalent definition of compactness. First we will define the Finite
Intersection Property (FIP) of a collection of subsets of a space X .

Definition 13.1.14. A collection C of subsets of X is said to have FIP, if the intersection of a finite subfamily
of C has non-empty intersection.

The following theorem gives us an equivalent definition of compactness in terms of FIP.

Theorem 13.1.15. A topological space X is compact if and only if for every collection C of closed sets in X
having FIP, the intersection

⋂
C∈C

C is non-empty.

Proof. Given a collection A of subsets of X , let

C = {X −A|A ∈ A}

be the collection of their complements. Then the following statements hold:

• A is a collection of open sets if and only if C is a collection of closed sets.

• The collection A covers X if and only if the intersection ∩C∈CC of all the elements of C is empty.

• The finite subcollection {A1, A2, ..., An} of A covers X if and only if the intersection of the correspond-
ing elements Ci = X −Ai of C is empty.

The first statement is trivial, while the second and third follow from DeMorgan’s law:

X − (∪α∈JAα) = ∩α∈J(X −Aα).

The proof of the theorem now proceeds in two easy steps: taking the contrapositive (of the theorem), and then
the complement(of the steps).
The statement that X is compact is equivalent to saying: "Given any collection A of open subsets of X, if A
covers X, then some finite subcollection of A covers X."
This statement is equivalent to its contrapositive, which is the following: "Given any collection A of open
sets, if no finite subcollection of A covers X, then A does not cover X." Letting C be, as earlier, the collection
{X −A|A ∈ A} and applying to all the three above bullets, we see that this statement is in turn equivalent to
the following:
"Given any collection C if closed sets, if every finite intersection of elements of C is nonempty, then the
intersection of all the elements of C is nonempty." This is just the condition of our theorem.
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A special case of this theorem occurs when we have a nested sequence C1 ⊃ C2 ⊃ ... ⊃ Cn ⊃ Cn+1 ⊃ ...
of closed sets in a compact space X. If each of the sets Cn is nonempty, then the collection C={Cn}n∈Z+

automatically has the finite intersection
∩n∈Z+Cn

is nonempty.
We shall use the closed set criterion for the compactness in the next section to prove the uncoutability of the
set of real numbers.

13.1.1 Lebesgue Lemma

The concept of Lebesgue number is new and highly useful for an open covering of a metric space. First lets
recapitulate some preliminary definitions.

Definition 13.1.16. Let (X, d) be a metric space and letA be a non-empty subset ofX . Then for each x ∈ X ,
the distance of x from A is defined as

d(x,A) = inf{d(x, a)|a ∈ A}

It is easy to show that the function d(x,A) is continuous.

Also recall the diameter of a set A in X , which is defined as

diamA = sup{d(a1, a2)|a1, a2 ∈ A}

Then a set A is called bounded if diam(A) is finite.

We will now state a lemma which is known as the Lebesgue number lemma.

Lemma 13.1.17. Let A be an open covering of the metric space (X, d). If X is compact, there is a δ > 0
such that for each subset of X having diameter less than δ, there exists an element of A containing it.

This number δ is called the Lebesgue number for the covering A.

Proof. Let A be an open cover of X . If X is itself an element of A, then any positive number is a Lebesgue
number for A. So, we assume that X is not an element of A. Choose a finite subcollection {A1, A2, . . . , An}
of A that covers X . For each i, set

Ci = X \Ai,

and define f : X → R by letting

f(x) =
d(x,C1) + d(x,C2) + · · ·+ d(x,Cn)

n

We show that f(x) > 0 for all x. Given x ∈ X , choose i so that x ∈ Ai. Then choose ϵ so that the ϵ-
neighbourhood of x lies in Ai. Then d(x,Ci) ≥ ϵ, so that f(x) ≥ ϵ

n .

Since f is continuous, it has a minimum value δ. We show that this δ is our required Lebesgue number. Let
B be a subset of X of diameter less than δ. Choose a point a of B. Then B lies in the δ-neighbourhood of a.
Now

δ ≤ f(a) ≤ d(a,Cm),

where d(a,Cm) is the largest of the numbers d(a,Ci). Then the δ-neighbourhood of a is contained in the
element Am = X \ Cm of the cover A.
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13.1.2 Limit Point Compactness

Definition 13.1.18. A space X is said to be limit point compact if every infinite subset of X has a limit point.

Theorem 13.1.19. Compactness implies limit point compactness.

Proof. Let X be a compact set and let A be a subset of X . Suppose A has no limit point. Then we show that
A is finite.

Since A has no limit point, so A is closed. Further, for each a ∈ A, we can choose a neighbourhood Ua of
a that intersects A at the point a alone. The space X is covered by the open set X \A along with the open sets
Ua. Since X is compact, it can be covered by finitely many of these sets. Since X \ A does not intersect A,
and each Ua contains only one point of A, the set A must be finite. Hence contrapositively, we have proved
the theorem.

The converse of the theorem is not necessarily true.

Example 13.1.20. Let Y consists of two points endowed with the indiscrete topology. The space X = Z×Y
is limit point compact, for every non-empty subset of X has a limit point. But it is not compact since for the
covering of X by open sets of the form

Un = {n} × Y

there is no finite subcover for X .

We will now move to define the sequential compactness of a space. But before that, let us see the conver-
gence of sequences in a topological space.

Definition 13.1.21. 1. LetX be a topological space and let {xn} be a sequence of points inX . Then {xn}
is said to converge to a point a ∈ X , if for every open set U containing a, we can find m ∈ N such that
xn ∈ U for all n ≥ m.

2. If
n1 < n2 < · · · < nk < · · ·

is an increasing sequence of natural numbers, then the sequence {xnk
} is called a subsequence of the

sequence {xn}.

Definition 13.1.22. A topological space is said to be sequentially compact if every sequence of points of X
has a convergent subsequence.

Example 13.1.23. 1. Let A be a finite subset of a space X . Let {xn} be a sequence of points in A. Since
A is finite, then at least one element of the sequence, say xk has to appear infinite number of times in
the sequence. Thus, if we construct a subsequence as {xk, xk, . . . , xk, . . .}, then it surely converges to
the point xk of A. Thus, A is sequentially compact.

2. The open interval A = (0, 1) with the usual topology is not sequentially compact. Since the sequence
of points {1/2, 1/3, 1/4, . . . , 1/n, . . .} clearly does not have any subsequence that converges to a point
of A.

Now, for any arbitrary metric space, the concept of sequential compactness and compactness are the same.
But this is not true for any arbitrary topological space. In fact, for a topological space, neither implies the
other.
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Exercise 13.1.24. 1. Show that a finite union of compact subspaces of X is compact.

2. Show that if f : X → Y is a continuous map where X is compact and Y is Hausdorff, then f is a
closed mapping.

3. Show that every subspace of R with the co-finite topology is compact.

4. Show that sequential compactness may not necessarily imply compactness.

5. Show that compactness may not necessarily imply sequential compactness.
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Introduction

In this section we will learn still further types of compactness and their relationship with compactness and
sequential compactness. In the previous unit, we saw that sequential compactness and compactness are equiv-
alent in any arbitrary metric space but we can’t conclude anything in case of any arbitrary topological space.
In this unit also we will see the relationship between the definitions in a metric space as well as topological
space.

Objectives

After reading this unit, you will be able to

• define countable compactness

• define BW compactness

• define locally compact sets

• relate them with compactness and sequential compactness

• understand the explicit relationships between these definitions in topological spaces

• relate them in case of metric spaces
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• know various properties relating to them

• show various examples for each type

• state the Baire Category theorem

14.1 Countable Compactness

Definition 14.1.1. A topological space X is called countably compact if every countable open cover of X has
a finite subcover. A family of sets A is called a countable open cover of X if

• it covers X

• it has countable number of elements

• each element of A is open

The definition can also be given as the following theorem.

Theorem 14.1.2. A topological space X is countably compact if and only if each sequence has an accumula-
tion point.

From the definition, it is obvious that any compact space is always countably compact. Also, any sequen-
tially compact space is also countably compact. But the converse is not true in both the cases.

Example 14.1.3. Consider the natural number space N with the topology generated by

{1, 2}, {3, 4}, {5, 6}, . . .

Let A be a non-empty subset of N and let m ∈ A. If a is odd, then a+ 1 is a limit point of A and if a is even,
then a− 1 is a limit point of A. In either case, A has an accumulation point. So, N is countably compact. But
it is not compact since the open cover

{1, 2}, {3, 4}, {5, 6}, . . .

clearly has no finite subcover. Also, it is not sequentially compact since the sequence {1, 2, 3, . . .} contains
no convergent subsequence.

Theorem 14.1.4. A countably compact space is limit point compact.

Proof. Without any loss of generality, assume that A be a countably infinite subset of a countably compact
topological space X without any limit points. Then, A is closed in X . So for each a ∈ A, the open set Ua

containing a intersects A only at a. Let Va = Ua∪ (X \A). Then Va is an open set. Still Va∩A = {a}. Also,
{Va|a ∈ A} is a countable cover of X . Thus it has a finite subcover say {Va1 , Va2 , . . . , Van} of X . But then

A =

(
n⋃

i=1

Vai

)
∩A

=

n⋃
i=1

(Vai ∩A)

= {a1, a2, . . . , an}

which shows that A is finite, a contradiction. Hence the result.
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Theorem 14.1.5. A space that is T1 and limit point compact is countably compact.

Proof. Suppose that X is not countably compact. So there is a countable open cover {Un|n ∈ N} without a
finite subcover. For each i, pick xi ∈ X \ (U1 ∪ U2 ∪ . . . ∪ Ui). This is possible since {Un} does not have a
finite subcover for X . Let

A = {x1, x2, . . .}

Suppose now that x is in X . Then x ∈ UN for some N ∈ N(since {Un} covers X). This UN can only contain
xi for i < N by definition of x′is. So, UN is a neighbourhood of x that contains only finite number of points
of A. Since X is T1, this implies that x can’t be a limit point of A. Since x ∈ X was arbitrary, so no point
of X can be a limit point of A, which is a contradiction since X is limit point compact. Hence, X has to be
countably compact.

We have another equivalent definition for countable compactness given in the form of the following theo-
rem.

Theorem 14.1.6. A topological space is countably compact if and only if every nested sequence C1 ⊃ C2 ⊃
. . . of closed non-empty sets of X has a non-empty intersection.

Proof. Left as an exercise.

We will now look at a new type of topological space called a Bolzano Weierstrass space which we define
below.

Definition 14.1.7. A topological space X is called Bolzano-Weierstrass Space (often called BW-space) if
every infinite subset of X has a limit point.

Example 14.1.8. The real line with the usual topology is not a BW-space. Since the subset Z contains no
limit point in R.

Theorem 14.1.9. If a space X is compact, then it is BW.

Proof. Let X be a compact space. Then every open cover of X has a finite subcover. If possible, let X is not
a BW-space. Then there exists an infinite subset A of X that does not have a limit point, that is, A′ = ∅. So
A is closed. So, A is compact in X .Further, since A has no limit point, for each a ∈ A, there exists an open
neighbourhood Ua of a, such that

A ∩ Ua = {a}

So, {Ua|a ∈ A} is an open cover forA. SinceA is compact, there is a finite subcover,say {Ua1 , Ua2 , . . . , Uan}
which covers A. But

⋃n
i=1 Uai contains only n points, which implies that A is a finite set, a contradiction.

Hence X has to be a BW-space.

Does this proof have any resemblance to that we did for countably compact spaces? So it certainly must
have something to do with countably compact spaces. Lets look at the following theorem.

Theorem 14.1.10. If X is Hausdorff, then X is BW if and only if it is countably compact.

14.1.1 Local Compactness

Definition 14.1.11. A space X is said to be locally compact if each point in X has a compact neighbourhood.

If X is itself compact, then it is locally compact and in that case X itself acts as a compact neighbourhood
of each of its points. If the topology is discrete and X is infinite, then X is locally compact without being
compact (verify!).
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Example 14.1.12. The real number space R with the usual topology is locally compact without being com-
pact. Since, for x ∈ R, the closed interval [x− δ, x+ δ], δ > 0 is a neighbourhood of x which is compact.

Theorem 14.1.13. Let X be a Locally compact T2-space

Proof. Let E be a closed set of X which is locally compact. We will show that E with the subspace topology
induced by the topology on X , is locally compact. Let x ∈ E. Since X is locally compact, so we can find a
compact neighbourhood N of x in X . Put M = N ∩ E. So, M is a neighbourhood of x in E and as M is a
closed set in a compact space N , so M is a compact subset of N , that is, M is a compact neighbourhood of x
in E. Thus, E is locally compact.

Compact Hausdorff spaces are one of the "good" spaces to work with since they have many useful proper-
ties. If a given space is not so, then the next best thing that one can hope for is that whether it is a subspace of
one such space, that is to say, whether it is homeomorphic to the subspace of such a space. If so, then under
what conditions is it possible to define such a homeomorphism. This section mainly deals with the problem
of embedding a given space into a Compact Topological space. We start with the following theorem.

Theorem 14.1.14. A space X is locally compact Hausdorff if and only if there exists a space Y such that

1. X is a subspace of Y .

2. The set Y \X consists of a single point.

3. Y is a compact Hausdorff space.

If Y and Y ′ are two spaces satisfying the above conditions, then there is a homeomorphism of Y and Y ′ that
equals the identity map on X .

If X itself happens to be compact, then the space Y is not so interesting since it is formed by adjoining
a single isolated point to X . However, if X is not compact, then the point of Y \ X is a limit point of X
and X = Y . If Y is a compact Hausdorff space and X is a proper subspace of Y whose closure equals Y ,
then Y is said to be a compactification of X and if Y \ X is a singleton set, then Y is called a one-point
compactification of X .

Theorem 14.1.15. Let X be a Hausdorff space. Then it is locally compact if and only if given x ∈ X and a
neighbourhood U of x, there is a neighbourhood V of x such that V is compact and V ⊂ U .

Proof. Suppose X is locally compact and let x ∈ X and U be a neighbourhood of X . Take the one-point
compactification Y of X and let C = Y \U . Then C is closed in Y and hence compact subspace of Y . Then,
by a previous lemma, we can find disjoint open sets V and W containing x and C respectively. Then the
closure V of V in Y is compact and moreover, V is disjoint from C, so that V ⊂ U . Hence the result.

14.1.2 Baire Spaces

Definition 14.1.16. We have learnt about the interior of a set A as the union of all the open sets contained in
A. If A has an empty interior, then it contains no open set of X other than the emptyset. Remember that

(X \A) = X \ IntA

So, equivalently, A has empty interior if every point of A is a limit point of the complement of A, that is, if
the complement of A is dense in X .
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Definition 14.1.17. A space X is said to be a Baire space if the following condition holds: Given any count-
able collection {An} of closed sets of X each of which has an empty interior in X , their union

⋃
An also has

an empty interior in X .

Example 14.1.18. The space Q of rationals is not a Baire space since each one point set in Q is closed and
has an empty interior in Q and Q is the countable union of these one-point sets. Whereas, the set Z+ forms
a Baire space. Every subset of Z+ is open and hence have non-empty interior. Thus, Z+ satisfies the Baire
condition trivially.

Theorem 14.1.19. (Baire Category Theorem:) If X is a compact Hausdorff space, or a complete metric
space, then X is a Baire space.

Proof. Given a countable collection {An} of closed sets ofX having empty interiors, we will show that
⋃
An

also has an empty interior in X . So, given the non-empty open set U0 of X , we must find a point x of U0 that
does not lie in any of the sets An.

Consider the first set A1. By hypothesis, A1 does not contain U0. Hence, we may choose a point y of U0

that is not in A1. Regularity of X , along with the fact that A1 is closed, enables us to choose a neighbourhood
U1 of y such that

U1 ∩A1 = ∅, U1 ⊂ U0.

If X is a metric, then we choose U1 small enough that its diameter is less than 1.

In general, given the non-empty open set Un−1, we choose a point of Un−1 that is not in the closed set An,
and then we choose Un to be a neighbourhood of this point such that

Un ∩An = ∅, Un ⊂ Un−1

such that diamUn < 1/n in the metric case. We assert that the intersection ∩Un is non-empty. From this fact,
our theorem will follow. For, if x ∈ ∩Un, then x is in U0 since U1 ⊂ U0. And for each n, the point x is not
in An because Un is disjoint from An.

If X is a compact Hausdorff space, then we consider the nested sequence

U1 ⊃ U2 ⊃ · · ·

of non-empty subsets of X . The collection {Un} has the finite intersection property. Since X is compact,
∩Un must be non-empty.

If on the other hand, X is a complete metric, then we use the Cantor’s Intersection theorem to complete the
proof.

Exercise 14.1.20. 1. Show that a sequentially compact space is countably compact.

2. Show that an infinite set with the discrete topology is compact without being locally compact.

3. Show that any open subspace of a Baire space is also a Baire space.

4. Show that a space X is countably compact if and only if every nested sequence

C1 ⊃ C2 ⊃ . . . ⊃ Cn . . .

of closed non-empty sets of X has a non-empty intersection.

5. Show that a space X is limit point compact if and only if each sequence in X has a limit point.

6. Let X be limit point compact space and let A be a closed subset of X . Is A limit point compact?
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15.1 Constructing a Möbius Strip

To construct a Möbius strip, one takes a rectangle and identifies a pair of opposite edges with a half twist. Our
first job is to translate this process into precise mathematical language. For the rectangle take the subspace R
of R2 consisting of the points (x, y) for which 0 ≤ x ≤ 3 and 0 ≤ 1. To describe the identification of the
vertical edges of R with a half twist, we partition R into disjoint non-empty sub sets in such a way that two
points lie in the same subset if and only if we wish them to be identified. If we now take these sub sets as
the points of our Möbius strip, then we have made the required identifications. The appropriate partition of R
consists of:

1. sets consisting of a pair of points of the form (0, y), (3, 1− y), where 0 ≤ y ≤ 1.

2. sets consisting of a single point (x, y), where 0 < x < 3, 0 ≤ y ≤ 1.

So far we have defined a set which we shall call M , its points being the subsets of the above partition of R.
There is a natural function π from R onto M that sends each point of R to the subset of the partition in which
it lies. The identification topology on M is defined to be the largest topology for which π is continuous. That
is to say, a subset O is defined to be open in the identification topology on M if and only if π−1(O) is open in
the rectangle R.

A glance at the figure above shows the sort of open sets we obtain. We represent the points of M in the
usual way as a sub set of R3, and we label with the letter L the image under π of the two vertical edges of
R. If we use R∗ to denote R minus its vertical edges, then the restriction of π to R∗ is one-one and is a
homeomorphism of R∗ with M \ L. Therefore, we know all about the neighbourhoods of points of M \ L;
they are simply the images under π of neighbourhoods of the points of R∗. If p lies on the line L, then π−1(p)
consists of two distinct points, situated on the vertical edges of R, of the form (0, y), (3, 1− y). The union of
two open half-discs in R, centres (0, y), (3, 1− y) and of equal radius, maps via π to an open neighbourhood
of p in the identification topology on M . Notice that if we take a single half-disc, its image in M is not a

73



74 UNIT 15.

neighbourhood of p and is not open, so π is not an open mapping. The points of L are in no sense special in the
Möbius strip; they have the same sort of neighbourhoods in the identification topology as all the other points of
M . In fact, it is easy to check that the identification topology coincides with that induced from R on our setM .

For convenience we have illustrated M in R3. However, we emphasize that the definition of the Möbius
strip as an ’identification space’ given in this section is entirely abstract, and in no way relies on a particular
representation of the strip as a set of points in euclidean space.

15.1.1 The Identification Topology

Let X be a topological space and let P be a family of disjoint non-empty subsets of X such that ∪P = X .
Such a family is usually called a partition of X . We form a new space Y , called an identification space, as
follows:

The points of Y are the members of P and, if π : X → Y sends each point of X to the subset of P
containing it, the topology of Y is the largest for which π is continuous. Hence, a subset of Y is open if and
only if π−1(O) is open in X . This topology is called the identification topology on Y . We think of Y as a
space obtained from X by identifying each of the subsets of P to a single point.

Our construction of the Möbius strip was a special case of this procedure. We will now prove one or two
general results on identification spaces. We begin with a theorem that is useful when checking the continuity
of a function which has an identification space as domain.

Theorem 15.1.1. Let Y be an identification space defined as above and let Z be an arbitrary topological space.
A function f : Y → Z is continuous if and only if the composition fπ : X → Z is continuous.

Proof. Let U be an open subset of Z. Then f−1(U) is open in Y if and only if π−1(f−1(U)) is open in X ,
that is, if and only if (fπ)−1(U) is open in X .

Let f : X → Y be an onto map and suppose that the topology on Y is the largest for which f is continuous.
Then we call f an identification map, the reason for our terminology being as follows. Any function f : X →
Y gives rise to a partition of X whose members are the subsets {f−1(y)}, where y ∈ Y . Let Y∗ denote the
identification space associated with this partition, and π : X → Y∗ the usual map.
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Theorem 15.1.2. If f is an identification map, then

1. the spaces Y and Y∗ are homeomorphic;

2. a function g : Y → Z is continuous if and only if the composition gf : X → Z is continuous.

Proof. The proof of 2 is exactly that of the previous theorem since Y has the largest topology for which f is
continuous. The points of Y∗ are the sets {f−1(y)}, where y ∈ Y . Define h : Y∗ → Y by h({f−1(y)}) = y.
Then h is a bijection and satisfies hπ = f , h−1f = π. By the previous theorem, h is continuous, and h−1 is
continuous by 2. Hence h is a homeomorphism.

Theorem 15.1.3. Let f : X → Y be an onto map. If f maps open sets of X to open sets of Y , or closed sets
to closed sets, then f is an identification map.

Proof. Suppose f maps open sets to open sets. Let U be a subset of Y for which f−1(U) is open in X .
Since f is onto, we have f(f−1(U)) = U , and therefore U must be open in the given topology on Y . So this
topology is the largest for which f is continuous, and f is an identification map. The proof for closed maps is
similar.

Corollary 15.1.4. Let f : X → Y be an onto map. If X is compact and Y is Hausdorff, then f is an
identification map.

Proof. A closed subset of the compact space X is compact and its image under the continuous function f
is therefore a compact subset of Y . But a compact subset of a Hausdorff space is closed. Therefore f takes
closed sets to closed sets, and we can apply the previous theorem.

We shall use the previous theorem and corollary in order to compare different descriptions of the same
topological space. We begin with two methods of constructing a torus.

The Torus. Take X to be the unit square [0, 1]× [0, 1] in R2, with the subspace topology, and partition X
into the following subsets:

1. the set {(0, 0), (1, 0), (0, 1), (1, 1)} of four corner points;

2. sets consisting of pairs of points (x, 0), (x, 1), where 0 < x < 1;

3. sets consisting of pairs of points (0, y), (1, y), where 0 < y < 1;

4. sets consisting of a single point (x, y), where 0 < x < 1 and 0, < y < 1;

The resulting identification space is the torus. An equally common description is to say that the torus is the
product S1 × S1 of two circles. Thinking of the points of S1 as complex numbers, we can define a map
f : [0, 1]× [0, 1] → S1 × S1 by f(x, y) = (e2πix, e2πiy). The partition of [0, 1]× [0, 1] which contains of the
inverse images under f of the points of S1 × S1 is exactly that given earlier. By the previous corollary, f is
an identification map and hence our two descriptions of the torus are homeomorphic.

Let us recollect the gluing lemma.

Theorem 15.1.5. IfX and Y are closed inX∪Y , and if both f and g are continuous onX and Y respectively,
with a common co-domain Z such that f(x) = g(x) when x ∈ X ∩Y , then the map h : X ∪Y → Z, defined
as

h(x) = f(x), x ∈ X

= g(x), x ∈ Y

is continuous.
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The glueing lemma remains true if we ask that X and Y are both open in X ∪ Y . The lemma is also true
for open sets. But, it fails if no restrictions are placed on the sets X and Y .

As we shall see, the glueing lemma can be explained in terms of identification maps and interpreted as a
special case of the previous theorem. In order to do this, we introduce the disjoint union X + Y of the spaces
X,Y and the function j : X + Y → X ∪ Y which when restricted to either X or Y is just the inclusion in
X ∪ Y . The function is important for our purpose because

1. it is continuous;

2. the composition hj : X + Y → Z is continuous if and only if f and g are continuous;

By combining parts 1 and 2 of theorem 15.1.2, we have the following theorem.

Theorem 15.1.6. If j is an identification map, and if both f : X → Z and g : Y → Z are continuous, then
h(= f ∪ g) : X ∪ Y → Z is continuous.

The glueing lemma is a special case of this result, since if both X and Y are closed in X ∪ Y , then j sends
closed sets to closed sets and is an identification map by theorem 15.1.3.

If j is an identification map, then then we can think of X ∪ Y as an identification space formed from the
disjoint unionX+Y by identifying certain points ofX with points of Y . In this case, we often say thatX∪Y
has the identification topology. The open(closed) sets of X ∪ Y are those sets A for which A ∩X and A ∩ Y
are open (closed) sets of X and Y respectively.

The above theorem generalizes to the case of an arbitrary union. Let Xα, α ∈ A be a family of subsets of a
topological space and give each Xα, and the union ∪Xα, the induced topology. Let Z be a space and suppose
we are given maps fα : Xα → Z, one for each α ∈ A, such that if α, β ∈ A,

fα|Xα∩Xβ
= fβ|Xα∩Xβ

Define a function F : ∪Xα → Z by gluing together the fα, that is,

F (x) = fα(x), x ∈ Xα.

Let ⊞Xα denote the disjoint union of the spaces Xα, and let j : ⊞Xα → Xα be the function which when
restricted to each Xα is the inclusion in ∪Xα.

Theorem 15.1.7. If j is an identification map, and if each fα is continuous, then F is continuous.

Proof. Observe that Fj : ⊞Xα → Z is continuous if and only if each fα is continuous and apply part 2 of
theorem 15.1.2.

Attaching maps. As a final example of an identification space we formalize the notion of attaching one
space to another by means of a continuous function.

Let X , Y be spaces, let A be a subspace of Y , and let f : A → X be a continuous function. Our aim is to
attach Y to X using f and to form a new space which we shall denote by X ∪f Y . We begin with the disjoint
union X + Y and define a partition so that two points lie in the same subset if and only if they are identified
under f . precisely, the subsets of the partition are

1. pairs of points {a, f(a)} where a ∈ A;
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2. individual points of Y \A;

3. the individual points of X \ image(f).

The identification space associated with this partition is X ∪f Y . The map f is called the attaching map.

One final comment: if Y is an identification space formed fromX , then Y is the image ofX under a contin-
uous function and therefore inherits properties such as compactness, connectedness, and path-connectedness
from X . However, X may be Hausdorff and yet Y not satisfy the Hausdorff axiom. As an example, take X to
be the real line with the usual topology, and partition X so that real numbers r and s lie in the same elements
of the partition if and only if r − s is rational. Then the corresponding identification is an indiscrete space.
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16.1 Orbit Spaces

We will now consider spaces which have, in addition to their topology, the structure of a group. A good
example is the circle.

Definition 16.1.1. A topological group G is both a Hausdorff space and a group, the two structures being
compatible in the sense that the group multiplication m : G × G → G, and the function i : G → G which
sends each group element to its inverse, are continuous.

Example 16.1.2. 1. The real line, the group structure being addition of real numbers.

2. The circle S1, thought of as the set of complex numbers of unit modulus. Then the two functions

S1 × S1 → S1, (eiθ, eiϕ) 7→ ei(θ+ϕ)

and
S1 → S1, eiθ 7→ e−iθ

are continuous.

3. Any abstract group with the discrete topology.

4. The Euclidean n-space.

5. The group of invertible n × n matrices with real entries. The group structure is matrix multiplication.
For the topology we identify each n× n matrix A = (aij) with the corresponding point

(a11, a12, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann)

of Rn2
and take the subspace topology. This topological group is called the general linear group, denoted

by GL(n,R).

6. The orthogonal group O(n) consisting of n × n orthogonal matrices with real entries. O(n) has both
its topology and its group stricture induced from GL(n,R).
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The terms ’isomorphism’ and ’subgroup’ for topological groups require a few words of explanation. In each
case we need to take into consideration both the topological and the algebraic structures. So an isomorphism
between two topological groups is a homeomorphism which is also a group isomorphism. In the same spirit,
a subset of a topological group is called a subgroup if it is algebraically a subgroup and in addition has the
subspace topology. Hence, the integers Z with the discrete topology form a subspace of the real line R.

Definition 16.1.3. A topological group G is said to act as a group of homeomorphisms on a space X if each
group element induces a homeomorphism of the space in such a way that;

1. hg(x) = h(g(x)) for all g, h ∈ G and all x ∈ X .

2. e(x) = e for all x ∈ X , where e is the identity element of G.

3. the function G×X → X defined by (g, x) 7→ g(x) is continuous.

If x ∈ X , then for each g ∈ G, the corresponding homeomorphism either fixes x or maps it to a new point
g(x). The subset ofX consisting of all such images g(x) as g varies overG is called the orbit of x and written
as O(x). If two orbits intersect then they must coincide: the relation defined by x ∼ y if and only if x = g(y)
for some g ∈ G is an equivalence relation onX whose equivalence classes are precisely the orbits of the given
action. So the orbits define a partition of X . The corresponding identification space is called the orbit space
written as X/G. In constructing X/G, we ’divide’ by G in the sense that we identify two points of X if and
only if they differ by one of the homeomorphisms x 7→ g(x).

Example 16.1.4. The orbit of the real number x consists of all the points x + n where n ∈ Z. Therefore in
forming R/Z, we identify two points of R if and only if they differ by an integer and we obtain the circle as
orbit space.

Example 16.1.5. Taking the product of our first example with itself in the natural way gives an action of Z×Z
on the plane. An ordered pair of integers (m,n) ∈ Z × Z sends the point (x, y) ∈ R2 to (x + m, y + n).
The orbit space is the product of two circles, in other words the torus. It may help to think of this action
geometrically. Divide the plane into squares of unit side by drawing in all horizontal and vertical lines through
the points with integer coordinates. The homeomorphisms of our group action preserve this pattern of squares,
and any single square contains points from each orbit and therefore maps onto the torus under the identification
map

R2 π−→ R2/Z× Z = T

Each square has its sides identified by π in the usual way in order to form T .

Theorem 16.1.6. Let G act on X and suppose that both G and X/G are connected. Then X is connected.

Proof. Suppose X is the union of two disjoint non-empty open subsets U and V . Since the identification
map π : X → X/G always takes open sets to open sets, and since X/G is connected, π(U) and π(V ) can’t
be disjoint. Now, if x ∈ π(U) ∩ π(V ), then both U ∩ O(x) and V ∩ O(x) are non-empty. These two sets
decompose the orbit O(x) as a disjoint union of two non-empty open sets. But O(x) is the image of G under
the continuous function f : G → X defined by f(x) = g(x). O(x) is therefore connected, and we have
established the required contradiction.



Unit 17

Course Structure

• Introduction

• Some Elementary properties of Topological groups

Introduction

This unit can be thought of as a continuation of the previous unit. It deals with primarily the topological
groups along with certain properties of topological groups.

17.1 Elementary Properties of Topological Groups

Let G be a topological group and x an element of G. The function Lx : G → G defined by Lx(g) = xg is
called the left translation by the element x. It is clearly one-one and onto, and it is continuous because it is the
composition

G→ G×G
m−→ G

as g 7→ (x, g) 7→ xg. The inverse of Lx is L−1
x and thereforeLx is a homeomorphism. Similarly the right

translation Rx : G → G given by Rx(g) = gx is also a homeomorphism. Thus, if we have U ⊂ G and
x ∈ G, then

U open ⇐⇒ tU open ⇐⇒ Ut open ⇐⇒ U−1 open.

These translations show that a topological group has a certain ’homogeneity’ as a topological space. For if
x and y are any two points of a topological group G there is a homeomorphism of G that maps x to y, namely
the translation L−1

yx . Hence G exhibits the same topological structure locally near each point.

Theorem 17.1.1. Let G be a topological group and let K denote the connected component of G which
contains the identity element. Then K is a closed normal subgroup of G.
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Proof. Components are always closed as we have seen previously. For any x ∈ K, the set Kx−1 = R−1
x (K)

is connected (since R−1
x is a homeomorphism) and contains e = xx−1. Since K is the maximal connected

subset of G containing e, we must have Kx−1 ⊆ K. Hence KK−1 = K, and K is a subgroup of G.
Normality follows in a similar manner. For any g ∈ G the set gKg−1 = R−1

g Lg(K) is connected and
contains e. Hence gKg−1 ⊆ K.

Theorem 17.1.2. In a connected topological group any neighbourhood of the identity element is a set of
generators for the whole group.

Proof. Let G be a connected topological group and let V be a neighbourhood of e in G. Let H = ⟨V ⟩ be the
subgroup of G generated by the elements of V . If h ∈ H then the whole neighbourhood hV = Lh(V ) of h
lies in H , so H is open. We claim that the complement of H is also open. For if g ∈ G \H , consider the set
gV . If gV ∩H is non-empty, say x ∈ gV ∩H , then x = gv for some v ∈ V . This gives g = xv−1, which
implies the contradiction g ∈ H since both x and v−1 lie in H . Hence the neighbourhood Lg(V ) = gV of g
lies in G \H and we see that G \H is an open set. Now, G is connected and so cannot be partitioned into two
disjoint non-empty open sets. Since H is non-empty, we must have G \H = ∅, that is, G = H .

If G is a group and S and T are subsets of G, we let ST and S−1 denote

ST = {st : s ∈ S, t ∈ T} and S−1 = {s−1 : s ∈ S}.

The subset S is called symmetric if S−1 = S. Also, we denote e as the identity element of G.

Theorem 17.1.3. Let G be a topological group. Every neighbourhood U of e contains an open symmetric
neighbourhood V of e such that V V ⊂ U .

Proof. Let IntU be the interior of U . Consider the multiplication map

µ : IntU × IntU → G.

Since µ is continuous, then µ−1(IntU) is open and contains (e, e). So, there are open sets V1, V2 ∈ U such
that (e, e) ∈ V1 × V2, and V1V2 ∈ U . Let V3 = V1 ∩ V2, then V3V3 ⊂ U and V3 is an open neighbourhood of
e. Finally, let V = V3 ∩ V −1

3 , which is open, contains e, is symmetric, and satisfies V V ⊂ U .

Theorem 17.1.4. If G is a topological group, then every open subgroup of G is also closed.

Proof. Let H be an open subgroup of G. Then any coset xH is also open. So,

Y =
⋃

x∈G\H

xH

is also open. From elementary group theory,

H = G \ Y,

and so H is closed.

Theorem 17.1.5. If G is a topological group, and if K1 and K2 are compact subsets of G, then K1K2 is
compact.

Proof. The set K1 × K2 is compact in G × G, and the multiplication mapping is continuous. Since the
continuous image of a compact set is compact, so K1K2 is compact.
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Recall the closure of a set A in a topological space X . We have studied that a necessary and sufficient
condition for x ∈ A is that, for every open neighbourhood U of x, the set U ∩ A ≠ ∅. It can also be seen as
follows:

Theorem 17.1.6. If x ̸∈ A, then there is a closed set F which contains A, but x ̸∈ F .

Proof. Left as an exercise.

Theorem 17.1.7. If G is a topological group, and H is a subgroup of G, then H is a subgroup of G.

Proof. Let g, h ∈ H , and let U be an open neighbourhood of the product gh. Let

µ : G×G→ G

be the multiplication map, which is continuous. So, µ−1(U) is open in G×G, and contains (g, h). So, there
are open neighbourhoods V1 of g and V2 of h such that V1 × V2 ⊂ µ−1(U). Since g, h ∈ H , then there are
points x ∈ V1 ∩ H and y ∈ V2 ∩ H . Since x, y ∈ H , we have xy ∈ H and since (x, y) ∈ µ−1(U), then
xy ∈ U . Thus, xy ∈ U ∩H , and since U was an arbitrary open neighbourhood of gh, then we have gh ∈ H .

Now, let
i : G→ G

denote the inverse map, and let W be an open neighbourhood of h−1. Then, i−1(W ) = W−1 is open and
contains h. So there is a point z ∈ H ∩W−1. Then z−1 ∈ H ∩W and as before, this implies that h−1 ∈ H .
Thus, H forms a subgroup of G.

In the course of proving the above theorem, we have shown that the closure of a symmetric neighbourhood
of e is again symmetric.

Lemma 17.1.8. LetG be a topological group, F a closed subset ofG, andK a compact subset ofG, such that
F ∩K = ∅. Then there is an open neighbourhood V of e such that F ∩V K = ∅ (and an open neighbourhood
V ′ of e such that F ∩KV ′ = ∅).

Proof. Let x ∈ K, so x ∈ G \ F and G \ F is open. So, (G \ F )x−1 is an open neighbourhood of e. By
theorem 17.1.3, there is an open neighbourhood Wx of e such that WxWx ⊂ (G \ F )x−1, Now,

K ⊂ W
x∈Kx

x,

and K is compact, so there exists a finite number of points x1, x2, . . . , xn ∈ K, such that

K ⊂
n⋃

i=1

Wixi

where Wi =Wxi . Now let

V =
n⋂

i=1

Wi.

For any x ∈ K, x ∈Wixi, for some i. Now we have

V x ⊂Wix ⊂WiWixi ⊂ G \ F.

In other words, F ∩ Vx = ∅. Since this is true for any x ∈ K, we have,

F ∩ V K = ∅.
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From theorem 17.1.3, the neighbourhood V in above lemma can be taken to be symmetric.

Theorem 17.1.9. Let G be a topological group, K a compact subset of G, and F a closed subset of G. Then
FK and KF are closed subsets of G.

Proof. If FK = G, then the result is trivial. So, let y ∈ G \ FK. This means that F ∩ yK−1 = ∅. Since K
is compact, yK−1 is compact. So, by the previous lemma, there is an open neighbourhood V of e such that
F ∩ V yK−1 = ∅, or FK ∩ V y = ∅. Since Vy is an open neighbourhood of y contained in G \ FK, we have
FK is closed. Similarly, we can show that KF is closed.

17.1.1 Separation properties and functions

You are quite familiar with the definitions of T1 and T2 spaces by now. We will investigate in this section, the
relationship between these separation axioms and a topological group. If G is a topological group, then if G
is T1, then by homogeneity, {e} is a closed set in G and conversely.

We have seen that, if a space X is T2, then it is T1 but the converse is not true in general. But, we see that
the converse is true in case of topological groups.

Theorem 17.1.10. Let G be a T1 topological group. Then G is Hausdorff.

Proof. Let g, h be distinct elements of G. By the T1 axiom, let U be an open set containing e, such that
gh−1 ̸∈ U . By theorem 17.1.3, let V be an open symmetric neighbourhood containing e, such that V V ⊂ U .
Now, V g is open and contains g, and V h is open containing h. We must have V g ∩ V h = ∅, otherwise there
are v1, v2 ∈ V such that

v1g = v2h,

which would mean

gh1 = v2v
−1
1 ∈ V V −1 = V V ⊂ U,

while gh−1 was chosen to be an element not in U . Thus, G is Hausdorff.

You might remember the regular and completely regular spaces as well as Tychonoff space. We learnt that
a completely regular space is always regular. We will now see that any topological group which is T1 is also
completely regular, and thus, regular.

Theorem 17.1.11. Let G be a topological group, and let eG denote the identity element in G and let F be a
closed subset of G such that eG ̸∈ F . Then there is a continuous function f : G→ [0, 1] such that

f(eG) = 1, and f(y) = 1, y ∈ F.

Theorem 17.1.12. If G is a topological group which is T1, then G is completely regular and thus, regular.

Proof. Let x ∈ G and let F be a closed subset of G such that x ̸∈ F . Then x−1F is a closed subset of G
not containing eG, and thus from the previous theorem, there is a continuous function f : G → [0, 1] such
that f(eG) = 0 and f(y) = 1 for y ∈ x−1F . Now the function h(g) = f(x−1g) is the desired continuous
function, and since G is also T1, G is completely regular, and hence is also regular.
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17.1.2 Connectedness

We have certain important properties of a topological group concerning connectedness. Let us study them in
some details.

Theorem 17.1.13. The connected component of the identity in a topological group is a subgroup.

Proof. Let G0 be the connected component of G containing the identity and h, k ∈ G0 be arbitrary. The set
h−1G0 is connected and contains the identity and soG0∪h−1G0 is also connected. SinceG0 is a component,
we have G0 ∪ h−1G0 = G0 which implies that h−1G0 ⊂ G0. In particular, h−1k belongs to G0 from which
we can conclude that G0 is a subgroup.

Theorem 17.1.14. Suppose that G is a topological group and K is a subgroup and the coset space G/K is
given the quotient topology. Then

1. If K and G/K are connected, then G is connected.

2. If K and G/K are compact, then G is compact.

Proof. If G is connected then so is G/K since the quotient map η : G→ G/K is a continuous surjection. To
prove the converse, suppose that K and G/K are connected and f : G → {0, 1} be an arbitrary continuous
map. We have to show that f is constant. The restriction of f to K must be constant and since each coset
gK is connected, f must be constant on gK as well taking value f(g). Thus, we have a well-defined map
f ′ : G/K → {0, 1} such that f ′ ◦ η = f . By the fundamental property of quotient spaces, it follows that f ′ is
continuous and so must be constant since G/K is connected.

Theorem 17.1.15. IfG is a connected topological group andH is a subgroup which contains a neighbourhood
of the identity then H = G. In particular, an open subgroup of G equals G.

Proof. Let U be the open neighbourhood of the identity that is contained in H and h ∈ H be arbitrary. Since
multiplication by h is a homeomorphism, the set Uh = {uh | u ∈ U} is also open and also contained in H .
Hence the set

L =
⋃
h∈H

Uh

is open and contained in H . Since U contains the identity, H ⊂ L and we conclude that H is open. Our job
will be over if we can show that H is closed as well. Let x ∈ H be arbitrary. Since the neighbourhood Ux of
x contains a point y ∈ H , there exists u ∈ U such that y = ux which, in view of the fact that U ⊂ H , implies
x ∈ H . Hence H = H .

Theorem 17.1.16. Suppose G is a connected topological group and H is a discrete normal subgroup of G
then H is contained in the center of G.

Proof. Since H is discrete, the identity element is not a limit point of H and so there is a neighbourhood U of
the identity such that U ∩H = {e}. We may assume U has the property that if u1, u2 ∈ U , then the product
u−1
1 u2 ∈ U . This follows from the continuity of the group operation and a detailed verification is left as an

exercise. It is easy to see that if h1 and h2 are two distinct elements of H , then

Uh1 ∩ Uh2 = ∅.

Fix h ∈ H and consider now the set K given by

K = {g ∈ G|gh = hg}.
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We shall show that the subgroup K contains a neighbourhood of the identity. Pick a neighbourhood V of the
identity such that V = V −1 and that (hV h−1V ) ∩H = {e}. Then for any g ∈ V , we have on the one hand

hgh−1g−1 ∈ hV h−1V

and on the other hand, hgh−1g−1 ∈ H since H is normal. Hence

hgh−1g−1 ∈ (hV h−1V ) ∩H = {e}

which shows that g belongs to K and K contains a neighbourhood of the unit element. We may now invoke
the previous theorem.
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Introduction

Though we have already read a bit about GL(n,R) previously, we will read about it in more details in this
unit.

18.1 The Group GL(n,R)

We will first show that GL(n,R) actually forms a topological group.

Theorem 18.1.1. The matrix group GL(n,R) is a topological group.

Proof. Let M denote the set of all n × n matrices which have real entries, and let A = (aij) represent a
typical element of M . We can identify M with euclidean space of dimension n2 by associating A = (aij)
with the point (a11, a12, . . . , a1n, a21, . . . , a2n, an1, . . . , ann). The identification gives us a topology on M
and we claim that, with respect to this topology, matrix multiplication m : M × M → M is continuous.
To see this, we need only examine the well-known formula for the entries of a product matrix: If A = (aij)
and B = (bij) then the ijth entry in the product m(A,B) is

∑n
k=1 aikbkj . Now, M has the topology of the

product space
R× R× · · ·R (n2 copies),

and for each i, j satisfying 1 ≤ i, j ≤ n we have a projection

πij :M → R

which sends a given matrix A to its ijth entry. By the property of continuous functions, we can say that m is
continuous if and only if all the composite functions

M ×M
m−→M

πij−→ R

86



18.1. THE GROUP GL(N,R) 87

are continuous. But, πijm(A,B) =
∑n

k=1 aikbkj , a polynomial in the entries of A and B. Hence πijm is
continuous.

The elements of GL(n,R) are invertible matrices in M . If we give GL(n,R) the subspace topology from
M , then, by the above, matrix multiplication

GL(n,R)×GL(n,R) → GL(n,R)

is continuous. It remains to prove that the inverse function

i : GL(n,R) → GL(n,R)

is also continuous. We use the same technique:

i : GL(n,R) → GL(n,R) ⊆ R× R× · · ·R

is continuous if and only if all of the composite functions

GL(n,R) i−→ GL(n,R)
πjk−→ R, 1 ≤ j, k ≤ n

are continuous. Now the composition of πjk with i sends a matrix A to the jkth element of A−1, that
is, to (1/ detA)(kjth cofactor of A). It should be clear that the determinant of A and the cofactors of A
are polynomials in the entries of A. Since detA does not vanish on GL(n,R), our composition πjki is
continuous. This completes the proof that GL(n,R) is a topological group.

We note in passing that GL(n,R) is the inverse image of the nonzero real numbers under the determinant
function

det :M → R.

So, GL(n,R) is not compact (it is an open subset of M ), and is not connected (the matrices with positive and
negative determinants partition GL(n,R) into two disjoint non-empty open sets). Let us do it in some details.

Theorem 18.1.2. GL(n,R) is open and unbounded.

Proof. The complement of GL(n,R) in M is

{A ∈M | detA = 0}.

Since the determinant is continuous and {0} is closed in R, so the above set is closed in M , and hence
its complement, that is, GL(n,R) is open in M . Also, kIn ∈ GL(n,R) for all k > 0. So, GL(n,R) is
unbounded. Thus, proved.

Theorem 18.1.3. GL(n,R) is connected.

Proof. Note that,
det : GL(n,R) → R \ {0}

is a surjective continuous map and R \ {0} is not connected and since we know that a continuous map sends
a connected set into a connected set, so GL(n,R) can’t be connected.

In fact, as we have said earlier, we can partition GL(n,R) into two disjoint open sets, namely,

GL+(n,R) = {A ∈ GL(n,R) : detA > 0}
GL−(n,R) = {A ∈ GL(n,R) : detA < 0}

Since the determinant is a continuous function, so the above sets are open. Hence, there are two (path)
components of GL(n,R).
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18.1.1 Subgroups of GL(n,R)

We have already seen that the set of all orthogonal matrices O(n) forms a subgroup of GL(n,R). In this
section, we will study more about the subgroups of GL(n,R). Let us list some of the subgroups of GL(n,R)
as follows:

1. SL(n,R) = {A ∈ GL(n,R) : detA = 1}. This group is called the special linear group. Note that,
since the determinant function is continuous, so det−1({1}) = SL(n,R) is a closed set in GL(n,R).

2. O(n) = {A ∈ GL(n,R) : AAT = In = ATA}. As we have already seen, this is the orthogonal group.

3. SO(n) = {A ∈ O(n) : detA = 1}. This is called the special orthogonal group.

From the elementary properties of matrices, we can say that each of the above groups actually form a subgroup
of GL(n,R) and has been left as an exercise. If instead of R, we take the field of complex, that is, if we
consider the set GL(n,C) then we have some additional subgroups, which are listed below:

1. U(n) = {U ∈ GL(n,C : UU∗ = In = U∗U}, where, U∗ denotes the conjugate transpose of U . This
is called the unitary group.

2. SU(n) = {U ∈ U(n) : det(U) = 1}. This particular group is called the special unitary group.

Let us now see certain properties of these subgroups.

Theorem 18.1.4. The groups O(n) and SO(n) are compact.

Proof. Write any matrix A ∈ O(n) as

A =


v1
v2
...
vn


where, each vi is a row matrix. Then from the identity AAT = In, we get,

viv
T
i = 1, 1 ≤ i ≤ n.

This implies that A is inside the unit ball of Rn2
. Hence O(n) is a bounded subset of the Euclidean space

Rn2
. Let {Ak} be any sequence in O(n) and let Ak → A in M . Taking limit as k → ∞ in the relation

AkA
T
k = AT

kAk = In,

by continuity of multiplication, we get
AAT = ATA = In

proving that A ∈ O(n). Thus, O(n) is closed too. Hence by Heine-Borel theorem, O(n) is compact. If, in
addition, each of the matrices Ak above have the determinant 1, then by the continuity of the determinant, we
also see thatSO(n) is closed in O(n). And since we know that a closed subset of a compact space is compact,
so SO(n) is compact.

Before going into other details, let us see the following theorem.

Theorem 18.1.5. Let P ∈ M be a positive semidefinite matrix. Then P is symmetric, detP ≥ 0 and there
exists a unique positive demidefinite matrix P 1/2 ∈M such that

(P 1/2)2 = P

and P 1/2 is invertible if and only if P is so.
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Theorem 18.1.6. Let A ∈ SL(n,R). Then there exists a rotation matrix R ∈ SO(n) and a real, symmetric
and positive semidefinite matrix P ∈ SL(n,R) such that A = RP .

Proof. Let P = (ATA)1/2 and this forces R to be defined as

R = AP−1.

Clearly, P is real, symmetric and positive semidefinite matrix. Further,

RRT = AP−1P−1AT

= AP−2AT

= A(ATA)−1AT

= In

and similarly, RTR = In implying that R is orthogonal. In particular,

1 = det(RTR) = det(RT ) detR = (detR)2

which implies that detR = 1 or, −1. Now,

1 = detA = detR detP

and so by the previous theorem, and the fact that P is invertible, we have detP > 0. Hence, we must have
detR = 1, that is, R ∈ SO(n).

Theorem 18.1.7. Any matrix in SO(n) is orthogonally similar to a block diagonal form A1⊞A2⊞ · · ·⊞Ar,
where, each Ar is [1] or a rotation matrix of the type[

cos θ sin θ
− sin θ cos θ

]
for some θ ∈ R.

Theorem 18.1.8. O(n) is not connected, whereas SO(n) is path-connected.

Proof. Let M ∈ O(n). Then, by the above theorem, detM ∈ {+1,−1}. Let

O±(n) = {M ∈ O(n) : detM = ±1} = GL±(n,R) ∩O(n).

Then, O+(n), which is the same as the subgroup SO(n) and O−(n) are open in the subspace topology and
they form a disconnection of O(n), implying that O(n) is not connected.

Next we show that any matrix in SO(n) is joined to In by a path. Since SO(1) = {|1|}, let us assume that
n ≥ 2. Let R ∈ SO(n). Then by a previous theorem, there exists an orthogonal matrix M ∈ O(n) such that

MRMT = A1 ⊞A2 ⊞ · · ·⊞Ar

where each Ai is [1] or a 2× 2 rotation matrix of the type[
cos θ sin θ
− sin θ cos θ

]
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for some θ ∈ R. Without any loss of generality, assume that, for some k ≤ r, for 1 ≤ i ≤ k,

A =

[
cos θi sin θi
− sin θi cos θi

]
for some θi ∈ R and that Ai = [1] for k ≤ i ≤ r.

We can now look for an appropriate path. For each 1 ≤ i ≤ k, consider the map

ϕi : [0, 1] → SO(2)

as

ϕi(t) =

[
cos(tθi) sin(tθi)
− sin(tθi) cos(tθi)

]
.

Thus, each ϕi is a path in SO(2) with end points I2 and[
cos θi sin θi
− sin θi cos θi

]
.

Hence, the map ϕ : [0, 1] → SO(n) given by

ϕ(t) =MT (ϕ1(t)⊞ ϕ2(t)⊞ · · ·⊞ ϕk(t)⊞ In−2k)M

is a path in SO(n) with end points ϕ(0) = In and ϕ(1) = R, thereby establishing that SO(n) is path-
connected.

We thus get the following corollary.

Corollary 18.1.9. O(n) has precisely two path-components, namely O+(n) and O−(n).

Proof. By the previous theorem, we get that

O+(n) = SO(n)

is path-connected. Now, let A,B ∈ O−(n) and fix a C ∈ O−(n). Then

AC,BC ∈ O+(n)

and therefore, there exists a path ϕ in O+(n) joining AC and BC. Consider the map

ϕ̃ : [0, 1] → O−(n)

given by
ϕ̃(t) = ϕ(t)C−1.

This ϕ̃ is a path in O−(n) joining A and B.

We also know thatO(n) is a disjoint union ofO+(n) andO−(n), so these are the only two path-components
of O(n).

Note that SL(1,R) = {[1]} is clearly path-connected and compact. However, in higher dimensions, this is
not the case.

Corollary 18.1.10. SL(n,R) is closed, path-connected and is not compact for n ≥ 2.
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Introduction

One of the main problems of topological spaces is to determine whether two spaces are homeomorphic or not.
There is no method in general to solve this problem but we have some techniques to apply in particular cases.
To find homeomorphism is to find bijective continuous maps, and constructing continuous maps is a problem
for which there are techniques of solving.

However showing two space not homeomorphic is quite easy. This can be done with the help of topological
properties. If a space has a topological property which is not satisfied by the other, then we can clearly say that
they are not homeomorphic. But this technique also has very limited application so far. So we must introduce
new properties and techniques. Hence comes the idea of fundamental groups which is a generalisation of all
the ideas we have done so far. Two spaces that are homeomorphic, have their fundamental groups isomorphic.
This unit deals in the fundamental groups and their basic properties.

Objectives

After reading this unit, you will be able to

• define homotopy of paths

• define the various properties related to homotopy and path homotopies

• define fundamental group of a topological space

• learn the properties of the fundamental groups

91



92 UNIT 19.

Figure 19.1.1: Path-Homotopy

19.1 Fundamental Group

Before defining the fundamental group of a spaceX , we shall consider paths onX and an equivalence relation
called path homotopy between them.

Definition 19.1.1. If f and f ′ are continuous maps of the spaceX into the space Y , we say that f is homotopic
to f ′ if there is a continuous map

F : X × I → Y

such that
F (x, 0) = f(x) and F (x, 1) = f ′(x)

for each x. Here, I = [0, 1]. The map F is called a homotopy between f and f ′. If f is homotopic to f ′ then
we write f ≃ f ′. If f ≃ f ′ and f ′ is a constant function, we say that f is nulhomotopic.

Now we consider a special case in which f is a path in X . Recall that if f : [0, 1] → X is a continuous
map such that f(0) = x0 and f(1) = x1, we say that x0 is the initial point and x1, the final point, of the path
f . We will now define a stronger relation, called path-homotopy between two paths.

Definition 19.1.2. Two paths f and f ′ mapping the interval I = [0, 1] to f are said to be path-homotopic if
they have the same initial point a and same final point b, where a, b ∈ X and if there exists a continuous map
F : I × I → X such that

F (s, 0) = f(s) and F (s, 1) = f ′(s)

F (0, t) = a and F (1, t) = b

for each s ∈ I and each t ∈ I . We call F a path-homotopy between f and f ′. If f and f ′ are path-homotopic,
then we write f ≃p f

′. (See Figure 1)

The first condition says that F is a homotopy between f and f ′ and the second condition says that for each
t, the path ft defined by the equation ft(s) = F (s, t) is a path from a to b. Said differently, the first condition
says that F represents a continuous way of deforming the path f to f ′ and the second condition ensures that
the end points remain fixed in this deformation.
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Theorem 19.1.3. The relations ≃ and ≃p are equivalence relations.

If f is a path, then we shall denote its path-homotopy class by [f ].

Proof. Given f , it is trivial that f ≃ f ; the map F (x, t) = f(x) is the require homotopy. If f is a path, then
F is a path-homotopy.

Given f ≃ f ′, we show that f ′ ≃ f . Let F be a homotopy between f and f ′. Then G(x, t) = F (x, 1− t)
is the homotopy between f ′ and f . If F is a path homotopy, then G is so.

Suppose f ≃ f ′ and f ′ ≃ f ′′. Let F be a homotopy between f and f ′ and let F ′ be a homotopy between
f ′ and f ′′. Define G : X × I → Y by the equation

G(x, t) = F (x, 2t), t ∈
[
0,

1

2

]
= F ′(x, 2t− 1), t ∈

[
1

2
, 1

]
The map G is well-defined, since if t = 1

2 , we have

F (x, 2t) = f ′(x) = F ′(x, 2t− 1).

Because G is continuous on the two closed subsets X ×
[
0, 12
]

and X ×
[
1
2 , 1
]

of X × I , it is continuous on
all of X × I , by the gluing lemma. Thus, G is the required homotopy between f and f ′′.

If F and F ′ are path-homotopies, then G is so. We only need to show that the initial and final points are
fixed. Let f and f ′ are path-homotopic, then all the previous conditions remain same except in this case,
we have their initial and final points same, say they are a and b respectively. Similarly, if f ′ and f ′′ are
path-homotopic, then f ′′ also have the initial and final points as a and b respectively. We have,

G(0, t) = F (0, 2t) = a t ∈
[
0,

1

2

]
= F ′(0, 2t− 1) = a, t ∈

[
1

2
, 1

]
So, we are getting G(0, t) = a. Similarly, we can show that, G(1, t) = b, for t ∈ I . Hence, G is a path-
homotopy.

Example 19.1.4. Let C be a convex sub set of a euclidean space and let f, g : X → C maps, where X is
an arbitrary topological space. For each point x ∈ X , the straight line joining f(x) and g(x) lies in C, and
we can define a homotopy from f to g simply by sliding f along these straight lines. To be precise, define
F : X × I × C by

F (x, t) = (1− t)f(x) + tg(x).

Notice that if f and g happen to agree on a subset A of X then this homotopy is a homotopy relative to A.
The homotopy F is called a straight-line homotopy.

We now introduce some algebra into this geometric definition.
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Definition 19.1.5. If f is a path in X from a to b, and if g is a path in X from b to c, we define the product
f ∗ g of f and g to be the path h given by the equations

h(s) = f(2s), s ∈
[
0,

1

2

]
,

= g(2s− 1), s ∈
[
1

2
, 1

]
.

The function h is well-defined and continuous, by the pasting lemma; it is a path in X from a to c. We think
of h as the path whose first half is the path f and second half is the path g.

The product operation on paths induces a well-defined operation on path-homotopy classes, defined by the
equation

[f ] ∗ [g] = [f ∗ g].

To verify this fact, let F be a path-homotopy between f and f ′ and let G be a path homotopy between g and
g′. Define

H(s, t) = F (2s, t), s ∈
[
0,

1

2

]
,

= G(2s− 1, t), s ∈
[
1

2
, 1

]
.

Because F (1, t) = b = G(0, t) for all t, the map H is well-defined, it is continuous by the pasting lemma. It
can be checked that H is the required path homotopy between f ∗ g and f ′ ∗ g′.

The operation ∗ on path-homotopy classes turns out to satisfy properties that look very much like the axioms
for a group. They are called the groupoid properties of ∗. One difference from the properties of a group is that
[f ] ∗ [g] is not defined for every pair of classes, but only for those pairs [f ], [g] for which f(1) = g(0).

Theorem 19.1.6. The operation ∗ has the following properties

1. If [f ] ∗ ([g] ∗ [h]) is defined, so is ([f ] ∗ [g]) ∗ [h], and they are equal.(associativity)

2. Given x ∈ X , let ex denote the constant path ex : I → X carrying all of I to the point x. If f is a path
in X from a to b, then

[f ] ∗ [eb] = [f ] and [ea] ∗ [f ] = [f ].

(right and left inverses)

3. Given the path f in X from a to b, let f be the path defined by f(s) = f(1− s). It is called the reverse
of f . Then

[f ] ∗ [f ] = [ea] and [f ] ∗ [f ] = [eb].

(inverse)

The set of path-homotopy classes of paths in a spaceX does not form a group under the operation ∗ because
the product of two path-homotopy classes is not always defined. But if we pick out a point a of X serving
as a base point and restrict ourselves to those beginning and ending at a, then those homotopy classes form a
group under ∗, which is called the fundamental group.

Before starting with the definitions, we assume that the reader is well accustomed to the idea of group
homomorphism, cosets, normal subgroups , factor or quotient groups. etc. Let us start with the definition of
fundamental group relative to a base point a.
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Definition 19.1.7. Let X be a space and let a be a point of X . A path that begins and ends at a is called
a loop based at a. The set of path homotopy classes of loops based at a, with the operation ∗, is called the
fundamental group of X relative to the base point a. It is denoted by π1(X, a).

It follows from the previous theorem that the operation ∗, when restricted to this set, satisfies the axioms
for groups. Given two loops f and g based at a, the product f ∗ g is always defined and is a loop based at a.
The other properties are immediate.

Sometimes this group is called the first homotopy group of X . From the term, it seems that there is also a
second-homotopy group. There are in fact groups πn(X, a) for all n ∈ N. But we shall omit them here and
concentrate on the first homotopy group only.

Example 19.1.8. Let Rn denote the euclidean n-space. Then π1(Rn, a) is the trivial group (the group consist-
ing of the identity alone). For if f is a loop in Rn based at a, the straight-line homotopy is a path-homotopy
between f and the constant path at a. More generally, if X is any convex subset of Rn, then π1(X, a) is the
trivial group. In particular, the open ball Bn in Rn,

Bn = {x | x21 + x22 + · · ·+ x2n ≤ 1},

has a trivial fundamental group.

A valid question is that how much the fundamental group depends upon the base point. First let us see the
following definition.

Definition 19.1.9. Let α be a path in X from a to b. We define a map

α̂ : π1(X, a) → π1(X, b)

by the equation
α̂([f ]) = [α] ∗ [f ] ∗ [α].

The map α̂ is well-defined because the operation ∗ is well-defined. If f is a loop based at a, then α∗ (f ∗α)
is a loop based at b. Hence α̂ maps π1(X, a) into π1(X, b) as desired. Note that, it only depends on the
path-homotopy class of α.

Theorem 19.1.10. The map α̂ is a group isomorphism.

Proof. To show that α̂ is a homomorphism, we compute

α̂([f ]) ∗ α̂([g]) = ([α] ∗ [f ] ∗ [α]) ∗ ([α] ∗ [g] ∗ [α])
= [α] ∗ [f ] ∗ [g] ∗ [α]
= α̂([f ] ∗ [g]).

To show that α̂ is an isomorphism, we show that if β denotes the path α, which is the reverse of α, then β̂ is
an inverse for α̂. We compute for each element [h] of π1(X, b),

β̂([h]) = [β] ∗ [h] ∗ [β] = [α] ∗ [f ] ∗ [α],

α̂(β̂([h])) = [α] ∗ ([α] ∗ [h] ∗ [α]) ∗ [α] = [h].

A similar computation shows that
β̂(α̂([f ])) = [f ]

for each [f ] ∈ π1(X, a).
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Corollary 19.1.11. If X is path-connected and a and b are two points of X , then π1(X, a) and π1(X, b) are
isomorphic.

Let X be a space and P be a path-component of it containing a. Then its easy to see that

π1(X, a) = π1(P, a),

since all the loops and homotopies in X are that are based at a must lie in P . Thus, π1(X, a) depends only on
the path component of X containing a.

Also, if X is path-connected, all the groups π1(X, a) are isomorphic, so its tempting to try to identify all
these groups with one another and to speak simply of the fundamental group of X , without reference to the
base point. The difficulty in this approach is that there is no natural way to identify π1(X, a) with π1(X, b).
Different paths α and β from a to b may give rise to different isomorphisms between these groups. For this
reason, omitting the base point may lead to error.

We now move on to define the simple-connectedness of a space.

Definition 19.1.12. A spaceX is simply-connected if it is a path-connected space and if π1(X, a) is the trivial
one-element group for some a ∈ X , and hence for every a ∈ X . We often express the fact that π1(X, a) is
the trivial group by writing

π1(X, a) = 0.

Lemma 19.1.13. In a simply connected space X , any two paths having the same initial and final points are
path-homotopic.

Proof. Let α and β be two paths from a to b. Then α ∗ β is defined and is a loop on X based at a. Since X is
simply connected, this loop is path-homotopic to the constant loop at a. Then

[α ∗ β] ∗ [β] = [ea] ∗ [β]

from which it follows that
[α] = [β].

By now, it might be clear that fundamental groups are a topological invariant. But in order to prove it
mathematically, one has to introduce the notion of the homomorphism induced by a continuous map.

Suppose that h : X → Y is a continuous map that carries the point a of X to the point a′ of Y . We often
denote this fact by writing

h : (X, a) → (Y, a′).

If f is a loop inX based at a, then the composite h◦f : I → Y is a loop in Y based at a′. The correspondence
f → h ◦ f thus gives rise to a map carrying π1(X, a) into π1(Y, a′). We define it formally as follows.

Definition 19.1.14. Let h : (X, a) → (Y, a′) be a continuous map. Define

h∗ : π1(X, a) → π1(Y, a
′)

by the equation
h∗([f ]) = [h ◦ f ].



19.1. FUNDAMENTAL GROUP 97

The map h∗ is called the homomorphism induced by h, relative to the base point a.

The map h∗ is well-defined, for if F is a path-homotopy between the paths f and f ′, then h ◦ F is a path-
homotopy between the paths h ◦ f and h ◦ f ′. The fact that h∗ is a homomorphism follows from the equation

(h ◦ f) ∗ (h ◦ g) = h ◦ (f ∗ g).

The homomorphism h∗ depends not only on the map h : X → Y but also on the choice of the base point a
(a′ is determined by h). So some notational difficulty will arise if we consider several different base points for
X .

The induced homomorphism has two properties that are crucial in the applications. They are called the
functional properties and are given in the following theorem.

Theorem 19.1.15. If h : (X, a) → (Y, a′) and k : (Y, a′) → (Z, a′′) are continuous, then (k ◦ h)∗ = k∗ ◦ h∗.
If i : (X, a) → (X, a) is the identity map, then i∗ is the identity homomorphism.

Proof. The proof is trivial. By definition,

(k ◦ h)∗([f ]) = [(k ◦ h) ◦ f ],

(k∗ ◦ h∗)([f ]) = k∗(h∗([f ]))

= k∗([h ◦ f ])
= [k ◦ (h ◦ f)].

Similarly,
i∗([f ]) = [i ◦ f ] = [f ].

Hence the theorem.

Corollary 19.1.16. If h : (X, a) → (Y, a′) is a homeomorphism of X with Y , then h∗ is an isomorphism of
π1(X, a) with π1(Y, a′).

Proof. Let k : (Y, a′) → (X, a) be the inverse of h. Then

k∗ ◦ h∗ = (k ◦ h)∗ = i∗,

where i is the identity map of (X, a) and

h∗ ◦ k∗ = (h ◦ k)∗ = j∗,

where j is the identity map of (Y, a′). Since i∗ and j∗ are the identity homomorphisms of the groups π1(X, a)
and π1(Y, a′) respectively, k∗ is the inverse of h∗.
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Course Structure

• Calculation of fundamental group of S

20.1 Covering Spaces

Definition 20.1.1. Let p : E → B be a continuous surjective map. The open set U of B is said to be evenly
covered by p if the inverse image p−1(U) can be written as the union of disjoint open sets Vα in E such that
for each α, the restriction of p to Vα is a homeomorphism of Vα onto U . The collection {Vα} will be called a
partition of p−1(U) into slices.

If U is an open set that is evenly covered by p, we often picture the set p−1(U) as a "stack of pancakes,"
each having the same size and shape as U , floating in the air above U ; the map p squashes them all down onto
U . See Figure 20.1.1. Note that if U is evenly covered by p and W is an open set contained in U , then W is
also evenly covered by p.

Figure 20.1.1: Slices of p−1(U)

98
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Definition 20.1.2. Let p : E → B be continuous and surjective. If every point b of B has a neighborhood U
that is evenly covered by p, then p is called a covering map, and E is said to be a covering space of B.

Note that if p : E → B is a covering map, then for each b ∈ B the subspace p−1(b) of E has the discrete
topology. For each slice Vα is open in E and intersects the set p−1(b) in a single point; therefore, this point is
open in p−1(b).

Note also that if p : E → B is a covering map, then p is an open map. For suppose A is an open set of
E. Given x ∈ p(A), choose a neighborhood U of x that is evenly covered by p. Let (Vα} be a partition of
p−1(U) into slices. There is a point y ofA such that p(y) = x; let Vβ be the slice containing y. The set Vβ ∩A
is open in E and hence open in Vβ; because p maps Vβ homeomorphically onto U , the set p (Vβ ∩A) is open
in U and hence open in B; it is thus a neighborhood of x contained in p(A), as desired.

Example 20.1.3. Let X be any space; let i : X → X be the identity map. Then i is a covering map (of the
most trivial sort). More generally, let E be the space X× (1, . . . , n} consisting of n disjoint copies of X . The
map p : E → X given by p(x, i) = x for all i is again a (rather trivial) covering map. In this case, we can
picture the entire space E as a stack of pancakes over X .

In practice, one often restricts oneself to covering spaces that are path connected, to eliminate trivial cover-
ings of the pancake-stack variety. An example of such a nontrivial covering space is the following:

Theorem 20.1.4. The map p : R → S1 given by the equation

p(x) = (cos 2πx, sin 2πx)

is a covering map.

One can picture p as a function that wraps the real line R around the circle S1, and in the process maps
each interval [n, n+ 1] onto S1.

Proof. The fact that p is a covering map comes from elementary properties of the sine and cosine functions.
Consider, for example, the subset U of Sf consisting of those points having positive first coordinate. The set
p−1(U) consists of those points x for which cos 2πx is positive; that is, it is the union of the intervals

Vn =

(
n− 1

4
, n+

1

4

)
,

for all n ∈ Z. See the figure below. Now, restricted to any closed interval V̄n, the map p is injective because

sin 2πx is strictly monotonic on such an interval. Furthermore, p carries V̄n surjectively onto Ū , and Vn to
U , by the intermediate value theorem. Since V̄n is compact, p | Vn is a homeomorphism of V̄n with Ū . In
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particular, p | Vn is a homeomorphism of Vn with U . Figure 53.2 Similar arguments can be applied to the
intersections of S1 with the upper and lower open half-planes, and with the open left-hand half-plane. These
open sets cover S1, and each of them is evenly covered by p. Hence p : R → S1 is a covering map.

Example 20.1.5. The map p : R+ → S1 given by p(x) = (cos 2πx, sin 2πx) is surjective, and it is a
local homeomorphism. But it is not a covering map, for the point b = (1, 0) has has no neighbourhood
U that is evenly covered by p. The typical neighbourhood U of b has an inverse image consisting of small
neighbourhoods Vn of each integer n for n > 0, alongwith the samll neighbourhood V0 of the form (0, ϵ).
Each of the intervals Vn for n > 0 is mapped homeomorphically onto U by the map p, but the interval V0 is
only imbedded in U by p.

The above example shows that the map obtained by restricting a covering map may not be a covering map.
Here is one situation where it will be one.

Theorem 20.1.6. Let p : E → B be a covering map. If B0 is a subspace of B, and if E0 = p−1(B0), then
the map p0 : E0 → B0 obtained by restricting p is a covering map.

Proof. Given b0 ∈ B0, let U be an open set in B containing b0 that is evenly covered by p; let {Vα} be a
partition of p−1(U) into slices. Then U ∩B0 is a neighborhood of bo in B0, and the sets Vα ∩E0 are disjoint
open sets in E0 whose union is p−1 (U ∩B0), and each is mapped homeomorphically onto U ∩B0 by p.

Theorem 20.1.7. It p : E → B and p′ : E′ → B′ are covering maps, then

p× p′ : E × E′ → B ×B′

is a covering map.

Proof. Given b ∈ B and b′ ∈ B′, let U and U ′ be neighborhoods of b and b′, respectively, that are evenly
covered by p and p′, respectively. Let {Vα} and

{
V ′
β

}
be partitions of p−1(U) and (p′)−1 (U ′), respectively,

into slices. Then the inverse image under p × p′ of the open set U × U ′ is the union of all the sets Vα × V ′
β .

These are disjoint open sets of E × E′, and each is mapped homeomorphically onto U × U ′ by p× p′.

Example 20.1.8. Consider the space T = S1 × S1; it is called the torus. The product map

p× p : R× R −→ S1 × S1

is a covering of the torus by the plane R2, where p denotes the covering map of Theorem 20.1.4. Each of the
unit squares [n, n+1]× [m,m+1] gets wrapped by p× p entirely around the torus. See the figure below. In

this figure, we have pictured the torus not as the product S1 ×S1, which is a subspace of R4 and thus difficult
to visualize, but as the familiar doughnut-shaped surface D in R3 obtained by rotating the circle C1 in the
xz-plane of radius 1

3 centered at (1, 0, 0) about the z-axis. It is not hard to see that S1 × S1 is homeomorphic



20.2. FUNDAMENTAL GROUPS OF THE CIRCLE 101

with the surface D. Let C2 be the circle of radius 1 in the xy-plane centered at the origin. Then let us map
C1 × C2 into D by defining f(a × b) to be that point into which a is carried when one rotates the circle C1

about the z-axis until its center hits the point b. See Figure below. The map f will be a homeomorphism of
C1 ×C2 with D, as you can check mentally. If you wish, you can write equations for f and check continuity,
injectivity, and surjectivity directly. (Continuity of f−1 will follow from compactness of C1 × C2 )

20.2 Fundamental groups of the circle

Definition 20.2.1. Let p : E → B be a map. If f is a continuous mapping of some space X into B, a lifting
of f is a map f̃ : X → E such that p ◦ f̃ = f .

The existence of liftings when p is a covering map is an important tool in studying covering spaces and
the fundamental group. First, we show that for a covering space, paths can be lifted; then we show that path
homotopies can be lifted as well.

Example 20.2.2. Consider the covering p : R → S1 of Theorem 20.1.4. The path f : [0, 1] → S1 beginning
at b0 = (1, 0) given by f(s) = (cosπs, sinπs) lifts to the path f̄(s) = s/2 beginning at 0 and ending at 1

2 .
The path g(s) = (cosπs,− sinπs) lifts to the path ḡ(s) = −s/2 beginning at 0 and ending at −1

2 . The path
h(s) = (cos 4πs, sin 4πs) lifts to the path h̄(s) = 2s beginning at 0 and ending at 2 . Intuitively, h wraps the
interval [0, 1] around the circle twice; this is reflected in the fact that the lifted path h̄ begins at zero and ends
at the number 2. These paths are pictured in the following figure.

Figure 20.2.1: Caption

Lemma 20.2.3. Let p : E → B be a covering map, let p (e0) = b0. Any path f : [0, 1] → B beginning at bo
has a unique lifting to a path f̄ in E beginning at e0.
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Proof. Cover B by open sets U each of which is evenly covered by p. Find a subdivision of [0, 1], say
s0, . . . , sn, such that for each i the set f ([si, si+1]) lies in such an open set U . (Here we use the Lebesgue
number lemma.) We define the lifting f̄ step by step.

First, define f̃(0) = e0. Then, supposing f̃(s) is defined for 0 ≤ s ≤ si, we define f̃ on [si, si+1] as
follows: The set f ([si, si+1]) lies in some open set U that is evenly covered by p. Let {Vα} be a partition of
p−1(U) into slices; each set Vα is mapped homeomorphically onto U by p. Now f̃ (si) lies in one of these
sets, say in V0. Define f̄(s) for s ∈ [si, si+1] by the equation

f̃(s) = (p | V0)−1 (f(s)).

Because p | V0 : V0 → U is a homeomorphism, f̃ will be continuous on [si, si+1].
Continuing in this way, we define f̄ on all of [0, 1]. Continuity of f̄ follows from the pasting lemma; the

fact that p ◦ f̄ = f is immediate from the definition of f̄ .
The uniqueness of f̃ is also proved step by step. Suppose that ˜̄f is another lifting of f beginning at e0.

Then f̄(0) = e0 = f̄(0). Suppose that f̄(s) = f̄(s) for all s such that 0 ≤ s ≤ si. Let V0 be as in the
preceding paragraph; then for s ∈ [si, si+1], f̄(s) is defined as (p | V0)−1 (f(s)). What can f̄(s) equal? Since
f̃ is a lifting of f , it must carry the interval [si, si+1] into the set p−1(U) =

⋃
Vα. The slices Vα are open

and disjoint; because the set f̃ ([si, si+1]) is connected, it must lie entirely in one of the sets Vα. Because
f̄ (si) = f̄ (si), which is in V0, f̄ must carry all of [si, si+1] into the set V0. Thus, for s in [si, si+1] , f̃(s) must
equal some point y of V0 lying in p−1(f(s)). But there is only one such point y, namely, (p | V0)−1 (f(s)).
Hence f̄(s) = f̃(s) for s ∈ [si, si+1].

Lemma 20.2.4. Let p : E → B be a covering map; let p (e0) = b0. Let the map F : I × I → B be
continuous, with F (0, 0) = b0. There is a unique lifting of F to a continuous map

F̄ : I × I → E

such that F̃ (0, 0) = e0. If F is a path homotopy, then F̃ is a path homotopy.

Proof of the lemma has been intentionally left.

Theorem 20.2.5. Let p : E → B be a covering map; let p(e0) = b0. Let f and g be two paths in B from b0
to b1; let f and g be thir respective liftings to paths in E beginning at e0. If f and g are path homotopic, then
f and g end at the same point of E and are path homotopic.

Proof. Let F : I × I → B be the path homotopy between f and g. Then F (0, 0) = b0. Let F̃ : I × I → E
be the lifting of F to E such that F̃ (0, 0) = e0. By the preceding lemma, F̃ is a path homotopy, so that
F̃ (0× I) = {e0} and F̄ (1× I) is a one-point set {e1}.

The restriction F̃ | I × 0 of F̃ to the bottom edge of I × I is a path on E beginning at e0 that is a lifting
of F | I × 0. By uniqueness of path liftings, we must have F̃ (s, 0) = f̃(s). Similarly, F̃ | I × 1 is a path on
E that is a lifting of F | I × 1, and it begins at e0 because F̃ (0× I) = {e0}. By uniqueness of path liftings,
F̃ (s, 1) = g̃(s). Therefore, both f̄ and g̃ end at e1, and F̄ is a path homotopy between them.

Definition 20.2.6. Let p : E → B be a covering map; let b0 ∈ B. Choose e0 so that p (e0) = b0. Given an
element [f ] of π1 (B, b0), let f̄ be the lifting of f to a path in E that begins at e0. Let ϕ([f ]) denote the end
point f̃(1) of f̃ . Then ϕ is a well-defined set map

ϕ : π1 (B, b0) → p−1 (b0) .

We call ϕ the lifting correspondence derived from the covering map p. It depends of course on the choice of
the point e0.
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Theorem 20.2.7. Let p : E → B be a covering map; let p (e0) = b0. If E is path connected, then the lifting
correspondence

ϕ : π1 (B, b0) → p−1 (b0)

is surjective. If E is simply connected, it is bijective.

Proof. If E is path connected, then, given e1 ∈ p−1 (b0), there is a path f̃ in E from e0 to e1. Then f = p ◦ f̄
is a loop in B at b0, and ϕ([f ]) = e1 by definition.

Suppose E is simply connected. Let [f ] and [g] be two elements of π1 (B, b0) such that ϕ([f ]) = ϕ([g]).
Let f̃ and g̃ be the liftings of f and g, respectively, to paths in E that begin at e0; then f̃(1) = g̃(1). Since E
is simply connected, there is a path homotopy F̄ in E between f̄ and g̃. Then p ◦ F̄ is a path homotopy in B
between f and g.

Theorem 20.2.8. The fundamental group of S1 is isomorphic to the additive group of integers.

Proof. Let p : R → S1 be the covering map of Theorem 20.1.4, let e0 = 0, and let b0 = p (e0). Then p−1 (b0)
is the set Z of integers. Since R is simply connected, the lifting correspondence

ϕ : π1
(
S1, b0

)
→ Z

is bijective. We show that ϕ is a homomorphism, and the theorem is proved.
Given [f ] and [g] in π1 (B, b0), let f̃ and g̃ be their respective liftings to paths on R beginning at 0 . Let

n = f̃(1) and m = g̃(1); then ϕ([f ]) = n and ϕ([g]) = m, by definition. Let g̃ be the path

g̃(s) = n+ g̃(s)

on R. Because p(n + x) = p(x) for all x ∈ R, the path g̃ is a lifting of g; it begins at n. Then the product
f̃ ∗ g̃ is defined, and it is the lifting of f ∗ g that begins at 0 , as you can check. The end point of this path is
g̃(1) = n+m. Then by definition,

ϕ([f ] ∗ [g]) = n+m = ϕ([f ]) + ϕ([g])
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Unit 1

Course Structure

• Introduction

• Babylonian and Egyptian mathematics

• Greek mathematics

• Pythagoras, Euclid and the elements of geometry

• Archimedes, Apollonius

Introduction

The area of study known as the history of mathematics is primarily an investigation into the origin of discover-
ies in mathematics and, to a lesser extent, an investigation into the mathematical methods and notation of the
past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical
developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer,
Akkad and Assyria, together with Ancient Egypt and Ebla began using arithmetic, algebra and geometry for
purposes of taxation, commerce, trade and also in the field of astronomy and to formulate calendars and record
time.

Babylonian and Egyptian mathematics

Our first knowledge of mankind’s use of mathematics comes from the Egyptians and Babylonians. Both
civilizations developed mathematics that was similar in scope but different in particulars. There can be no
denying the fact that the totality of their mathematics was profoundly elementary, but their astronomy of later
times did achieve a level comparable to the Greeks.

Babylonian Mathematics

The mathematics developed and practised by the people of Mesopotamia from the days of the early Sumerians
to the fall of Babylon in 539 BCE. The Babylonian Mathematics can be categorised into two: one of the Old
Babylonian Period (1830-1531 BCE) and the other mainly Seleucid from the last three of four centuries BCE.

1
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Figure 1.0.1: Babylonian clay tablet with annotations

The Babylonians were somewhat more advanced than the Egyptians in mathematics. The main features of the
Babylonian Mathematics were:

• Their mathematical notation was positional but sexagesimal. From this we derive the modern day usage
of 60 seconds in a minute, 60 minutes in an hour, and 360 degrees in a circle.

• They used no zero.

• More general fractions, though not all fractions, were admitted.

• They could extract square roots and solve linear systems.

• The Pythagorean triples were frequently used.

• They solved cubic equations with the help of tables.

• They studied circular measurement.

• They studied circular measurement.

Most clay tablets that describe Babylonian mathematics belong to the Old Babylonian, which is why the
mathematics of Mesopotamia is commonly known as Babylonian mathematics. Some clay tablets contain
mathematical lists and tables, others contain problems and worked solutions.
For enumeration the Babylonians used symbols for 1, 10, 60, 600, 3,600, 36,000, and 216,000, similar to the

earlier period. Below are some of the symbols. They did arithmetic in base 60, sexagesimal.
There is no clear reason why the Babylonians selected the sexagesimal system6 . It was possibly selected in
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Figure 1.0.2: Babylonian numerals

the interest of metrology, this according to Theon of Alexandria, a commentator of the fourth century A.D.:
i.e. the values 2,3,5,10,12,15,20, and 30 all divide 60. Remnants still exist today with time and angular
measurement. However, a number of theories have been posited for the Babylonians choosing the base of 60.
For example

1. The number of days, 360, in a year gave rise to the subdivision of the circle into 360 degrees, and that
the chord of one sixth of a circle is equal to the radius gave rise to a natural division of the circle into
six equal parts. This in turn made 60 a natural unit of counting. (Moritz Cantor, 1880)

2. The Babylonians used a 12 hour clock, with 60 minute hours. That is, two of our minutes is one minute
for the Babylonians. (Lehmann-Haupt, 1889) Moreover, the (Mesopotamian) zodiac was divided into
twelve equal sectors of 30 degrees each.

3. The number 60 is the product of the number of planets (5 known at the time) by the number of months
in the year, 12. (D. J. Boorstin, 6Recall, the very early use of the sexagesimal system in China. There
may well be a connection. 7See Georges Ifrah, The Universal History of Numbers, Wiley, New York,
2000. Babylonian Mathematics 8 1986)

Because of the large base, arithmetic was carried out with the aide of a pre-calculated table. For example,
two tablets found at Senkerah on the Euphrates in 1854, dating from 2000 BC, give lists of the squares of
numbers up to 59 and the cubes of numbers up to 32. The Babylonians used the lists of squares together with
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Figure 1.0.3: Rhind Mathematical Papyrus

the formulae

ab =
(a+ b)2 − a2 − b2

2

ab =
(a+ b)2 − a2 − b2

2

ab =
(a+ b)2 − (a− b)2

4

ab =
(a+ b)2 − (a− b)2

4

to simplify multiplication. The Babylonians did not have an algorithm for long division. Instead, they based
their method on the fact that

a

b
= a× 1

b

together with a table of reciprocals. Numbers whose only prime factors are 2, 3 or 5 (known as 5-smooth
or regular numbers) have finite reciprocals in sexagesimal notation, and tables with extensive lists of these
reciprocals have been found.

Egyptian Mathematics

Our sources of Egyptian mathematics are scarce. Indeed, much of our knowledge of ancient Egyptian mathe-
matics comes not from the hieroglyphics (carved sacred letters or sacred letters) inscribed on the hundreds of
temples but from two papyri containing collections of mathematical problems with their solutions.

1. The Rhind Mathematical Papyrus named for A.H. Rhind (1833- 1863) who purchased it at Luxor in
1858. Origin: 1650 BCE but it was written very much earlier. It is 18 feet long and 13 inches wide. It
is also called the Ahmes Papyrus after the scribe that last copied it.

2. The Moscow Mathematical Papyrus purchased by V. S. Golenishchev (d. 1947). Origin: 1700 BC. It is
15 ft long and 3 inches wide. Two sections of this chapter offer highlights from these papyri.

The Egyptian counting system was decimal. Though non positional, it could deal with numbers of great
scale. Yet, there is no apparent way to construct numbers arbitrarily large. The number system was decimal
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Figure 1.0.4: Mathematical Notations in Hieroglyphics

with special symbols for 1, 10, 100, 1,000, 10,000, 100,000, and 1,000,000. Addition was accomplished by
grouping and regrouping. Multiplication and division were essentially based on binary multiples. Fractions
were ubiquitous but only unit fractions, with two exceptions, were allowed. All other fractions were required
to be written as a sum of unit fractions. Geometry was limited to areas, volumes, and similarity. Curiously,
though, volume measures for the fractional portions of the hekat a volume measuring about 4.8 liters, were
symbolically expressed differently from others. Simple algebraic equations were solvable, even systems of
equations in two dimensions could be solved.

Greek mathematics

Greek mathematics refers to mathematics texts and advances written in Greek, developed from the 7th century
BC to the 4th century AD around the shores of the Eastern Mediterranean. Our knowledge of Greek Mathe-
matics is less reliable than our than that of the older Egyptian and Babylonian mathematics, because none of
the original manuscripts are extant. There are two sources:

1. Byzantine Greek codices (manuscript books) written 500-1500 years after the Greek works were com-
posed.

2. Arabic translations of Greek works and Latin translations of the Arabic versions.

Historians traditionally place the beginning of Greek mathematics proper to the age of Thales of Miletus (ca.
624–548 BC). The two earliest mathematical theorems, Thales’ theorem and Intercept theorem are attributed
to Thales. The former, which states that an angle inscribed in a semicircle is a right angle, may have been
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Figure 1.0.5: Greek Numerals

learned by Thales while in Babylon but tradition attributes to Thales a demonstration of the theorem. It is for
this reason that Thales is often hailed as the father of the deductive organization of mathematics and as the
first true mathematician. It is also known that within two hundred years of Thales the Greeks had introduced
logical structure and the idea of proof into mathematics.

Another important figure in the development of Greek mathematics is Pythagoras of Samos (ca. 580–500
BC) who had established an order called the Pythagoreans, which held knowledge and property in common
and hence all of the discoveries by individual Pythagoreans were attributed to the order. And since in antiquity
it was customary to give all credit to the master, Pythagoras himself was given credit for the discoveries made
by his order.

Thales is supposed to have used geometry to solve problems such as calculating the height of pyramids

based on the length of shadows, and the distance of ships from the shore. He is also credited by tradition with
having made the first proof of two geometric theorems—the "Theorem of Thales" and the "Intercept theorem"
described above. Pythagoras is widely credited with recognizing the mathematical basis of musical harmony
and, according to Proclus’ commentary on Euclid, he discovered the theory of proportionals and constructed
regular solids. he Pythagoreans regarded numerology and geometry as fundamental to understanding the
nature of the universe and therefore central to their philosophical and religious ideas. They are credited with
numerous mathematical advances, such as the discovery of irrational numbers.

Euclid and the elements of geometry

Euclid, (born c. 300 BCE, Alexandria, Egypt), the most prominent mathematician of Greco-Roman antiquity,
best known for his treatise on geometry, the Elements. Euclid compiled his Elements from a number of works
of earlier men. Among these are Hippocrates of Chios (flourished c. 440 BCE), not to be confused with the
physician Hippocrates of Cos (c. 460–375 BCE). The latest compiler before Euclid was Theudius, whose
textbook was used in the Academy and was probably the one used by Aristotle (384–322 BCE).
The older elements were at once superseded by Euclid’s and then forgotten. For his subject matter Euclid

drew upon all his predecessors, but it is clear that the whole design of his work was his own, culminating in the
construction of the five regular solids, now known as the Platonic solids. A brief survey of the Elements belies
a common belief that it concerns only geometry. This misconception may be caused by reading no further than



7

Figure 1.0.6: Euclid

Books I through IV, which cover elementary plane geometry. Euclid understood that building a logical and
rigorous geometry (and mathematics) depends on the foundation—a foundation that Euclid began in Book
I with 23 definitions (such as “a point is that which has no part” and “a line is a length without breadth”),
five unproved assumptions that Euclid called postulates (now known as axioms), and five further unproved
assumptions that he called common notions. (See the table of Euclid’s 10 initial assumptions.) Book I then
proves elementary theorems about triangles and parallelograms and ends with the Pythagorean theorem. (For
Euclid’s proof of the theorem, see Sidebar: Euclid’s Windmill Proof.)

Archimedes, Apollonius

Archimedes was a Greek mathematician, philosopher and inventor who wrote important works on geometry,
arithmetic and mechanics. In mechanics he defined the principle of the lever and is credited with inventing
the compound pulley and the hydraulic screw for raising water from a lower to higher level. He is most
famous for discovering the law of hydrostatics, sometimes known as ’Archimedes’ principle’, stating that a
body immersed in fluid loses weight equal to the weight of the amount of fluid it displaces. During the Roman
conquest of Sicily in 214 BC Archimedes worked for the state, and several of his mechanical devices were
employed in the defence of Syracuse. Among the war machines attributed to him are the catapult and - per-
haps legendary - a mirror system for focusing the sun’s rays on the invaders’ boats and igniting them. After
Syracuse was captured, Archimedes was killed by a Roman soldier.

Apollonius of Perga (late 3rd – early 2nd centuries BC) was a Greek geometer and astronomer known for
his theories on the topic of conic sections. Beginning from the theories of Euclid and Archimedes on the topic,
he brought them to the state they were in just before the invention of analytic geometry. His definitions of the
terms ellipse, parabola, and hyperbola are the ones in use today.

Apollonius worked on many other topics, including astronomy. Most of the work has not survived except in
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fragmentary references in other authors. His hypothesis of eccentric orbits to explain the apparently aberrant
motion of the planets, commonly believed until the Middle Ages, was superseded during the Renaissance.



Unit 2

Course Structure

• Introduction

• Development of Trigonometry

• Development of Algebra

• Development of Analytic Geometry

Introduction

The development of mathematics is intimately interwoven with the progress of civilization, influencing the
course of history through its application to science and technology. Mathematics has changed with each step
of advancement in civilizations. Even the mathematics of the 1800s can seem quite strange now, so greatly
has mathematics evolved in the past 100 years and so thoroughly has it been reworked in the post-modern
approach.

Despite its arcane appearance from the outside looking in, the present, abstract and highly specialized state
of mathematics is the natural evolution of the subject, and there is much ahead that is exciting.

Development of Trigonometry

It began as a branch of geometry and was utilized extensively by early Greek mathematicians to determine
unknown distances. The most notable examples are the use by Aristarchus (310-250 B.C.) to determine the
distance to the Moon and Sun, and by Eratosthenes (c. 276-195 B.C.) to calculate the Earth’s circumference.
The general principles of trigonometry were formulated by the Greek astronomer, Hipparchus of Nicaea (162-
127 B.C.), who is generally credited as the founder of trigonometry. His ideas were worked out by Ptolemy of
Alexandria (A.D. c. 90-168), who used them to develop the influential Ptolemaic theory of astronomy. Much
of the information we know about the work of Hipparchus and Ptolemy comes from Ptolemy’s compendium,
The Almagest, written around 150.

Trigonometry was initially considered a field of the science of astronomy. It was later established as a sep-
arate branch of mathematics—largely through the work of the mathematicians Johann Bernoulli (1667-1748)
and Leonhard Euler (1707-1783). The major trigonometric functions, including sine, cosine, and tangent,

9
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Figure 2.0.1: Trigonometric Functions Using Circle

were first defined as ratios of sides in a right triangle. Since trigonometric functions are intrinsically related,
they can be used to determine the dimensions of any triangle given limited information. In the eighteenth
century, the definitions of trigonometric functions were broadened by being defined as points on a unit circle.
This allowed the development of graphs of functions related to the angles they represent which were periodic.
Today, using the periodic nature of trigonometric functions, mathematicians and scientists have developed
mathematical models to predict many natural periodic phenomena. Ancient Greek and Hellenistic mathe-

maticians made use of the chord. Given a circle and an arc on the circle, the chord is the line that subtends the
arc. A chord’s perpendicular bisector passes through the center of the circle and bisects the angle. One half of
the bisected chord is the sine of one half the bisected angle, that is,

chord θ = 2 sin
θ

2
, chord θ = 2 sin

θ

2
,

and consequently the sine function is also known as the half-chord. Due to this relationship, a number of
trigonometric identities and theorems that are known today were also known to Hellenistic mathematicians,
but in their equivalent chord form.
Some of the early and very significant developments of trigonometry were in India. Influential works from the
4th–5th century, known as the Siddhantas (of which there were five, the most important of which is the Surya
Siddhanta) first defined the sine as the modern relationship between half an angle and half a chord, while also
defining the cosine, versine, and inverse sine. Soon afterwards, another Indian mathematician and astronomer,
Aryabhatta (476–550 AD), collected and expanded upon the developments of the Siddhantas in an important
work called the Aryabhattya. The Siddhantas and the Aryabhattya contain the earliest surviving tables of sine
values and versine values, to an accuracy of 4 decimal places. They used the words jya for sine, kojya for
cosine, utkrama-jya for versine, and otkram jya for inverse sine. The words jya and kojya eventually became
sine and cosine respectively after a mistranslation described above. Madhava (c. 1400) made early strides
in the analysis of trigonometric functions and their infinite series expansions. He developed the concepts of
the power series and Taylor series, and produced the power series expansions of sine, cosine, tangent, and
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arctangent. Using the Taylor series approximations of sine and cosine, he produced a sine table to 12 decimal
places of accuracy and a cosine table to 9 decimal places of accuracy. His works were expanded by his
followers at the Kerala School up to the 16th century.

Development of Algebra

The roots of the word, algebra, can be found in Medieval Latin and the Arabic word, al- jabr, which means
’the reduction’. The word was first used as early as 1551. The history of algebra can be divided into three
parts:

• The rhetorical, or written stage, where only words were used in equations

• The syncopated, or shortened, stage, where some symbols were used in equations

• The symbolic or modern stage

Early works of algebra of ancient Babylonians and Egyptians lack the abstract notation that algebra has today.
The Babylonians had methods of solving quadratic equations, while the Egyptians used the symbol heap for
the unknown.

In China, a treatise called Nine Chapters was compiled in the first century CE composed of 246 prob-
lems. The text shows methods of solving determinate and indeterminate equations. More sophisticated than
the works of the Babylonians and Egyptians, the treatise is mostly what is known today as rhetorical alge-
bra—problems and solutions are expressed in words rather than in algebraic notations.

Algebra to the ancient Greeks is an unknown science except for the Greek mathematician Diophantus of
Alexandria (3rd century BCE). His work Arithmetica contains the first suggestions of algebraic notations and
is probably the earliest treatise on algebra. He used algebraic equations and notations in presenting problems
and solutions in Arithmetica.

In the 6th century CE in India, Aryabhata’s works show knowledge in summing an arithmetic series, and
solving quadratic equations and indeterminate linear equations. Shortly after, in the 7th century, Brahmagupta
applied algebra to astronomy; his works gives the rules for using negative numbers, and solving quadratic
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Figure 2.0.2: Khwarzimi

equations.

The Islamic scholars made several contributions to algebra as well—most notable of them is al-Khwārizmı̄.
His treatise A short book on the calculus al-jabr and al-muqabalah, deals with the solution of quadratic equa-
tions. He did not use algebraic notations in his treatise but employed rhetorical algebra. This is one reason
why some consider Diophantus as the “Father of Algebra” rather than Al-Khwārizmı̄.

Development of Analytic Geometry

Analytic geometry, also called coordinate geometry, mathematical subject in which algebraic symbolism and
methods are used to represent and solve problems in geometry. Apollonius of Perga foreshadowed the de-
velopment of analytic geometry by more than 1,800 years with his book Conics. He defined a conic as the
intersection of a cone and a plane (see figure).

Further development of coordinate systems in mathematics emerged only after algebra had matured under
Islamic and Indian mathematicians. With the power of algebraic notation, mathematicians were no longer
completely dependent upon geometric figures and geometric intuition to solve problems. The more daring
began to leave behind the standard geometric way of thinking in which linear (first power) variables corre-
sponded to lengths, squares (second power) to areas, and cubics (third power) to volumes, with higher powers
lacking “physical” interpretation. Two Frenchmen, the mathematician-philosopher René Descartes and the
lawyer-mathematician Pierre de Fermat, were among the first to take this daring step.

Descartes and Fermat independently founded analytic geometry in the 1630s by adapting Viète’s algebra
to the study of geometric loci. They used letters to represent distances that are variable instead of fixed.
Descartes used equations to study curves defined geometrically, and he stressed the need to consider general
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algebraic curves—graphs of polynomial equations in x and y of all degrees. He demonstrated his method on
a classical problem: finding all points P such that the product of the distances from P to certain lines equals
the product of the distances to other lines.

Fermat emphasized that any relation between x and y coordinates determines a curve. Using this idea, he
recast Apollonius’s arguments in algebraic terms and restored lost work. Fermat indicated that any quadratic
equation in x and y can be put into the standard form of one of the conic sections.

Their ideas gained general acceptance only through the efforts of other mathematicians in the latter half of
the 17th century. In particular, the Dutch mathematician Frans van Schooten translated Descartes’s writings
from French to Latin. He added vital explanatory material, as did the French lawyer Florimond de Beaune,
and the Dutch mathematician Johan de Witt. In England, the mathematician John Wallis popularized ana-
lytic geometry, using equations to define conics and derive their properties. He used negative coordinates
freely, although it was Isaac Newton who unequivocally used two (oblique) axes to divide the plane into four
quadrants.



Unit 3

Course Structure

• Development of Calculus

• Development of Selected Topics of Modern Mathematics

Development of Calculus

The discovery of calculus is often attributed to two men, Isaac Newton and Gottfried Leibniz, who indepen-
dently developed its foundations. Although they both were instrumental in its creation, they thought of the
fundamental concepts in very different ways. While Newton considered variables changing with time, Leibniz
thought of the variables x and y as ranging over sequences of infinitely close values. He introduced dx and
dy as differences between successive values of these sequences. Leibniz knew that dy/dx gives the tangent
but he did not use it as a defining property. On the other hand, Newton used quantities x’ and y’, which were
finite velocities, to compute the tangent. Of course neither Leibniz nor Newton thought in terms of functions,
but both always thought in terms of graphs. For Newton the calculus was geometrical while Leibniz took it
towards analysis. It is interesting to note that Leibniz was very conscious of the importance of good notation
and put a lot of thought into the symbols he used. Newton, on the other hand, wrote more for himself than
anyone else. Consequently, he tended to use whatever notation he thought of on that day. This turned out to
be important in later developments. Leibniz’s notation was better suited to generalizing calculus to multiple
variables and in addition it highlighted the operator aspect of the derivative and integral. As a result, much of
the notation that is used in Calculus today is due to Leibniz.

The development of Calculus can roughly be described along a timeline which goes through three peri-
ods: Anticipation, Development, and Rigorization. In the Anticipation stage techniques were being used by
mathematicians that involved infinite processes to find areas under curves or maximaize certain quantities.
In the Development stage Newton and Leibniz created the foundations of Calculus and brought all of these
techniques together under the umbrella of the derivative and integral. However, their methods were not always
logically sound, and it took mathematicians a long time during the Rigorization stage to justify them and put
Calculus on a sound mathematical foundation.

In their development of the calculus both Newton and Leibniz used "infinitesimals", quantities that are
infinitely small and yet nonzero. Of course, such infinitesimals do not really exist, but Newton and Leibniz
found it convenient to use these quantities in their computations and their derivations of results. Although one
could not argue with the success of calculus, this concept of infinitesimals bothered mathematicians. Lord

14
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Bishop Berkeley made serious criticisms of the calculus referring to infinitesimals as "the ghosts of departed
quantities".

Berkeley’s criticisms were well founded and important in that they focused the attention of mathematicians
on a logical clarification of the calculus. It was to be over 100 years, however, before Calculus was to be made
rigorous. Ultimately, Cauchy, Weierstrass, and Riemann reformulated Calculus in terms of limits rather than
infinitesimals. Thus the need for these infinitely small (and nonexistent) quantities was removed, and replaced
by a notion of quantities being "close" to others. The derivative and the integral were both reformulated in
terms of limits. While it may seem like a lot of work to create rigorous justifications of computations that
seemed to work fine in the first place, this is an important development. By putting Calculus on a logical
footing, mathematicians were better able to understand and extend its results, as well as to come to terms with
some of the more subtle aspects of the theory.

When we first study Calculus we often learn its concepts in an order that is somewhat backwards to its
development. We wish to take advantage of the hundreds of years of thought that have gone into it. As a
result, we often begin by learning about limits. Afterward we define the derivative and integral developed by
Newton and Leibniz. But unlike Newton and Leibniz we define them in the modern way – in terms of limits.
Afterward we see how the derivative and integral can be used to solve many of the problems that precipitated
the development of Calculus.

Development of Modern Mathematics

When we consider the history of modern Mathematics, two questions arise:

1. what limitations shall be placed upon the term mathematics?

2. what force shall be assigned to the word Modern?

Here, we mainly limit ourselves into the domain of pure science. Questions of applications of the various
branches will be considered incidentally. Such great contributions as those of Newton in the realm of Mathe-
matical Physics, of Laplace in celestial mechanics, of Lagrange and Cauchy in wave theory, belong rather to
the filed of applications.

In particular, in the domain of numbers, reference will be made to certain of the contributions to the general
theory, to the men who have placed the study of irrational and transcendental numbers upon a scientific
foundation, and to those who have developed the modern theory of complex numbers and its elaboration in
the filed of quarternions and Ausdehnungslehre. In the theory of equations, the manes of some of the leading
investigators will be mentioned, together with a brief statement of the results which they secured. This phase
of higher algebra will be followed by the theory of forms, or quantics. The later development of calculus,
leading to differential equations and the theory of functions, will complete the algebraic side, save for a brief
reference to the theory of probabilities. In the domain of geometry, some of the contributors to the later
development of the analytic and synthetic fields will be mentioned, together with the most noteworthy results
of their labours.

The term Modern Mathematics is not well defined. Algebra cannot be modern yet the theory of equations
has received some of its most significant additions during the nineteenth century, while the theory of forms
is a recent creation. Similarly with elementary geometry; the labours of Lobachevsky and Bolyai during the
second quarter of the century threw a new light upon the whole subject, and more recently the study of the
triangle has added another chapter to the theory. Thus, the history of modern mathematics must also be the
modern history of ancient branches, while subjects which seem the product of late generations have root in
other centuries than the present.

The nineteenth century has been a period of intense study of first principles, of the recognition of necessary
limitations of various branches, of a great spread of mathematical knowledge, and of the opening of extensive
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fields of applied mathematics. Especially influential has been the establishment of scientific schools and
journals and university chairs. About the middle of the century, these schools began to exert a still greater
influence through the custom of calling to them mathematicians of high repute, thus making Zurich, Karlsruhe,
Munich, Dresden, and other cities well known as mathematical centres.



Unit 4

Course Structure

• Development of Modern geometries

• Development of Modern algebra

• Development of the methods of real analysis.

Development of Modern geometry

Descriptive, Projective, and Modern Synthetic Geometry are so interwoven in their historic development that
it is even more difficult to separate them from one another than from the analytic geometry just mentioned.
Monge had been in possession of his theory for over thirty years before the publication of his Géométrie
Descriptive (1800), a delay due to the jealous desire of the military authorities to keep the valuable secret. It
is true that certain of its features can be traced back to Desargues, Taylor, Lambert, and Frézier, but it was
Monge who worked it out in detail as a science, although Lacroix (1795), inspired by Monge’s lectures in the
École Polytechnique, published the first work on the subject. After Monge’s work appeared, Hachette (1812,
1818, 1821) added materially to its symmetry, subsequent French contributors being Leroy (1842), Olivier
(from 1845), de la Gournerie (from 1860), Vallée, de Fourcy, Adhémar, and others. In Germany leading
contributors have been Ziegler (1843), Anger (1858), and especially Fiedler (3d edn. 1883-88) and Wiener
(1884-87). At this period Monge by no means confined himself to the descriptive geometry. So marked were
his labors in the analytic geometry that he has been called the father of the modern theory. He also set forth
the fundamental theorem of reciprocal polars, though not in modern language, gave some treatment of ruled
surfaces, and extended the theory of polars to quadrics.

Monge and his school concerned themselves especially with the relations of form, and particularly with
those of surfaces and curves in a space of three dimensions. Inspired by the general activity of the period,
but following rather the steps of Desargues and Pascal, Carnot treated chiefly the metrical relations of figures.
In particular he investigated these relations as connected with the theory of transversals, a theory whose
fundamental property of a four-rayed pencil goes back to Pappos, and which, though revived by Desargues,
was set forth for the first time in its general form in Carnot’s Géométrie de Position (1803), and supplemented
in his Théorie des Transversales (1806). In these works he introduced negative magnitudes, the general
quadrilateral and quadrangle, and numerous other generalizations of value to the elementary geometry of
to-day. But although Carnot’s work was important and many details are now commonplace, neither the name
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of the theory nor the method employed have endured. The present Geometry of Position (Geometrie der Lage)
has little in common with Carnot’s Géométrie de Position.

Projective Geometry had its origin somewhat later than the period of Monge and Carnot. Newton had dis-
covered that all curves of the third order can be derived by central projection from five fundamental types. But
in spite of this fact the theory attracted so little attention for over a century that its origin is generally ascribed
to Poncelet. A prisoner in the Russian campaign, confined at Saratoff on the Volga (1812-14), “privé,” as
he says, “de toute espèce de livres et de secours, surtout distrait par les malheurs de ma patrie et les miens
propres,” he still had the vigor of spirit and the leisure to conceive the great work which he published (1822)
eight years later. In this work was first made prominent the power of central projection in demonstration and
the power of the principle of continuity in research. His leading idea was the study of projective properties,
and as a foundation principle he introduced the anharmonic ratio, a concept, however, which dates back to
Pappos and which Desargues (1639) had also used. Möbius, following Poncelet, made much use of the an-
harmonic ratio in his Barycentrische Calcül (1827), but under the name “Doppelschnitt-Verhältniss” (ratio
bisectionalis), a term now in common use under Steiner’s abbreviated form “Doppelverhältniss.” The name
“anharmonic ratio” or “function” (rapport anharmonique, or fonction anharmonique) is due to Chasles, and
“cross-ratio” was coined by Clifford. The anharmonic point and line properties of conics have been further
elaborated by Brianchon, Chasles, Steiner, and von Staudt. To Poncelet is also due the theory of “figures ho-
mologiques,” the perspective axis and perspective center (called by Chasles the axis and center of homology),
an extension of Carnot’s theory of transversals, and the “cordes idéales” of conics which Plücker applied to
curves of all orders, He also discovered what Salmon has called “the circular points at infinity,” thus com-
pleting and establishing the first great principle of modern geometry, the principle of continuity. Brianchon
(1806), through his application of Desargues’s theory of polars, completed the foundation which Monge had
begun for Poncelet’s (1829) theory of reciprocal polars.

Among the most prominent geometers contemporary with Poncelet was Gergonne, who with more propri-
ety might be ranked as an analytic geometer. He first (1813) used the term “polar” in its modern geometric
sense, although Servois (1811) had used the expression “pole.” He was also the first (1825-26) to grasp the
idea that the parallelism which Maurolycus, Snell, and Viete had noticed is a fundamental principle. This
principle he stated and to it he gave the name which it now bears, the Principle of Duality, the most important,
after that of continuity, in modern geometry. This principle of geometric reciprocation, the discovery of which
was also claimed by Poncelet, has been greatly elaborated and has found its way into modern algebra and
elementary geometry, and has recently been extended to mechanics by Genese. Gergonne was the first to use
the word “class” in describing a curve, explicitly defining class and degree (order) and showing the duality
between the two. He and Chasles were among the first to study scientifically surfaces of higher order.

Steiner (1832) gave the first complete discussion of the projective relations between rows, pencils, etc.,
and laid the foundation for the subsequent development of pure geometry. He practically closed the theory of
conic sections, of the corresponding figures in three-dimensional space and of surfaces of the second order,
and hence with him opens the period of special study of curves and surfaces of higher order. His treatment
of duality and his application of the theory of projective pencils to the generation of conics are masterpieces.
The theory of polars of a point in regard to a curve had been studied by Bobillier and by Grassmann, but
Steiner (1848) showed that this theory can serve as the foundation for the study of plane curves independently
of the use of coordinates, and introduced those noteworthy curves covariant to a given curve which now bear
the names of himself, Hesse, and Cayley. This whole subject has been extended by Grassmann, Chasles,
Cremona, and Jonquières. Steiner was the first to make prominent (1832) an example of correspondence of a
more complicated nature than that of Poncelet, Möbius, Magnus, and Chasles. His contributions, and those of
Gudermann, to the geometry of the sphere were also noteworthy.

While Möbius, Plücker, and Steiner were at work in Germany, Chasles was closing the geometric era
opened in France by Monge. His Aperçu Historique (1837) is a classic, and did for France what Salmon’s
works did for algebra and geometry in England, popularizing the researches of earlier writers and contributing
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both to the theory and the nomenclature of the subject. To him is due the name “homographic” and the
complete exposition of the principle as applied to plane and solid figures, a subject which has received attention
in England at the hands of Salmon, Townsend, and H. J. S. Smith.

Von Staudt began his labors after Plücker, Steiner, and Chasles had made their greatest contributions, but
in spite of this seeming disadvantage he surpassed them all. Joining the Steiner school, as opposed to that of
Plücker, he became the greatest exponent of pure synthetic geometry of modern times. He set forth (1847,
1856-60) a complete, pure geometric system in which metrical geometry finds no place. Projective properties
foreign to measurements are established independently of number relations, number being drawn from geom-
etry instead of conversely, and imaginary elements being systematically introduced from the geometric side.
A projective geometry based on the group containing all the real projective and dualistic transformations, is
developed, imaginary transformations being also introduced. Largely through his influence pure geometry
again became a fruitful field. Since his time the distinction between the metrical and projective theories has
been to a great extent obliterated,59 the metrical properties being considered as projective relations to a fun-
damental configuration, the circle at infinity common for all spheres. Unfortunately von Staudt wrote in an
unattractive style, and to Reye is due much of the popularity which now attends the subject.

Cremona began his publications in 1862. His elementary work on projective geometry (1875) in Leudes-
dorf’s translation is familiar to English readers. His contributions to the theory of geometric transformations
are valuable, as also his works on plane curves, surfaces, etc.

In England Mulcahy, but especially Townsend (1863), and Hirst, a pupil of Steiner’s, opened the subject of
modern geometry. Clifford did much to make known the German theories, besides himself contributing to the
study of polars and the general theory of curves.

Development of Modern algebra

Modern algebra, also called abstract algebra, branch of mathematics concerned with the general algebraic
structure of various sets (such as real numbers, complex numbers, matrices, and vector spaces), rather than
rules and procedures for manipulating their individual elements.

Prior to the nineteenth century, algebra meant the study of the solution of polynomial equations. By the
twentieth century algebra came to encompass the study of abstract, axiomatic systems such as groups, rings,
and fields. This presentation provides an account of the history of the basic concepts, results, and theories
of abstract algebra. The development of abstract algebra was propelled by the need for new tools to address
certain classical problems that appeared unsolvable by classical means. A major theme of the approach in
this book is to show how abstract algebra has arisen in attempts to solve some of these classical problems,
providing context from which the reader may gain a deeper appreciation of the mathematics involved. Key
features: Begins with an overview of classical algebra Contains separate chapters on aspects of the develop-
ment of groups, rings, and fields Examines the evolution of linear algebra as it relates to other elements of
abstract algebra Highlights the lives and works of six notables: Cayley, Dedekind, Galois, Gauss, Hamilton,
and especially the pioneering work of Emmy Noether Offers suggestions to instructors on ways of integrat-
ing the history of abstract algebra into their teaching Each chapter concludes with extensive references to the
relevant literature Mathematics instructors, algebraists, and historians of science will find the work a valuable
reference. The book may also serve as a supplemental text for courses in abstract algebra or the history of
mathematics.

During the second half of the 19th century, various important mathematical advances led to the study of
sets in which any two elements can be added or multiplied together to give a third element of the same set.
The elements of the sets concerned could be numbers, functions, or some other objects. As the techniques
involved were similar, it seemed reasonable to consider the sets, rather than their elements, to be the objects
of primary concern. A definitive treatise, Modern Algebra, was written in 1930 by the Dutch mathematician
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Bartel van der Waerden, and the subject has had a deep effect on almost every branch of mathematics.

Development of Real Analysis

The study of real functions has played a fundamental role in the development of mathematics over the last three
centuries. The discovery of calculus by eighteenth century mathematicians, notably Newton and Leibniz, was
largely due to increased understanding of the behavior of real functions. The birth of analysis is often traced
to the early nineteenth century work of Cauchy, who gave precise definitions of concepts such as continuity
and limits for real functions. Convergence problems while approximating real functions by Fourier series
gave rise to both the Riemann and Lebesgue integrals. Cantor developed his set theory in an effort to answer
uniqueness questions about Fourier series.

During this time, different techniques have been used as the theory behind them became available. For
example, after Cauchy, various limiting operations such as pointwise and uniform convergence were studied,
giving rise to various approximation techniques. At the turn of this century, measure theoretic techniques were
exploited, leading to stochastic convergence ideas in the 1920’s. Also, at about the same time topology was
developed, and its applications to analysis gave rise to functional analysis.

In recent years, a new research trend has appeared which indicates the emergence of a yet another branch
of inquiry that could be called set theoretic real analysis. This area is the study of families of real functions
using modern techniques of set theory. These techniques include advanced forcing methods, special axioms
of set theory such as Martin’s axiom (MA) and proper forcing axiom (PFA), as well as some of their weaker
consequences like additivity of measure and category.

Set theoretic real analysis is closely allied with descriptive set theory, but the objects studied in the two areas
are different. The objects studied in descriptive set theory are various classes of (mostly nice) sets and their
hierarchies, such as Borel sets or analytic sets. Set theoretic real analysis uses the tools of modern set theory
to study real functions and is interested mainly in more pathological objects. Thus, the results concerning
subsets of the real line (like the series of studies on “small” subsets R, or deep studies of the duality between
measure and category) are considered only remotely related to the subject. (However, some of these duality
studies spread to real analysis too.)

Set theoretic real analysis already has a long history. Its roots can be traced back to the 1920’s, where
powerful new techniques based on the Axiom of Choice (AC) and the Continuum Hypothesis (CH) can be
seen in many papers from such journals as Fundamenta Mathematicae and Studia Mathematica. The most
interesting consequences of the Continuum Hypothesis discovered in this period have been collected in 1934
monograph of Sierpinski, The influence of Sierpinski’s results (and the monograph) on the set theoretic real
analysis can be best seen in the next section.

The new emergence of the field was sparked by the discovery of powerful new techniques in set theory and
can be compared to the parallel development of set theoretic topology during the late 1950’s and 1960’s. In
fact, it is a bit surprising that the development of set theoretic analysis is so much behind that of set theoretic
topology, since at the beginning of the century the applicability of set theory in analysis was at least as intense
as in topology. This, however, can be probably attributed to the simple fact, that in the past half of a century
there were many mathematicians that knew well both topology and set theory, and very few that knew well
simultaneously analysis and set theory.



CHAPTER 2

Simple Linear Programming Problems

When both the objective and all the constraints in Expression 1.5 are linear functions,
then the optimization problem is called a linear programming problem. This has the general
form:

(2.1)





max z(x1, . . . , xn) = c1x1 + · · ·+ cnxn

s.t. a11x1 + · · ·+ a1nxn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

h11x1 + · · ·+ hn1xn = r1
...

hl1x1 + · · ·+ hlnxn = rl

Definition 2.1 (Linear Function). A function z : Rn → R is linear if there are constants
c1, . . . , cn ∈ R so that:

(2.2) z(x1, . . . , xn) = c1x1 + · · ·+ cnxn

Lemma 2.2 (Linear Function). If z : Rn → R is linear then for all x1,x2 ∈ Rn and for
all scalar constants α ∈ R we have:

z(x1 + x2) = z(x1) + z(x2)(2.3)

z(αx1) = αz(x1)(2.4)

Exercise 9. Prove Lemma 2.2.

For the time being, we will eschew the general form and focus exclusively on linear pro-
gramming problems with two variables. Using this limited case, we will develop a graphical
method for identifying optimal solutions, which we will generalize later to problems with
arbitrary numbers of variables.

Example 2.3. Consider the problem of a toy company that produces toy planes and toy
boats. The toy company can sell its planes for $10 and its boats for $8 dollars. It costs $3
in raw materials to make a plane and $2 in raw materials to make a boat. A plane requires
3 hours to make and 1 hour to finish while a boat requires 1 hour to make and 2 hours to
finish. The toy company knows it will not sell anymore than 35 planes per week. Further,
given the number of workers, the company cannot spend anymore than 160 hours per week

13

Unit  5

21



finishing toys and 120 hours per week making toys. The company wishes to maximize the
profit it makes by choosing how much of each toy to produce.

We can represent the profit maximization problem of the company as a linear program-
ming problem. Let x1 be the number of planes the company will produce and let x2 be
the number of boats the company will produce. The profit for each plane is $10 − $3 = $7
per plane and the profit for each boat is $8 − $2 = $6 per boat. Thus the total profit the
company will make is:

(2.5) z(x1, x2) = 7x1 + 6x2

The company can spend no more than 120 hours per week making toys and since a plane
takes 3 hours to make and a boat takes 1 hour to make we have:

(2.6) 3x1 + x2 ≤ 120

Likewise, the company can spend no more than 160 hours per week finishing toys and since
it takes 1 hour to finish a plane and 2 hour to finish a boat we have:

(2.7) x1 + 2x2 ≤ 160

Finally, we know that x1 ≤ 35, since the company will make no more than 35 planes per
week. Thus the complete linear programming problem is given as:

(2.8)





max z(x1, x2) = 7x1 + 6x2

s.t. 3x1 + x2 ≤ 120

x1 + 2x2 ≤ 160

x1 ≤ 35

x1 ≥ 0

x2 ≥ 0

Exercise 10. A chemical manufacturer produces three chemicals: A, B and C. These
chemical are produced by two processes: 1 and 2. Running process 1 for 1 hour costs $4 and
yields 3 units of chemical A, 1 unit of chemical B and 1 unit of chemical C. Running process 2
for 1 hour costs $1 and produces 1 units of chemical A, and 1 unit of chemical B (but none of
Chemical C). To meet customer demand, at least 10 units of chemical A, 5 units of chemical
B and 3 units of chemical C must be produced daily. Assume that the chemical manufacturer
wants to minimize the cost of production. Develop a linear programming problem describing
the constraints and objectives of the chemical manufacturer. [Hint: Let x1 be the amount
of time Process 1 is executed and let x2 be amount of time Process 2 is executed. Use the
coefficients above to express the cost of running Process 1 for x1 time and Process 2 for x2
time. Do the same to compute the amount of chemicals A, B, and C that are produced.]

1. Modeling Assumptions in Linear Programming

Inspecting Example 2.3 (or the more general Problem 2.1) we can see there are several
assumptions that must be satisfied when using a linear programming model. We enumerate
these below:
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Proportionality Assumption: A problem can be phrased as a linear program only if
the contribution to the objective function and the left-hand-side of each constraint
by each decision variable (x1, . . . , xn) is proportional to the value of the decision
variable.

Additivity Assumption: A problem can be phrased as a linear programming prob-
lem only if the contribution to the objective function and the left-hand-side of each
constraint by any decision variable xi (i = 1, . . . , n) is completely independent of
any other decision variable xj (j 6= i) and additive.

Divisibility Assumption: A problem can be phrased as a linear programming prob-
lem only if the quantities represented by each decision variable are infinitely divisible
(i.e., fractional answers make sense).

Certainty Assumption: A problem can be phrased as a linear programming prob-
lem only if the coefficients in the objective function and constraints are known with
certainty.

The first two assumptions simply assert (in English) that both the objective function and
functions on the left-hand-side of the (in)equalities in the constraints are linear functions of
the variables x1, . . . , xn.

The third assumption asserts that a valid optimal answer could contain fractional values
for decision variables. It’s important to understand how this assumption comes into play–
even in the toy making example. Many quantities can be divided into non-integer values
(ounces, pounds etc.) but many other quantities cannot be divided. For instance, can we
really expect that it’s reasonable to make 1/2 a plane in the toy making example? When
values must be constrained to true integer values, the linear programming problem is called an
integer programming problem. These problems are outside the scope of this course, but there
is a vast literature dealing with them [PS98, WN99]. For many problems, particularly
when the values of the decision variables may become large, a fractional optimal answer
could be obtained and then rounded to the nearest integer to obtain a reasonable answer.
For example, if our toy problem were re-written so that the optimal answer was to make
1045.3 planes, then we could round down to 1045.

The final assumption asserts that the coefficients (e.g., profit per plane or boat) is known
with absolute certainty. In traditional linear programming, there is no lack of knowledge
about the make up of the objective function, the coefficients in the left-hand-side of the
constraints or the bounds on the right-hand-sides of the constraints. There is a literature on
stochastic programming [KW94, BTN02] that relaxes some of these assumptions, but this
too is outside the scope of the course.

Exercise 11. In a short sentence or two, discuss whether the problem given in Example
2.3 meets all of the assumptions of a scenario that can be modeled by a linear programming
problem. Do the same for Exercise 10. [Hint: Can you make 2/3 of a toy? Can you run a
process for 1/3 of an hour?]

Exercise 12. Suppose the costs are not known with certainty but instead a probability
distribution for each value of ci (i = 1, . . . , n) is known. Suggest a way of constructing a
linear program from the probability distributions. [Hint: Suppose I tell you that I’ll give you
a uniformly random amount of money between $1 and $2. How much money do you expect
to receive? Use the same reasoning to answer the question.]
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2. Graphically Solving Linear Programs Problems with Two Variables
(Bounded Case)

Linear Programs (LP’s) with two variables can be solved graphically by plotting the
feasible region along with the level curves of the objective function. We will show that we
can find a point in the feasible region that maximizes the objective function using the level
curves of the objective function. We illustrate the method first using the problem from
Example 2.3.

Example 2.4 (Continuation of Example 2.3). Let’s continue the example of the Toy
Maker begin in Example 2.3. To solve the linear programming problem graphically, begin
by drawing the feasible region. This is shown in the blue shaded region of Figure 2.1.

x1 = 35
∇(7x1 + 6x2)

x1 + 2x2 = 160

3x1 + x2 ≤ 120

x1 + 2x2 ≤ 160

x1 ≤ 35

x1 ≥ 0

x2 ≥ 0

3x1 + x2 = 120

(x∗
1, x

∗
2) = (16, 72)

3x1 + x2 ≤ 120

x1 + 2x2 ≤ 160

x1 ≤ 35

x1 ≥ 0

x2 ≥ 0

Figure 2.1. Feasible Region and Level Curves of the Objective Function: The
shaded region in the plot is the feasible region and represents the intersection of
the five inequalities constraining the values of x1 and x2. On the right, we see the
optimal solution is the “last” point in the feasible region that intersects a level set
as we move in the direction of increasing profit.

After plotting the feasible region, the next step is to plot the level curves of the objective
function. In our problem, the level sets will have the form:

7x1 + 6x2 = c =⇒ x2 =
−7

6
x1 +

c

6
This is a set of parallel lines with slope −7/6 and intercept c/6 where c can be varied as
needed. The level curves for various values of c are parallel lines. In Figure 2.1 they are
shown in colors ranging from red to yellow depending upon the value of c. Larger values of
c are more yellow.

To solve the linear programming problem, follow the level sets along the gradient (shown
as the black arrow) until the last level set (line) intersects the feasible region. If you are
doing this by hand, you can draw a single line of the form 7x1 + 6x2 = c and then simply
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draw parallel lines in the direction of the gradient (7, 6). At some point, these lines will fail
to intersect the feasible region. The last line to intersect the feasible region will do so at a
point that maximizes the profit. In this case, the point that maximizes z(x1, x2) = 7x1+6x2,
subject to the constraints given, is (x∗1, x

∗
2) = (16, 72).

Note the point of optimality (x∗1, x
∗
2) = (16, 72) is at a corner of the feasible region. This

corner is formed by the intersection of the two lines: 3x1 + x2 = 120 and x1 + 2x2 = 160. In
this case, the constraints

3x1 + x2 ≤ 120

x1 + 2x2 ≤ 160

are both binding, while the other constraints are non-binding. In general, we will see that
when an optimal solution to a linear programming problem exists, it will always be at the
intersection of several binding constraints; that is, it will occur at a corner of a higher-
dimensional polyhedron.

3. Formalizing The Graphical Method

In order to formalize the method we’ve shown above, we will require a few new definitions.

Definition 2.5. Let r ∈ R, r ≥ 0 be a non-negative scalar and let x0 ∈ Rn be a point
in Rn. Then the set:

(2.9) Br(x0) = {x ∈ Rn| ||x− x0|| ≤ r}
is called the closed ball of radius r centered at point x0 in Rn.

In R2, a closed ball is just a disk and its circular boundary centered at x0 with radius r.
In R3, a closed ball is a solid sphere and its spherical centered at x0 with radius r. Beyond
three dimensions, it becomes difficult to visualize what a closed ball looks like.

We can use a closed ball to define the notion of boundedness of a feasible region:

Definition 2.6. Let S ⊆ Rn. Then the set S is bounded if there exists an x0 ∈ Rn and
finite r ≥ 0 such that S is totally contained in Br(x0); that is, S ⊂ Br(x0).

Definition 2.6 is illustrated in Figure 2.2. The set S is shown in blue while the ball of
radius r centered at x0 is shown in gray.

We can now define an algorithm for identifying the solution to a linear programing
problem in two variables with a bounded feasible region (see Algorithm 1):

The example linear programming problem presented in the previous section has a single
optimal solution. In general, the following outcomes can occur in solving a linear program-
ming problem:

(1) The linear programming problem has a unique solution. (We’ve already seen this.)
(2) There are infinitely many alternative optimal solutions.
(3) There is no solution and the problem’s objective function can grow to positive

infinity for maximization problems (or negative infinity for minimization problems).
(4) There is no solution to the problem at all.

Case 3 above can only occur when the feasible region is unbounded; that is, it cannot be
surrounded by a ball with finite radius. We will illustrate each of these possible outcomes in
the next four sections. We will prove that this is true in a later chapter.
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S

Br x0( )

x0

r

Figure 2.2. A Bounded Set: The set S (in blue) is bounded because it can be
entirely contained inside a ball of a finite radius r and centered at some point x0.
In this example, the set S is in R2. This figure also illustrates the fact that a ball
in R2 is just a disk and its boundary.

Algorithm for Solving a Linear Programming Problem Graphically
Bounded Feasible Region, Unique Solution

(1) Plot the feasible region defined by the constraints.
(2) Plot the level sets of the objective function.
(3) For a maximization problem, identify the level set corresponding the greatest (least, for

minimization) objective function value that intersects the feasible region. This point
will be at a corner.

(4) The point on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

Algorithm 1. Algorithm for Solving a Two Variable Linear Programming Problem
Graphically–Bounded Feasible Region, Unique Solution Case

Exercise 13. Use the graphical method for solving linear programming problems to
solve the linear programming problem you defined in Exercise 10.

4. Problems with Alternative Optimal Solutions

We’ll study a specific linear programming problem with an infinite number of solutions
by modifying the objective function in Example 2.3.
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Example 2.7. Suppose the toy maker in Example 2.3 finds that it can sell planes for a
profit of $18 each instead of $7 each. The new linear programming problem becomes:

(2.10)





max z(x1, x2) = 18x1 + 6x2

s.t. 3x1 + x2 ≤ 120

x1 + 2x2 ≤ 160

x1 ≤ 35

x1 ≥ 0

x2 ≥ 0

Applying our graphical method for finding optimal solutions to linear programming problems
yields the plot shown in Figure 2.3. The level curves for the function z(x1, x2) = 18x1 + 6x2
are parallel to one face of the polygon boundary of the feasible region. Hence, as we move
further up and to the right in the direction of the gradient (corresponding to larger and
larger values of z(x1, x2)) we see that there is not one point on the boundary of the feasible
region that intersects that level set with greatest value, but instead a side of the polygon
boundary described by the line 3x1 + x2 = 120 where x1 ∈ [16, 35]. Let:

S = {(x1, x2)|3x1 + x2 ≤ 120, x1 + 2x2 ≤ 160, x1 ≤ 35, x1, x2 ≥ 0}
that is, S is the feasible region of the problem. Then for any value of x∗1 ∈ [16, 35] and any
value x∗2 so that 3x∗1 + x∗2 = 120, we will have z(x∗1, x

∗
2) ≥ z(x1, x2) for all (x1, x2) ∈ S. Since

there are infinitely many values that x1 and x2 may take on, we see this problem has an
infinite number of alternative optimal solutions.

Based on the example in this section, we can modify our algorithm for finding the solution
to a linear programming problem graphically to deal with situations with an infinite set of
alternative optimal solutions (see Algorithm 2):

Algorithm for Solving a Linear Programming Problem Graphically
Bounded Feasible Region

(1) Plot the feasible region defined by the constraints.
(2) Plot the level sets of the objective function.
(3) For a maximization problem, identify the level set corresponding the greatest (least, for

minimization) objective function value that intersects the feasible region. This point
will be at a corner.

(4) The point on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

(5) If the level set corresponding to the greatest (least) objective function value
is parallel to a side of the polygon boundary next to the corner identified,
then there are infinitely many alternative optimal solutions and any point
on this side may be chosen as an optimal solution.

Algorithm 2. Algorithm for Solving a Two Variable Linear Programming Problem
Graphically–Bounded Feasible Region Case

Exercise 14. Modify the linear programming problem from Exercise 10 to obtain a
linear programming problem with an infinite number of alternative optimal solutions. Solve
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Every point on this line 
is an alternative optimal 
solution.

S

Figure 2.3. An example of infinitely many alternative optimal solutions in a linear
programming problem. The level curves for z(x1, x2) = 18x1 + 6x2 are parallel to
one face of the polygon boundary of the feasible region. Moreover, this side contains
the points of greatest value for z(x1, x2) inside the feasible region. Any combination
of (x1, x2) on the line 3x1+x2 = 120 for x1 ∈ [16, 35] will provide the largest possible
value z(x1, x2) can take in the feasible region S.

the new problem and obtain a description for the set of alternative optimal solutions. [Hint:
Just as in the example, x1 will be bound between two value corresponding to a side of the
polygon. Find those values and the constraint that is binding. This will provide you with a
description of the form for any x∗1 ∈ [a, b] and x∗2 is chosen so that cx∗1 + dx∗2 = v, the point
(x∗1, x

∗
2) is an alternative optimal solution to the problem. Now you fill in values for a, b, c,

d and v.]

5. Problems with No Solution

Recall for any mathematical programming problem, the feasible set or region is simply
a subset of Rn. If this region is empty, then there is no solution to the mathematical
programming problem and the problem is said to be over constrained. We illustrate this
case for linear programming problems with the following example.

Example 2.8. Consider the following linear programming problem:

(2.11)





max z(x1, x2) = 3x1 + 2x2

s.t.
1

40
x1 +

1

60
x2 ≤ 1

1

50
x1 +

1

50
x2 ≤ 1

x1 ≥ 30

x2 ≥ 20
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The level sets of the objective and the constraints are shown in Figure 2.4.

Figure 2.4. A Linear Programming Problem with no solution. The feasible region
of the linear programming problem is empty; that is, there are no values for x1 and
x2 that can simultaneously satisfy all the constraints. Thus, no solution exists.

The fact that the feasible region is empty is shown by the fact that in Figure 2.4 there is
no blue region–i.e., all the regions are gray indicating that the constraints are not satisfiable.

Based on this example, we can modify our previous algorithm for finding the solution to
linear programming problems graphically (see Algorithm 3):

Algorithm for Solving a Linear Programming Problem Graphically
Bounded Feasible Region

(1) Plot the feasible region defined by the constraints.
(2) If the feasible region is empty, then no solution exists.
(3) Plot the level sets of the objective function.
(4) For a maximization problem, identify the level set corresponding the greatest (least, for

minimization) objective function value that intersects the feasible region. This point
will be at a corner.

(5) The point on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

(6) If the level set corresponding to the greatest (least) objective function value
is parallel to a side of the polygon boundary next to the corner identified,
then there are infinitely many alternative optimal solutions and any point
on this side may be chosen as an optimal solution.

Algorithm 3. Algorithm for Solving a Two Variable Linear Programming Problem
Graphically–Bounded Feasible Region Case
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6. Problems with Unbounded Feasible Regions

Again, we’ll tackle the issue of linear programming problems with unbounded feasible
regions by illustrating the possible outcomes using examples.

Example 2.9. Consider the linear programming problem below:

(2.12)





max z(x1, x2) = 2x1 − x2
s.t. x1 − x2 ≤ 1

2x1 + x2 ≥ 6

x1, x2 ≥ 0

The feasible region and level curves of the objective function are shown in Figure 2.5. The

x1 − x2 = 1

2x1 + x2 = 6

∇z(x1, x2) = (2,−1)

Figure 2.5. A Linear Programming Problem with Unbounded Feasible Region:
Note that we can continue to make level curves of z(x1, x2) corresponding to larger
and larger values as we move down and to the right. These curves will continue
to intersect the feasible region for any value of v = z(x1, x2) we choose. Thus, we
can make z(x1, x2) as large as we want and still find a point in the feasible region
that will provide this value. Hence, the optimal value of z(x1, x2) subject to the
constraints +∞. That is, the problem is unbounded.

feasible region in Figure 2.5 is clearly unbounded since it stretches upward along the x2 axis
infinitely far and also stretches rightward along the x1 axis infinitely far, bounded below by
the line x1 − x2 = 1. There is no way to enclose this region by a disk of finite radius, hence
the feasible region is not bounded.

We can draw more level curves of z(x1, x2) in the direction of increase (down and to the
right) as long as we wish. There will always be an intersection point with the feasible region
because it is infinite. That is, these curves will continue to intersect the feasible region for
any value of v = z(x1, x2) we choose. Thus, we can make z(x1, x2) as large as we want and
still find a point in the feasible region that will provide this value. Hence, the largest value

22

30



z(x1, x2) can take when (x1, x2) are in the feasible region is +∞. That is, the problem is
unbounded.

Just because a linear programming problem has an unbounded feasible region does not
imply that there is not a finite solution. We illustrate this case by modifying example 2.9.

Example 2.10 (Continuation of Example 2.9). Consider the linear programming problem
from Example 2.9 with the new objective function: z(x1, x2) = (1/2)x1 − x2. Then we have
the new problem:

(2.13)





max z(x1, x2) =
1

2
x1 − x2

s.t. x1 − x2 ≤ 1

2x1 + x2 ≥ 6

x1, x2 ≥ 0

The feasible region, level sets of z(x1, x2) and gradients are shown in Figure 2.6. In this
case note, that the direction of increase of the objective function is away from the direction
in which the feasible region is unbounded (i.e., downward). As a result, the point in the
feasible region with the largest z(x1, x2) value is (7/3, 4/3). Again this is a vertex: the
binding constraints are x1 − x2 = 1 and 2x1 + x2 = 6 and the solution occurs at the point
these two lines intersect.

x1 − x2 = 1

2x1 + x2 = 6

∇z(x1, x2) = (2,−1)

�
7

3
,
4

3

�
∇z(x1, x2) =

�
1

2
,−1

�

Figure 2.6. A Linear Programming Problem with Unbounded Feasible Region
and Finite Solution: In this problem, the level curves of z(x1, x2) increase in a more
“southernly” direction that in Example 2.10–that is, away from the direction in
which the feasible region increases without bound. The point in the feasible region
with largest z(x1, x2) value is (7/3, 4/3). Note again, this is a vertex.
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Based on these two examples, we can modify our algorithm for graphically solving a
two variable linear programming problems to deal with the case when the feasible region is
unbounded.

Algorithm for Solving a Two Variable Linear Programming Problem Graphically

(1) Plot the feasible region defined by the constraints.
(2) If the feasible region is empty, then no solution exists.
(3) If the feasible region is unbounded goto Line 8. Otherwise, Goto Line 4.
(4) Plot the level sets of the objective function.
(5) For a maximization problem, identify the level set corresponding the greatest (least, for

minimization) objective function value that intersects the feasible region. This point
will be at a corner.

(6) The point on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

(7) If the level set corresponding to the greatest (least) objective function value
is parallel to a side of the polygon boundary next to the corner identified,
then there are infinitely many alternative optimal solutions and any point
on this side may be chosen as an optimal solution.

(8) (The feasible region is unbounded): Plot the level sets of the objective function.
(9) If the level sets intersect the feasible region at larger and larger (smaller and smaller for

a minimization problem), then the problem is unbounded and the solution is +∞ (−∞
for minimization problems).

(10) Otherwise, identify the level set corresponding the greatest (least, for minimization)
objective function value that intersects the feasible region. This point will be at a
corner.

(11) The point on the corner intersecting the greatest (least) level set is a solution to the lin-
ear programming problem. If the level set corresponding to the greatest (least)
objective function value is parallel to a side of the polygon boundary next
to the corner identified, then there are infinitely many alternative optimal
solutions and any point on this side may be chosen as an optimal solution.

Algorithm 4. Algorithm for Solving a Linear Programming Problem Graphically–
Bounded and Unbounded Case

Exercise 15. Does the following problem have a bounded solution? Why?

(2.14)





min z(x1, x2) = 2x1 − x2
s.t. x1 − x2 ≤ 1

2x1 + x2 ≥ 6

x1, x2 ≥ 0

[Hint: Use Figure 2.6 and Algorithm 4.]

Exercise 16. Modify the objective function in Example 2.9 or Example 2.10 to produce
a problem with an infinite number of solutions.

Exercise 17. Modify the objective function in Exercise 15 to produce a minimization
problem that has a finite solution. Draw the feasible region and level curves of the objective
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CHAPTER 4

Convex Sets, Functions and Cones and Polyhedral Theory

In this chapter, we will cover all of the geometric prerequisites for understanding the
theory of linear programming. We will use the results in this section to prove theorems
about the Simplex Method in other sections.

1. Convex Sets

Definition 4.1 (Convex Set). Let X ⊆ Rn. Then the set X is convex if and only if for
all pairs x1,x2 ∈ X we have λx1 + (1− λ)x2 ∈ X for all λ ∈ [0, 1].

The definition of convexity seems complex, but it is easy to understand. First recall that
if λ ∈ [0, 1], then the point λx1+(1−λ)x2 is on the line segment connecting x1 and x2 in Rn.
For example, when λ = 1/2, then the point λx1 + (1− λ)x2 is the midpoint between x1 and
x2. In fact, for every point x on the line connecting x1 and x2 we can find a value λ ∈ [0, 1]
so that x = λx1 + (1 − λ)x2. Then we can see that, convexity asserts that if x1,x2 ∈ X,
then every point on the line connecting x1 and x2 is also in the set X.

Definition 4.2 (Positive Combination). Let x1, . . . ,xm ∈ Rn. If λ1, . . . , λm > 0 and
then

(4.1) x =
m∑

i=1

λixi

is called a positive combination of x1, . . . ,xm.

Definition 4.3 (Convex Combination). Let x1, . . . ,xm ∈ Rn. If λ1, . . . , λm ∈ [0, 1] and
m∑

i=1

λi = 1

then

(4.2) x =
m∑

i=1

λixi

is called a convex combination of x1, . . . ,xm. If λi < 1 for all i = 1, . . . ,m, then Equation
4.2 is called a strict convex combination.

Remark 4.4. If you recall the definition of linear combination, we can see that we move
from the very general to the very specific as we go from linear combinations to positive
combinations to convex combinations. A linear combination of points or vectors allowed us
to choose any real values for the coefficients. A positive combination restricts us to positive
values, while a convex combination asserts that those values must be non-negative and sum
to 1.
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Example 4.5. Figure 4.1 illustrates a convex and non-convex set. Non-convex sets have

Convex Set Non-Convex Set

x1
x2

x1 x2

X X

Figure 4.1. Examples of Convex Sets: The set on the left (an ellipse and its
interior) is a convex set; every pair of points inside the ellipse can be connected by
a line contained entirely in the ellipse. The set on the right is clearly not convex as
we’ve illustrated two points whose connecting line is not contained inside the set.

some resemblance to crescent shapes or have components that look like crescents.

Theorem 4.6. The intersection of a finite number of convex sets in Rn is convex.

Proof. Let C1, . . . , Cn ⊆ Rn be a finite collection of convex sets. Let

(4.3) C =
n⋂

i=1

Ci

be the set formed from the intersection of these sets. Choose x1,x2 ∈ C and λ ∈ [0, 1].
Consider x = λx1 + (1 − λ)x2. We know that x1,x2 ∈ C1, . . . , Cn by definition of C. By
convexity, we know that x ∈ C1, . . . , Cn by convexity of each set. Therefore, x ∈ C. Thus
C is a convex set. �

2. Convex and Concave Functions

Definition 4.7 (Convex Function). A function f : Rn → R is a convex function if it
satisfies:

(4.4) f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for all x1,x2 ∈ Rn and for all λ ∈ [0, 1].

This definition is illustrated in Figure 4.2. When f is a univariate function, this definition
can be shown to be equivalent to the definition you learned in Calculus I (Math 140) using
first and second derivatives.

Definition 4.8 (Concave Function). A function f : Rn → R is a concave function if it
satisfies:

(4.5) f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)

for all x1,x2 ∈ Rn and for all λ ∈ [0, 1] 1.

To visualize this definition, simply flip Figure 4.2 upside down. The following theorem
is a powerful tool that can be used to show sets are convex. It’s proof is outside the scope
of the class, but relatively easy.

1Thanks to Greg Ference and Veselka Kafedzhieva for catching a typo in this definition.
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f(λx1 + (1− λ)x2)

f(x1) + (1− λ)f(x2)

Figure 4.2. A convex function: A convex function satisfies the expression f(λx1 +
(1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for all x1 and x2 and λ ∈ [0, 1].

Theorem 4.9. Let f : Rn → R be a convex function. Then the set C = {x ∈ Rn :
f(x) ≤ c}, where c ∈ R, is a convex set.

Exercise 40. Prove the Theorem 4.9. [Hint: Skip ahead and read the proof of Lemma
4.15. Follow the steps in that proof, but apply them to f .]

3. Polyhedral Sets

Important examples of convex sets are polyhedral sets, the multi-dimensional analogs of
polygons in the plane. In order to understand these structures, we must first understand
hyperplanes and half-spaces.

Definition 4.10 (Hyperplane). Let a ∈ Rn be a constant vector in n-dimensional space
and let b ∈ R be a constant scalar. The set of points

(4.6) H =
{
x ∈ Rn|aTx = b

}

is a hyperplane in n-dimensional space. Note the use of column vectors for a and x in this
definition.

Example 4.11. Consider the hyper-plane 2x1+3x2+x3 = 5. This is shown in Figure 4.3.
This hyperplane is composed of the set of points (x1, x2, x3) ∈ R3 satisfying 2x1+3x2+x3 = 5.
This can be plotted implicitly or explicitly by solving for one of the variables, say x3. We
can write x3 as a function of the other two variables as:

(4.7) x3 = 5− 2x1 − 3x2

Definition 4.12 (Half-Space). Let a ∈ Rn be a constant vector in n-dimensional space
and let b ∈ R be a constant scalar. The sets of points

Hl =
{
x ∈ Rn|aTx ≤ b

}
(4.8)

Hu =
{
x ∈ Rn|aTx ≥ b

}
(4.9)

are the half-spaces defined by the hyperplane aTx = b.

Example 4.13. Consider the two dimensional hyperplane (line) x1 + x2 = 1. Then the
two half-spaces associated with this hyper-plane are shown in Figure 4.4. A half-space is
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Figure 4.3. A hyperplane in 3 dimensional space: A hyperplane is the set of points
satisfying an equation aTx = b, where k is a constant in R and a is a constant
vector in Rn and x is a variable vector in Rn. The equation is written as a matrix
multiplication using our assumption that all vectors are column vectors.

(a) Hl (b) Hu

Figure 4.4. Two half-spaces defined by a hyper-plane: A half-space is so named
because any hyper-plane divides Rn (the space in which it resides) into two halves,
the side “on top” and the side “on the bottom.”

so named because the hyperplane aTx = b literally separates Rn into two halves: the half
above the hyperplane and the half below the hyperplane.

Lemma 4.14. Every hyper-plane is convex.

Proof. Let a ∈ Rn and b ∈ R and let H be the hyperplane defined by a and b. Choose
x1,x2 ∈ H and λ ∈ [0, 1]. Let x = λx1 + (1− λ)x2. By definition we know that:

aTx1 = b

aTx2 = b
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Then we have:

(4.10) aTx = aT [λx1 + (1− λ)x2] = λaTx1 + (1− λ)aTx2 = λb+ (1− λ)b = b

Thus, x ∈ H and we see that H is convex. This completes the proof. �

Lemma 4.15. Every half-space is convex.

Proof. Let a ∈ Rn and b ∈ R. Without loss of generality, consider the half-space Hl

defined by a and b. For arbitrary x1 and x2 in Hl we have:

aTx1 ≤ b

aTx2 ≤ b

Suppose that aTx1 = b1 ≤ b and aTx2 = b2 ≤ b. Again let x = λx1 + (1− λ)x2. Then:

(4.11) aTx = aT [λx1 + (1− λ)x2] = λaTx1 + (1− λ)aTx2 = λb1 + (1− λ)b2

Since λ ≤ 1 and 1 − λ ≤ 1 and λ ≥ 0 we know that λb1 ≤ λb, since b1 ≤ b. Similarly we
know that (1− λ)b2 ≤ (1− λ)b, since b2 ≤ b. Thus:

(4.12) λb1 + (1− λ)b2 ≤ λb+ (1− λ)b = b

Thus we have shown that aTx ≤ b. The case for Hu is identical with the signs of the
inequalities reversed. This completes the proof. �

Using these definitions, we are now in a position to define polyhedral sets, which will be
the subject of our study for most of the remainder of this chapter.

Definition 4.16 (Polyhedral Set). If P ⊆ Rn is the intersection of a finite number
of half-spaces, then P is a polyhedral set. Formally, let a1, . . . , am ∈ Rn be a finite set of
constant vectors and let b1, . . . , bm ∈ R be constants. Consider the set of half-spaces:

Hi = {x|aTi x ≤ bi}
Then the set:

(4.13) P =
m⋂

i=1

Hi

is a polyhedral set.

It should be clear that we can represent any polyhedral set using a matrix inequality.
The set P is defined by the set of vectors x satisfying:

(4.14) Ax ≤ b,

where the rows of A ∈ Rm×n are made up of the vectors a1, . . . , am and b ∈ Rm is a column
vector composed of elements b1, . . . , bm.

Theorem 4.17. Every polyhedral set is convex.

Exercise 41. Prove Theorem 4.17. [Hint: You can prove this by brute force, verifying
convexity. You can also be clever and use two results that we’ve proved in the notes.]
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CHAPTER 5

The Simplex Method

1. Linear Programming and Extreme Points

In this section we formalize the intuition we’ve obtained in all our work in two dimensional
linear programming problems. Namely, we noted that if an optimal solution existed, then
it occurred at an extreme point. For the remainder of this chapter, assume that A ∈ Rm×n

with full row rank and b ∈ Rm let

(5.1) X = {x ∈ Rn : Ax ≤ b, x ≥ 0}
be a polyhedral set over which we will maximize the objective function z(x1, . . . , xn) = cTx,
where c,x ∈ Rn. That is, we will focus on the linear programming problem:

(5.2) P





max cTx

s.t. Ax ≤ b

x ≥ 0

Theorem 5.1. If Problem P has an optimal solution, then Problem P has an optimal
extreme point solution.

Proof. Applying the Cartheodory Characterization theorem, we know that any point
x ∈ X can be written as:

(5.3) x =
k∑

i=1

λixi +
l∑

i=1

µidi

where x1, . . .xk are the extreme points of X and d1, . . . ,dl are the extreme directions of X
and we know that

(5.4)

k∑

i=1

λi = 1

λi, µi ≥ 0 ∀i
We can rewrite problem P using this characterization as:

(5.5)

max
k∑

i=1

λic
Txi +

l∑

i=1

µic
Tdi

s.t.

k∑

i=1

λi = 1

λi, µi ≥ 0 ∀i
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If there is some i such that cTdi > 0, then we can simply choose µi as large as we like,
making the objective as large as we like, the problem will have no finite solution.

Therefore, assume that cTdi ≤ 0 for all i = 1, . . . , l (in which case, we may simply choose
µi = 0, for all i). Since the set of extreme points x1, . . .xk is finite, we can simply set λp = 1
if cTxp has the largest value among all possible values of cTxi, i = 1, . . . , k. This is clearly
the solution to the linear programming problem. Since xp is an extreme point, we have
shown that if P has a solution, it must have an extreme point solution. �

Corollary 5.2. Problem P has a finite solution if and only if cTdi ≤ 0 for all i = 1, . . . l
when d1, . . . ,dl are the extreme directions of X.

Proof. This is implicit in the proof of the theorem. �
Corollary 5.3. Problem P has alternative optimal solutions if there are at least two

extreme points xp and xq so that cTxp = cTxq and so that xp is the extreme point solution
to the linear programming problem.

Proof. Suppose that xp is the extreme point solution to P identified in the proof of
the theorem. Suppose xq is another extreme point solution with cTxp = cTxq. Then every
convex combination of xp and xq is contained in X (since X is convex). Thus every x with
form λxp + (1− λ)xq and λ ∈ [0, 1] has objective function value:

λcTxp + (1− λ)cTxq = λcTxp + (1− λ)cTxp = cTxp

which is the optimal objective function value, by assumption. �
Exercise 48. Let X = {x ∈ Rn : Ax ≤ b, x ≥ 0} and suppose that d1, . . .dl are the

extreme directions of X (assuming it has any). Show that the problem:

(5.6)

min cTx

s.t. Ax ≤ b

x ≥ 0

has a finite optimal solution if (and only if) cTdj ≥ 0 for k = 1, . . . , l. [Hint: Modify the
proof above using the Cartheodory characterization theorem.]

2. Algorithmic Characterization of Extreme Points

In the previous sections we showed that if a linear programming problem has a solution,
then it must have an extreme point solution. The challenge now is to identify some simple
way of identifying extreme points. To accomplish this, let us now assume that we write X
as:

(5.7) X = {x ∈ Rn : Ax = b, x ≥ 0}
Our work in the previous sections shows that this is possible. Recall we can separate A into
an m×m matrix B and an m× (n−m) matrix N and we have the result:

(5.8) xB = B−1b−B−1NxN

We know that B is invertible since we assumed that A had full row rank. If we assume that
xN = 0, then the solution

(5.9) xB = B−1b
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was called a basic solution (See Definition 3.48.) Clearly any basic solution satisfies the
constraints Ax = b but it may not satisfy the constraints x ≥ 0.

Definition 5.4 (Basic Feasible Solution). If xB = B−1b and xN = 0 is a basic solution
to Ax = b and xB ≥ 0, then the solution (xB,xN) is called basic feasible solution.

Theorem 5.5. Every basic feasible solution is an extreme point of X. Likewise, every
extreme point is characterized by a basic feasible solution of Ax = b,x ≥ 0.

Proof. Since Ax = BxB + NxN = b this represents the intersection of m linearly
independent hyperplanes (since the rank of A is m). The fact that xN = 0 and xN contains
n − m variables, then we have n − m binding, linearly independent hyperplanes in xN ≥
0. Thus the point (xB,xN) is the intersection of m + (n − m) = n linearly independent
hyperplanes. By Theorem 4.31 we know that (xB,xN) must be an extreme point of X.

Conversely, let x be an extreme point of X. Clearly x is feasible and by Theorem 4.31
it must represent the intersection of n hyperplanes. The fact that x is feasible implies that
Ax = b. This accounts for m of the intersecting linearly independent hyperplanes. The
remaining n−m hyperplanes must come from x ≥ 0. That is, n−m variables are zero. Let
xN = 0 be the variables for which x ≥ 0 are binding. Denote the remaining variables xB.
We can see that A = [B|N] and that Ax = BxB + NxN = b. Clearly, xB is the unique
solution to BxB = b and thus (xB,xN) is a basic feasible solution. �

3. The Simplex Algorithm–Algebraic Form

In this section, we will develop the simplex algorithm algebraically. The idea behind the
simplex algorithm is as follows:

(1) Convert the linear program to standard form.
(2) Obtain an initial basic feasible solution (if possible).
(3) Determine whether the basic feasible solution is optimal. If yes, stop.
(4) If the current basic feasible solution is not optimal, then determine which non-basic

variable (zero valued variable) should become basic (become non-zero) and which
basic variable (non-zero valued variable) should become non-basic (go to zero) to
make the objective function value better.

(5) Determine whether the problem is unbounded. If yes, stop.
(6) If the problem doesn’t seem to be unbounded at this stage, find a new basic feasible

solution from the old basic feasible solution. Go back to Step 3.

Suppose we have a basic feasible solution x = (xB,xN). We can divide the cost vector
c into its basic and non-basic parts, so we have c = [cB|cN]T . Then the objective function
becomes:

(5.10) cTx = cTBxB + cTNxN

We can substitute Equation 5.8 into Equation 5.10 to obtain:

(5.11) cTx = cTB
(
B−1b−B−1NxN

)
+ cNxN = cTBB−1b +

(
cTN − cTBB−1N

)
xN

Let J be the set of indices of non-basic variables. Then we can write Equation 5.11 as:

(5.12) z(x1, . . . , xn) = cTBB−1b +
∑

j∈J

(
cj − cTBB−1A·j

)
xj
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Consider now the fact xj = 0 for all j ∈ J . Further, we can see that:

(5.13)
∂z

∂xj
= cj − cTBB−1A·j

This means that if cj − cTBB−1A·j > 0 and we increase xj from zero to some new value,
then we will increase the value of the objective function. For historic reasons, we actually
consider the value cTBB−1A·j − cj, called the reduced cost and denote it as:

(5.14) − ∂z

∂xj
= zj − cj = cTBB−1A·j − cj

In a maximization problem, we chose non-basic variables xj with negative reduced cost to
become basic because, in this case, ∂z/∂xj is positive.

Assume we chose xj, a non-basic variable to become non-zero (because zj − cj < 0). We
wish to know which of the basic variables will become zero as we increase xj away from zero.
We must also be very careful that none of the variables become negative as we do this.

By Equation 5.8 we know that the only current basic variables will be affected by in-
creasing xj. Let us focus explicitly on Equation 5.8 where we include only variable xj (since
all other non-basic variables are kept zero). Then we have:

(5.15) xB = B−1b−B−1A·jxj

Let b = B−1b be an m × 1 column vector and let that aj = B−1A·j be another m × 1
column. Then we can write:

(5.16) xB = b− ajxj

Let b = [b1, . . . bm]T and aj = [aj1 , . . . , ajm ], then we have:

(5.17)




xB1

xB2

...
xBm


 =




b1
b2
...
bm


−




aj1
bj2
...
bjm


xj =




b1 − aj1xj
b2 − aj2xj

...
bm − ajmxj




We know (a priori) that bi ≥ 0 for i = 1, . . . ,m. If aji ≤ 0, then as we increase xj, bi−aji ≥ 0
no matter how large we make xj. On the other hand, if aji > 0, then as we increase xj we

know that bi − ajixj will get smaller and eventually hit zero. In order to ensure that all
variables remain non-negative, we cannot increase xj beyond a certain point.

For each i (i = 1, . . . ,m) such that aji > 0, the value of xj that will make xBi
goto 0 can

be found by observing that:

(5.18) xBi
= bi − ajixj

and if xBi
= 0, then we can solve:

(5.19) 0 = bi − ajixj =⇒ xj =
bi
aji

Thus, the largest possible value we can assign xj and ensure that all variables remain positive
is:

(5.20) min

{
bi
aji

: i = 1, . . . ,m and aji > 0

}
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Expression 5.20 is called the minimum ratio test. We are interested in which index i is the
minimum ratio.

Suppose that in executing the minimum ratio test, we find that xj = bk/ajk . The variable
xj (which was non-basic) becomes basic and the variable xBk

becomes non-basic. All other
basic variables remain basic (and positive). In executing this procedure (of exchanging one
basic variable and one non-basic variable) we have moved from one extreme point of X to
another.

Theorem 5.6. If zj − cj ≥ 0 for all j ∈ J , then the current basic feasible solution is
optimal.

Proof. We have already shown in Theorem 5.1 that if a linear programming problem
has an optimal solution, then it occurs at an extreme point and we’ve shown in Theorem
5.5 that there is a one-to-one correspondence between extreme points and basic feasible
solutions. If zj − cj ≥ 0 for all j ∈ J , then ∂z/∂xj ≤ 0 for all non-basic variables xj.
That is, we cannot increase the value of the objective function by increasing the value of any
non-basic variable. Thus, since moving to another basic feasible solution (extreme point)
will not improve the objective function, it follows we must be at the optimal solution. �

Theorem 5.7. In a maximization problem, if aji ≤ 0 for all i = 1, . . . ,m, and zj−cj < 0,
then the linear programming problem is unbounded.

Proof. The fact that zj− cj < 0 implies that increasing xj will improve the value of the
objective function. Since aji < 0 for all i = 1, . . . ,m, we can increase xj indefinitely without
violating feasibility (no basic variable will ever go to zero). Thus the objective function can
be made as large as we like. �

Remark 5.8. We should note that in executing the exchange of one basic variable and
one non-basic variable, we must be very careful to ensure that the resulting basis consist
of m linearly independent columns of the original matrix A. The conditions for this are
provided in Lemma 3.39. Specifically, we must be able to write the column corresponding
to xj, the entering variable, as a linear combination of the columns of B so that:

(5.21) α1b1 + . . . αmbm = A·j

and further if we are exchanging xj for xBi
(i = 1, . . . ,m), then αi 6= 0.

We can see this from the fact that aj = B−1A·j and therefore:

Baj = A·j

and therefore we have:

A·j = B·1aj1 + · · ·+ B·majm

which shows how to write the column A·j as a linear combination of the columns of B.

Exercise 49. Consider the linear programming problem given in Exercise 48. Under
what conditions should a non-basic variable enter the basis? State and prove an analogous
theorem to Theorem 5.6 using your observation. [Hint: Use the definition of reduced cost.
Remember that it is −∂z/∂xj.]
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Example 5.9. Consider the Toy Maker Problem (from Example 2.3). The linear pro-
gramming problem given in Equation 2.8 is:





max z(x1, x2) = 7x1 + 6x2

s.t. 3x1 + x2 ≤ 120

x1 + 2x2 ≤ 160

x1 ≤ 35

x1 ≥ 0

x2 ≥ 0

We can convert this problem to standard form by introducing the slack variables s1, s2
and s3:





max z(x1, x2) = 7x1 + 6x2

s.t. 3x1 + x2 + s1 = 120

x1 + 2x2 + s2 = 160

x1 + s3 = 35

x1, x2, s1, s2, s3 ≥ 0

which yields the matrices

c =




7
6
0
0
0




x =




x1
x2
s1
s2
s3




A =




3 1 1 0 0
1 2 0 1 0
1 0 0 0 1


 b =




120
160
35




We can begin with the matrices:

B =




1 0 0
0 1 0
0 0 1


 N =




3 1
1 2
1 0




In this case we have:

xB =



s1
s2
s3


 xN =

[
x1
x2

]
cB =




0
0
0


 cN =

[
7
6

]

and

B−1b =




120
160
35


 B−1N =




3 1
1 2
1 0




Therefore:

cTBB−1b = 0 cTBB−1N =
[
0 0

]
cTBB−1N− cN =

[
−7 −6

]
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Using this information, we can compute:

cTBB−1A·1 − c1 = −7

cTBB−1A·2 − c2 = −6

and therefore:

∂z

∂x1
= 7 and

∂z

∂x2
= 6

Based on this information, we could chose either x1 or x2 to enter the basis and the value
of the objective function would increase. If we chose x1 to enter the basis, then we must
determine which variable will leave the basis. To do this, we must investigate the elements
of B−1A·1 and the current basic feasible solution B−1b. Since each element of B−1A·1 is
positive, we must perform the minimum ratio test on each element of B−1A·1. We know
that B−1A·1 is just the first column of B−1N which is:

B−1A·1 =




3
1
1




Performing the minimum ratio test, we see have:

min

{
120

3
,
160

1
,
35

1

}

In this case, we see that index 3 (35/1) is the minimum ratio. Therefore, variable x1 will
enter the basis and variable s3 will leave the basis. The new basic and non-basic variables
will be:

xB =



s1
s2
x1


 xN =

[
s3
x2

]
cB =




0
0
7


 cN =

[
0
6

]

and the matrices become:

B =




1 0 3
0 1 1
0 0 1


 N =




0 1
0 2
1 0




Note we have simply swapped the column corresponding to x1 with the column corresponding
to s3 in the basis matrix B and the non-basic matrix N. We will do this repeatedly in the
example and we recommend the reader keep track of which variables are being exchanged
and why certain columns in B are being swapped with those in N.

Using the new B and N matrices, the derived matrices are then:

B−1b =




15
125
35


 B−1N =



−3 1
−1 2
1 0




The cost information becomes:

cTBB−1b = 245 cTBB−1N =
[
7 0

]
cTBB−1N− cN =

[
7 −6

]
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using this information, we can compute:

cTBB−1A·5 − c5 = 7

cTBB−1A·2 − c2 = −6

Based on this information, we can only choose x2 to enter the basis to ensure that the
value of the objective function increases. We can perform the minimum ration test to figure
out which basic variable will leave the basis. We know that B−1A·2 is just the second column
of B−1N which is:

B−1A·2 =




1
2
0




Performing the minimum ratio test, we see have:

min

{
15

1
,
125

2

}

In this case, we see that index 1 (15/1) is the minimum ratio. Therefore, variable x2 will
enter the basis and variable s1 will leave the basis. The new basic and non-basic variables
will be: The new basic and non-basic variables will be:

xB =



x2
s2
x1


 xN =

[
s3
s1

]
cB =




6
0
7


 cN =

[
0
0

]

and the matrices become:

B =




1 0 3
2 1 1
0 0 1


 N =




0 1
0 0
1 0




The derived matrices are then:

B−1b =




15
95
35


 B−1N =



−3 1
5 −2
1 0




The cost information becomes:

cTBB−1b = 335 cTBB−1N =
[
−11 6

]
cTBB−1N− cN =

[
−11 6

]

Based on this information, we can only choose s3 to (re-enter) the basis to ensure that
the value of the objective function increases. We can perform the minimum ration test to
figure out which basic variable will leave the basis. We know that B−1A·5 is just the fifth
column of B−1N which is:

B−1A·5 =



−3
5
1




Performing the minimum ratio test, we see have:

min

{
95

5
,
35

1

}
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In this case, we see that index 2 (95/5) is the minimum ratio. Therefore, variable s3 will
enter the basis and variable s2 will leave the basis. The new basic and non-basic variables
will be:

xB =



x2
s3
x1


 xN =

[
s2
s1

]
cB =




6
0
7


 cN =

[
0
0

]

and the matrices become:

B =




1 0 3
2 0 1
0 1 1


 N =




0 1
1 0
0 0




The derived matrices are then:

B−1b =




72
19
16


 B−1N =




6/10 −1/5
1/5 −2/5
−1/5 2/5




The cost information becomes:

cTBB−1b = 544 cTBB−1N =
[
11/5 8/5

]
cTBB−1N− cN =

[
11/5 8/5

]

Since the reduced costs are now positive, we can conclude that we’ve obtained an optimal
solution because no improvement is possible. The final solution then is:

xB
∗ =



x2
s3
x1


 = B−1b =




72
19
16




Simply, we have x1 = 16 and x2 = 72 as we obtained in Example 2.3. The path of extreme
points we actually took in traversing the boundary of the polyhedral feasible region is shown
in Figure 5.1.

Exercise 50. Assume that a leather company manufactures two types of belts: regular
and deluxe. Each belt requires 1 square yard of leather. A regular belt requires 1 hour of
skilled labor to produce, while a deluxe belt requires 2 hours of labor. The leather company
receives 40 square yards of leather each week and a total of 60 hours of skilled labor is
available. Each regular belt nets $3 in profit, while each deluxe belt nets $5 in profit. The
company wishes to maximize profit.

(1) Ignoring the divisibility issues, construct a linear programming problem whose so-
lution will determine the number of each type of belt the company should produce.

(2) Use the simplex algorithm to solve the problem you stated above remembering to
convert the problem to standard form before you begin.

(3) Draw the feasible region and the level curves of the objective function. Verify that
the optimal solution you obtained through the simplex method is the point at which
the level curves no longer intersect the feasible region in the direction following the
gradient of the objective function.
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Figure 5.1. The Simplex Algorithm: The path around the feasible region is shown
in the figure. Each exchange of a basic and non-basic variable moves us along an
edge of the polygon in a direction that increases the value of the objective function.

4. Simplex Method–Tableau Form

No one executes the simplex algorithm in algebraic form. Instead, several representations
(tableau representations) have been developed to lesson the amount of writing that needs to
be done and to collect all pertinent information into a single table.

To see how a Simplex Tableau is derived, consider Problem P in standard form:

P





max cTx

s.t. Ax = b

x ≥ 0

We can re-write P in an unusual way by introducing a new variable z and separating A into
its basic and non-basic parts to obtain:

(5.22)

max z

s.t. z − cTBxB − cTNxN = 0

BxB + NxN = b

xB,xN ≥ 0

From the second equation, it’s clear

(5.23) xB + B−1NxN = B−1b

We can multiply this equation by cT
B to obtain:

(5.24) cTBxB + cTBB−1NxN = cTBB−1b

If we add this equation to the equation z − cTBxB − cTNxN = 0 we obtain:

(5.25) z + 0TxB + cTBB−1NxN − cTNxN = cTBB−1b
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Here 0 is the vector of zeros of appropriate size. This equation can be written as:

(5.26) z + 0TxB +
(
cTBB−1N− cTN

)
xN = cTBB−1b

We can now represent this set of equations as a large matrix (or tableau):

z xB xN RHS
z 1 0 cTBB−1N− cTN cTBB−1b Row 0

xB 0 1 B−1N B−1b Rows 1 through m

The augmented matrix shown within the table:

(5.27)

[
1 0 cTBB−1N− cTN cTBB−1b
0 1 B−1N B−1b

]

is simply the matrix representation of the simultaneous equations described by Equations
5.23 and 5.26. We can see that the first row consists of a row of the first row of the
(m + 1) × (m + 1) identity matrix, the reduced costs of the non-basic variables and the
current objective function values. The remainder of the rows consist of the rest of the
(m+ 1)× (m+ 1) identity matrix, the matrix B−1N and B−1b the current non-zero part of
the basic feasible solution.

This matrix representation (or tableau representation) contains all of the information
we need to execute the simplex algorithm. An entering variable is chosen from among the
columns containing the reduced costs and matrix B−1N. Naturally, a column with a negative
reduced cost is chosen. We then chose a leaving variable by performing the minimum ratio
test on the chosen column and the right-hand-side (RHS) column. We pivot on the element
at the entering column and leaving row and this transforms the tableau into a new tableau
that represents the new basic feasible solution.

Example 5.10. Again, consider the toy maker problem. We will execute the simplex
algorithm using the tableau method. Our problem in standard form is given as:





max z(x1, x2) = 7x1 + 6x2

s.t. 3x1 + x2 + s1 = 120

x1 + 2x2 + s2 = 160

x1 + s3 = 35

x1, x2, s1, s2, s3 ≥ 0

We can assume our initial basic feasible solution has s1, s2 and s3 as basic variables and x1
and x2 as non-basic variables. Thus our initial tableau is simply:

(5.28)
z
s1
s2
s3




z x1 x2 s1 s2 s3 RHS
1 −7 −6 0 0 0 0
0 3 1 1 0 0 120
0 1 2 0 1 0 160
0 1 0 0 0 1 35




Note that the columns have been swapped so that the identity matrix is divided and B−1N
is located in columns 2 and 3. This is because of our choice of basic variables. The reduced
cost vector is in Row 0.
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Using this information, we can see that either x1 or x2 can enter. We can compute the
minimum ratio test (MRT) next to the RHS column. If we chose x2 as the entering variable,
then the MRT tells us s2 will leave. We put a box around the element on which we will
pivot:

(5.29)
z
s1
s2
s3




z x1 x2 s1 s2 s3 RHS
1 −7 −6 0 0 0 0
0 3 1 1 0 0 120

0 1 2 0 1 0 160
0 1 0 0 0 1 35




MRT (x2)

120
80
−

If we pivot on this element, then we transform the column corresponding to x2 into the
identity column:

(5.30)




0
0
1
0




This process will correctly compute the new reduced costs and B−1 matrix as well as the
new cost information. The new tableau becomes:

(5.31)
z
s1
x2
s3




z x1 x2 s1 s2 s3 RHS
1 −4 0 0 3 0 480
0 2.5 0 1 −0.5 0 40
0 0.5 1 0 0.5 0 80
0 1 0 0 0 1 35




We can see that x1 is a valid entering variable, as it has a negative reduced cost (−4). We
can again place the minimum ratio test values on the right-hand-side of the matrix to obtain:

(5.32)
z
s1
x2
s3




z x1 x2 s1 s2 s3 RHS
1 −4 0 0 3 0 480

0 2.5 0 1 −0.5 0 40
0 0.5 1 0 0.5 0 80
0 1 0 0 0 1 35




MRT (x1)

16
160
35

We now pivot on the element we have boxed to obtain the new tableau1:

(5.33)
z
x1
x2
s3




z x1 x2 s1 s2 s3 RHS
1 0 0 1.6 2.2 0 544
0 1 0 0.4 −0.2 0 16
0 0 1 −0.2 0.6 0 72
0 0 0 −0.4 0.2 1 19




All the reduced costs of the non-basic variables (s1 and s2) are positive and so this is the
optimal solution to the linear programming problem. We can also see that this solution
agrees with our previous computations on the Toy Maker Problem.

1Thanks to Ethan Wright for catching a typo here.
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5. Identifying Unboundedness

We have already identified a theorem for detecting unboundedness. Recall Theorem 5.7:
In a maximization problem, if aji < 0 for all i = 1, . . . ,m, and zj − cj < 0, then the linear
programming problem is unbounded.

This condition occurs when a variable xj should enter the basis because ∂z/∂xj > 0
and there is no blocking basis variable. That is, we can arbitrarily increase the value of xj
without causing any variable to become negative. We give an example:

Example 5.11. Consider the Linear programming problem from Example 2.9:




max z(x1, x2) = 2x1 − x2
s.t. x1 − x2 ≤ 1

2x1 + x2 ≥ 6

x1, x2 ≥ 0

We can convert this problem into standard form by adding a slack variable s1 and a surplus
variable s2:




max z(x1, x2) = 2x1 − x2
s.t. x1 − x2 + s1 = 1

2x1 + x2 − s2 = 6

x1, x2, s1, s2 ≥ 0

This yields the matrices:

c =




2
−1
0
0


 x =




x1
x2
s1
s2


 A =

[
1 −1 1 0
2 1 0 −1

]
b =

[
1
6

]

We have both slack and surplus variables, so the case when x1 = x2 = 0 is not a valid initial
solution. We can chose a valid solution based on our knowledge of the problem. Assume
that s1 = s2 = 0 and so we have:

B =

[
1 −1
2 1

]
N =

[
1 0
0 −1

]

In this case we have:

xB =

[
x1
x2

]
xN =

[
s1
s2

]
cB =

[
2
−1

]
cN =

[
0
0

]

This yields:

B−1b =

[
7/3
4/3

]
B−1N =

[
1/3 −1/3
−2/3 −1/3

]

We also have the cost information:

cBB−1b =
10

3
cBB−1N =

[
4
3
−1

3

]
cBB−1N− cN =

[
4
3
−1

3

]
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Based on this information, we can construct the tableau for this problem as:

(5.34)
z
x1
x2




z x1 x2 s1 s2 RHS
1 0 0 4

3
−1
3

10
3

0 1 0 1
3

−1
3

7
3

0 0 1 −2
3

−1
3

4
3




We see that s2 should enter the basis because cBB−1A·4 − c4 < 0. But the column
corresponding to s2 in the tabluau is all negative. Therefore there is no minimum ratio test.
We can let s2 become as large as we like and we will keep increasing the objective function
without violating feasibility.

What we have shown is that the ray with vertex

x0 =




7/3
4/3
0
0




and direction:

d =




1/3
1/3
0
1




is entirely contained inside the polyhedral set defined by Ax = b. This can be see from the
fact that:

xB = B−1b−B−1NxN

When applied in this case, we have:

xB = B−1b−B−1A·4s2

We know that

−B−1A·4 =

[
1/3
1/3

]

We will be increasing s2 (which acts like λ in the definition of ray) and leaving s1 equal to
0. It’s now easy to see that the ray we described is contained entirely in the feasible region.
This is illustrated in the original constraints in Figure 5.2.

Based on our previous example, we have the following theorem that extends Theorem
5.7:

Theorem 5.12. In a maximization problem, if aji ≤ 0 for all i = 1, . . . ,m, and zj− cj <
0, then the linear programming problem is unbounded furthermore, let aj be the jth column
of B−1A·j and let ek be a standard basis column vector in Rm×(n−m) where k corresponds to
the position of j in the matrix N. Then the direction:

(5.35) d =

[
−aj
ek

]

is an extreme direction of the feasible region X = {x ∈ Rn : Ax = b, x ≥ 0}.
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x1 − x2 = 1

2x1 + x2 = 6

∇z(x1, x2) = (2,−1)

Extreme direction

Figure 5.2. Unbounded Linear Program: The existence of a negative column aj
in the simplex tableau for entering variable xj indicates an unbounded problem and
feasible region. The recession direction is shown in the figure.

Proof. The fact that d is a direction is easily verified by the fact there is an extreme
point x = [xB xN]T and for all λ ≥ 0 we have:

(5.36) x + λd ∈ X
Thus it follows from the proof of Theorem 4.24 that Ad ≤ 0. The fact that d ≥ 0 and d 6= 0
follows from our assumptions. Now, we know that we can write A = [B|N]. Further, we
know that aj = B−1A·j. Let us consider Ad:

(5.37) Ad = [B|N]

[
−aj
ek

]
= −BB−1A·j + Nek

Remember, ek is the standard basis vector that has have 1 precisely in the position corre-
sponding to column A·j in matrix N, so A·j = Nej. Thus we have:

(5.38) −BB−1A·j + Nek = −A·j + A·j = 0

Thus, Ad = 0. We can scale d so that eTd = 1. We know that n − m − 1 elements of
d are zero (because of ek) and we know that Ad = 0. Thus d can be made to represent
the intersection of n-hyperplanes in Rn. Thus, d is an extreme point of the polyhedron
D = {d ∈ Rn : Ad ≤ 0,d ≥ 0, eTd = 1}. It follows from Theorem 4.39, we know that d is
an extreme direction of X. �

Exercise 51. Consider the problem




min z(x1, x2) = 2x1 − x2
s.t. x1 − x2 + s1 = 1

2x1 + x2 − s2 = 6

x1, x2, s1, s2 ≥ 0
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Using the rule you developed in Exercise 49, show that the minimization problem has an
unbounded feasible solution. Find an extreme direction for this set. [Hint: The minimum
ratio test is the same for a minimization problem. Execute the simplex algorithm as we did
in Example 5.11 and use Theorem 5.12 to find the extreme direction of the feasible region.]

6. Identifying Alternative Optimal Solutions

We saw in Theorem 5.6 that is zj − cj > 0 for all j ∈ J (the indices of the non-
basic variables), then the basic feasible solution generated by the current basis was optimal.
Suppose that zj − cj ≥ 0. Then we have a slightly different result:

Theorem 5.13. In Problem P for a given set of non-basic variables J , if zj − cj ≥ 0
for all j ∈ J , then the current basic feasible solution is optimal. Further, if zj − cj = 0 for
at least one j ∈ J , then there are alternative optimal solutions. Furthermore, let aj be the
jth column of B−1A·j. Then the solutions to P are:

(5.39)





xB = B−1b− ajxj

xj ∈
[
0,min

{
bi
aji

: i = 1, . . . ,m, aji > 0

}]

xr = 0,∀r ∈ J , r 6= j

Proof. It follows from the proof of Theorem 5.6 that the solution must be optimal as
∂z/∂xj ≤ 0 for all j ∈ J and therefore increasing and xj will not improve the value of the
objective function. If there is some j ∈ J so that zj − cj = 0, then ∂z/∂xj = 0 and we
may increase the value of xj up to some point specified by the minimum ratio test, while
keeping other non-basic variables at zero. In this case, we will neither increase nor decrease
the objective function value. Since that objective function value is optimal, it follows that
the set of all such values (described in Equation 5.39) are alternative optimal solutions. �

Example 5.14. Let us consider the toy maker problem again from Example 2.3 and 5.9
with our adjusted objective

(5.40) z(x1, x2) = 18x1 + 6x2

Now consider the penultimate basis from Example 5.9 in which we had as basis variables x1,
s2 and x2.

xB =



x1
x2
s2


 xN =

[
s1
s3

]
cB =




18
6
0


 cN =

[
0
0

]

The matrices become:

B =




3 1 0
1 2 1
1 0 0


 N =




1 0
0 0
0 1




The derived matrices are then:

B−1b =




35
15
95


 B−1N =




0 1
1 −3
−2 5




84

53



The cost information becomes:

cTBB−1b = 720 cTBB−1N =
[
6 0

]
cTBB−1N− cN =

[
6 0

]

This yields the tableau:

(5.41)
z
s1
s2
s3




z x1 x2 s1 s2 s3 RHS
1 0 0 6 0 0 720
0 1 0 0 0 1 35
0 0 1 1 0 −3 15
0 0 0 −2 1 5 95




Unlike example 5.9, the reduced cost for s3 is 0. This means that if we allow s3 to enter
the basis, the objective function value will not change. Performing the minimum ratio test
however, we see that s2 will still leave the basis:

(5.42)
z
x1
x2
s2




z x1 x2 s1 s2 s3 RHS
1 0 0 6 0 0 720
0 1 0 0 0 1 35
0 0 1 1 0 −3 15

0 0 0 −2 1 5 95




MRT (s3)

35
−
19

Therefore any solution of the form:

(5.43)

s3 ∈ [0, 19]


x1
x2
s2


 =




35
15
95


−




1
−3
5


 s3

is an optimal solution to the linear programming problem. This precisely describes the edge
shown in Figure 5.3.

Figure 5.3. Infinite alternative optimal solutions: In the simplex algorithm, when
zj − cj ≥ 0 in a maximization problem with at least one j for which zj − cj = 0,
indicates an infinite set of alternative optimal solutions.
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4 UNIT FOUR: Transportation and Assignment problems

4.1 Objectives

By the end of this unit you will be able to:

• formulate special linear programming problems using the transportation model.

• define a balanced transportation problem

• develop an initial solution of a transportation problem using the Northwest Corner

Rule

• use the Stepping Stone method to find an optimal solution of a transportation problem

• formulate special linear programming problems using the assignment model

• solve assignment problems with the Hungarian method.

4.2 Introduction

In this unit we extend the theory of linear programming to two special linear programming

problems, the Transportation and Assignment Problems. Both of these problems can

be solved by the simplex algorithm, but the process would result in very large simplex

tableaux and numerous simplex iterations.

Because of the special characteristics of each problem, however, alternative solution methods

requiring significantly less mathematical manipulation have been developed.

4.3 The Transportation problem

The general transportation problem is concerned with determining an optimal strategy for

distributing a commodity from a group of supply centres,such as factories, called sources,

to various receiving centers, such as warehouses, called destinations, in such a way as to

minimise total distribution costs.

Each source is able to supply a fixed number of units of the product, usually called the

capacity or availability, and each destination has a fixed demand, often called the require-

ment.
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Transportation models can also be used when a firm is trying to decide where to locate a

new facility. Good financial decisions concerning facility location also attempt to minimize

total transportation and production costs for the entire system.

4.3.1 Setting up a Transportation problem

To illustrate how to set up a transportation problem we consider the following example;

Example 4.1

A concrete company transports concrete from three plants, 1, 2 and 3, to three construction

sites, A, B and C.

The plants are able to supply the following numbers of tons per week:

Plant Supply (capacity)

1 300

2 300

3 100

The requirements of the sites, in number of tons per week, are:

Construction site Demand (requirement)

A 200

B 200

C 300

The cost of transporting 1 ton of concrete from each plant to each site is shown in the figure

8 in Emalangeni per ton.

For computational purposes it is convenient to put all the above information into a table, as

in the simplex method. In this table each row represents a source and each column represents

a destination.

Sites
PPPPPPPPPFrom

To
A B C

Supply (Avail-

ability)

1 4 3 8 300

Plants 2 7 5 9 300

3 4 5 5 100
Demand (re-

quirement)
200 200 300
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Figure 8: Constructing a transportation problem

4.3.2 Mathematical model of a transportation problem

Before we discuss the solution of transportation problems we will introduce the notation

used to describe the transportation problem and show that it can be formulated as a linear

programming problem.

We use the following notation;

xij = the number of units to be distributed from

source i to destination j

(i = 1, 2, . . . ,m; j = 1, 2, . . . , n);

si = supply from source i;

dj = demand at destination j;

cij = cost per unit distributed from

source i to destination j

With respect to Example 4.1 the decision variables xij are the numbers of tons transported

from plant i (where i = 1, 2, 3) to each site j (where j = A, B, C)

A basic assumption is that the distribution costs of units from source i to destination j is

directly proportional to the number of units distributed. A typical cost and requirements

table has the form shown on Table 4.

Let Z be total distribution costs from all the m sources to the n destinations. In example

4.1 each term in the objective function Z represents the total cost of tonnage transported

on one route. For example, in the route 2 −→ C, the term in 9x2C , that is:

(Cost per ton = 9) × (number of tons transported = x2C)
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Destination

1 2 . . . n Supply

1 c11 c12 . . . c1n s1
2 c21 c22 . . . c2n s2

Source
...

...
... . . .

...
...

m cm1 cm2 . . . cmn sm

Demand d1 d2 . . . dn

Table 4: Cost and requirements table

Hence the objective function is:

Z = 4x1A + 3x1B + 8x1C

+ 7x2A + 5x2B + 9x2C

+ 4x3A + 5x3B + 5x3C

Notice that in this problem the total supply is 300 + 300 + 200 = 700 and the total demand

is 200 + 200 + 300 = 700. Thus

Total supply = total demand.

In mathematical form this expressed as

m∑

i=1

si =
n∑

j=1

dj (47)

This is called a balanced problem . In this unit our discussion shall be restricted to the

balanced problems.

In a balanced problem all the products that can be supplied are used to meet the demand.

There are no slacks and so all constraints are equalities rather than inequalities as was the

case in the previous unit.

The formulation of this problem as a linear programming problem is presented as

Minimise Z =
m∑

i=1

n∑

j=1

cij xij , (48)

subject to

n∑

j=1

xij = si, for i = 1, 2, . . . ,m (49)

n∑

i=1

xij = dj , for j = 1, 2, . . . , n (50)
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and

xij ≥ 0, for all i and j.

Any linear programming problem that fits this special formulation is of the transportation

type, regardless of its physical context. For many applications, the supply and demand

quantities in the model will have integer values and implementation will require that the

distribution quantities also be integers. Fortunately, the unit coefficients of the unknown

variables in the constraints guarantee an optimal solution with only integer values.

4.3.3 Initial solution - Northwest Corner Rule

The initial basic feasible solution can be obtained by using one of several methods. We

will consider only the North West corner rule of developing an initial solution. Other

methods can be found in standard texts on linear programming.

The procedure for constructing an initial basic feasible solution selects the basic variables

one at a time. The North West corner rule begins with an allocation at the top left-hand

corner of the tableau and proceeds systematically along either a row or a column and make

allocations to subsequent cells until the bottom right-hand corner is reached, by which time

enough allocations will have been made to constitute an initial solution.

The procedure for constructing an initial solution using the North West Corner rule is as

follows:

NORTH WEST CORNER RULE

1. Start by selecting the cell in the most “North-West” corner of the table.

2. Assign the maximum amount to this cell that is allowable based on the require-

ments and the capacity constraints.

3. Exhaust the capacity from each row before moving down to another row.

4. Exhaust the requirement from each column before moving right to another col-

umn.

5. Check to make sure that the capacity and requirements are met.

Let us begin with an example dealing with Executive Furniture corporation, which manu-

factures office desks at three locations: D, E and F. The firm distributes the desks through

regional warehouses located in A, B and C (see the Network format diagram below)
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A

B

C

D

E

F

100 Units

300 Units

300 Units

300 Units

200 Units

200 Units

Factories Warehouses
(Sources)

6 6 6

Capacities Shipping Routes Requirements

(Destinations)

It is assumed that the production costs per desk are identical at each factory. The only

relevant costs are those of shipping from each source to each destination. The costs are

shown in Table 5

PPPPPPPPPFrom

To
A B C

D $5 $4 $3

E $8 $4 $3

F $9 $7 $5

Table 5: Transportation Costs per desk for Executive Furniture Corp.

We proceed to construct a transportation table and label its various components as show

in Table 6.

We can now use the Northwest corner rule to find an initial feasible solution to the problem.

We start in the upper left hand cell and allocate units to shipping routes as follows:
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PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100

E 8 4 3

300

F 9 7 5

300

Requirements 300 200 200 700

Table 6: Transportation Table for Executive Furniture Corporation

1. Exhaust the supply (factory capacity) of each row before moving down to the next

row.

2. Exhaust the demand (warehouse) requirements of each column before moving to the

next column to the right.

3. Check that all supply and demand requirements are met.

The initial shipping assignments are given in Table 7

PPPPPPPPPFrom

To
A B C

Factory

Capacity

D 100 100

E 200 100 300

F 100 200 300

Warehouse

Requirements
300 200 200 700

Table 7: Initial Solution of the North West corner Rule

This initial solution can also be presented together with the costs per unit as shown in the

Table 8.

We can compute the cost of this shipping assignment as follows;

Therefore, the initial feasible solution for this problem is $4200.

Example 4.2

Consider a transportation problem in which the cost, supply and demand values are presented

in Table 10.

(a) Is this a balanced problem? Why?
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PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

200 100 300

F 9 7 5

100 200 300

Requirements 300 200 200 700

Table 8: Representing the initial feasible solution with costs

ROUTE UNITS PER UNIT TOTAL

FROM TO SHIPPED × COST ($) = COST ($)

D A 100 5 500

E A 200 8 1600

E B 100 4 400

F B 100 7 700

F C 200 5 1000

Total 4200

Table 9: Calculation of costs of initial shipping assignments

(b) Obtain the initial feasible solution using the North-West Corner rule.

Solution:

(a) We calculate the total supply and total demand.

Total supply = 14 + 10 + 15 + 13 = 52

Total demand = 10 + 15 + 12 + 15 = 52

Since the total supply is equal to the total demand we conclude that the problem is

balanced.

(b) The allocations according to the North-West corner rule are shown in Table 11 The

initial feasible solution is

Total Cost = 10 · 10 + 4 · 30 + 10 · 15 + 1 · 30 + 12 · 20 + 2 · 20 + 13 · 45 = $1265

Note that this is not necessarily equal to the optimal solution.
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Destination

1 2 3 4 Supply

1 10 30 25 15 14

Source 2 20 15 20 10 10

3 10 30 20 20 15

4 30 40 35 45 13

Demand 10 15 12 15

Table 10: Supply and Demand values for Transportation problem

1 2 3 4 Supply

1 10 4 14

2 10 10

3 1 12 2 15

4 13 13

Demand 10 15 12 15

Table 11: Initial feasible solution

4.4 Exercises 4.1: Northwest Corner rule

In each of the following problems check whether the solution is balanced or not then use

the North West Corner rule to find the basic feasible solution.

1.

PPPPPPPPPFROM

TO
1 2 3 Supply

1 3 2 0 45

2 1 5 0 60

3 5 4 0 35

Demand 50 60 30

2.

PPPPPPPPPFROM

TO
1 2 3 Supply

1 5 4 3 100

2 8 4 3 300

3 9 7 5 300

Demand 300 200 200
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3.

PPPPPPPPPFROM

TO
1 2 3 4 Supply

A 12 13 4 6 500

B 6 4 10 11 700

C 10 9 12 4 800

Demand 400 900 200 500

4.

PPPPPPPPPFROM

TO
1 2 3 4 Supply

1 10 30 25 15 14

2 20 15 20 10 10

3 10 30 20 20 15

4 30 40 35 45 13

Demand 10 15 12 15

4.4.1 Optimality test - the Stepping Stone method

The next step is to determine whether the current allocation at any stage of the solution

process is optimal. We will present one of the methods used to determine optimality of and

improve a current solution. The method derives its name from the analogy of crossing a

pond using stepping stones. The occupied cells are analogous to the stepping stones, which

are used in making certain movements in this method.

The five steps of the Stepping-Stone Method are as follows:
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STEPPING-STONE METHOD

1. Select an unused square to be evaluated.

2. Beginning at this square, trace a closed path back to the original square via

squares that are currently being used (only horizontal or vertical moves allowed).

You can only change directions at occupied cells!.

3. Beginning with a plus (+) sign at the unused square, place alternative minus (-)

signs and plus signs on each corner square of the closed path just traced.

4. Calculate an improvement index, Iij by adding together the unit cost figures

found in each square containing a plus sign and then subtracting the unit costs

in each square containing a minus sign.

5. Repeat steps 1 to 4 until an improvement index has been calculated for all unused

squares.

• If all indices computed are greater than or equal to zero, an optimal solution

has been reached.

• If not, it is possible to improve the current solution and decrease total ship-

ping costs.

4.4.2 The optimality criterion

If all the cost index values obtained for all the currently unoccupied cells are nonnegative,

then the current solution is optimal. If there are negative values the solution has to be

improved. This means that an allocation is made to one of the empty cells (unused routes)

and the necessary adjustments in the supply and demand effected accordingly.

To see how the Stepping-Stone method works we apply these steps to the Furniture Corpo-

ration example to evaluate the shipping routes.

Steps 1-3 Beginning with the D-B route, we first trace a closed path using only currently oc-

cupied squared (see Table 12) and then place alternate plus signs and minus signs in

the corners of this path.

Step 4 An improvement index Iij for the D-B route in now computed by adding unit costs

in squares with plus signs and subtracting costs in squares with minus signs. Thus

IDB = +4− 5 + 8− 4 = +3

This means that for every desk shipped via the D-B route, total transportation costs

will increase by $3 over their current level.
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PPPPPPPPPFrom

To
A B C Capacity

D 5 Start 4 3

100 - ← + 100

E ↓ 8 ↑ 4 3

200 + → - 100 300

F 9 7 5

100 200 300

Requirements 300 200 200 700

Table 12: Evaluating the D-B route

Step 5 Next we consider the D-C unused route. The closed path we use is (see Table 13)

+DC −DA+ EA− EB + FB − FC

The D-C improvement index is

IDC = +3− 5 + 8− 4 + 7− 5 = +4

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 Start 3

100 - ← ←− ←− ← + 100

E ↓ 8 4 ↑ 3

200 + → - 100 ↑ 300

9 ↓ 7 ↑ 5

F + −→ → -

100 200 300

Requirements 300 200 200 700

Table 13: Evaluating the D-C route

The other two routes may be evaluated in a similar fashion

E-C route: closed path = +EC - EB + FB - FC

IEC = +3− 4 + 7− 5 = +1

FA route: closed path = +FA - FB + EB - EA

IFA = +9− 7 + 4− 8 = −2

Because the IFA index is negative, a cost saving may be attained by making use of the

FA route i.e the FA cell can be improved. The Stepping-Stone path used to evaluate

the route FA is shown in Table 14
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PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

200 - ← + 100 300

F ↓ 9 ↑ 7 5

Start + → - 100 200 300

Requirements 300 200 200 700

Table 14: Stepping-Stone Path used to evaluate FA route

The next step, then is to ship the maximum allowable number of units on the new route (FA

route). What is the maximum quantity that can be shipped on the money-saving route?

The quantity is found by referring to the closed path of plus signs and minus signs drawn

for the route and selecting the smallest number found in those squares containing minus

signs. To obtain a new solution, that number is added to all squares on the closed path

with plus signs and subtracted from all squares on the path assigned minus signs. All other

squares are left unchanged. The new solution is shown in Table 15.

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

100 200 300

F 9 7 5

100 200 300

Requirements 300 200 200 700

Table 15: Improved solution: Second solution

The shipping cost for this new solution is

100 · 5 + 100 · 8 + 200 · 4 + 100 · 9 + 200 · 4 = $4000

This solution may or may not be optimal. To determine whether further improvement is

possible, we return to the first five steps to test each square that is now unused. The four

improvement indices - each representing an available shipping route are as follows:

D to B = IDB = 4− 5 + 8− 4 = +$3

(Closed path : +DB −DA+ EA− EB)
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D to C = IDC = 3− 5 + 9− 5 = +$2

(Closed path : +DC −DA+ FA− FC)

E to C = IEC = 3− 8 + 9− 5 = −$1

(Closed path : +EC − EA+ FA− FC)

F to B = IFB = 7− 4 + 8− 9 = +$2

(Closed path : +FB − EB + EA− FA)

Hence, an improvement can be made by shipping the maximum allowable number of units

from E to C (see Table 16).

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E - 8 ← ← 4 ← + 3

100 ↓ 200 Start 300

F ↓ 9 7 ↑ 5

100 + → → → → → - 200 300

Requirements 300 200 200 700

Table 16: Path to evaluate the E-C route

The improved solution is shown in Table 17. The total cost for the third solution is

100 · 5 + 200 · 4 + 100 · 3 + 200 · 9 + 100 · 5 = $3900

To determine if the current solution is optimal we calculate the improvement indices - each

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

200 100 300

F 9 7 5

200 100 300

Requirements 300 200 200 700

Table 17: Improved solution: Third solution

representing an available shipping route - as follows:

D to B = IDB = 4− 5 + 9− 5 + 3− 4 = +$2

118

68



(Closed path: +DB −DA+ FA− FC + EC − EB)

D to C = IDC = 3− 5 + 9− 5 = +$2

(Closed path: +DC −DA+ FA− FC)

E to A = IEA = 8− 9 + 5− 3 = +$1

(Closed path: + EA− FA+ FC − EC)

F to B = IFB = 7− 5 + 3− 4 = +$1

(Closed path: + FB − FC + EC − EB)

Table 17 contains the optimal solution because each improvement index for the Table is

greater than or equal to zero.

4.5 Summary

In this section we discussed the formulation of transportation problems and their methods

of solution. We used the North West corner rule to obtain the initial feasible solution and

the Stepping-Stone method to find the optimal solution. We restricted focus to balanced

transportation problems where it is assumed that the total supply is equal to total demand.

4.6 Exercises 4.2: Transportation problems

1. A company has factories at A, B and C which supply warehouses at D, E and F.

Weekly factory capacities are 200, 160 and 90 units respectively. Weekly warehouse

requirements (demands) are 180, 120 and 150 units respectively. Unit shipping costs

(in Emalangeni) are as follows:

Factory D E F Capacity

A 16 20 12 200

B 14 8 18 160

C 26 24 16 90

Demand 180 120 150 450

Determine the optimum distribution for this company to minimize shipping costs.

[E5920]

2. A Timber company ships pine flooring to three building supply houses from its mills

in Bhunya, Mondi and Pigg’s Peak. Determine the best transportation schedule for

the data given below using the Northwest corner rule and the Stepping Stone method.

[E230]
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PPPPPPPPPFROM

TO Supply

House 1

Supply

House 2

Supply

House 3

Mill

Capacity (tons)

Bhunya 3 3 2 25

Mondi 4 2 3 40

Pigg’s Peak 3 2 3 30

Supply House

Demand (tons)
30 30 35 95

3. A trucking company has a contract to move 115 truckloads of sand per week between

three sand-washing plants W,X and Y, and three destinations, A,B and C. Cost and

volume information is given below. Compute the optimal transportation cost.

PPPPPPPPPFrom

To
Project A Project B Project C Supply

Plant W 5 10 10 35

Plant X 20 30 20 40

Plant Y 5 8 12 40

Demand 45 50 20

[C=1345]

4. In each of the following cases write down the North West corner solution and use the

Stepping Stone method to find the minimal cost.

(a)

PPPPPPPPPFROM

TO
D E F Capacity

A 8 6 9 20

B 6 3 8 30

C 10 7 9 70

Demand 90 20 10 120

[E970]

(b)

PPPPPPPPPFROM

TO
D E F Capacity

A 2 2 3 4

B 2 1 6 6

C 1 3 4 8

Demand 2 5 11 18

[E48]
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4.7 Assignment Problem

The assignment problem refers to the class of linear programming problems that involve

determining the most efficient assignment of

• people to projects

• salespeople to territories

• contracts to bidders

• jobs to machines, etc.

The objective is most often to minimize total costs or total time of performing the tasks at

hand.

One important characteristic of assignment problems is that only one job or worker is

assigned to one machine or project. An example is the problem of a taxi company with

4 taxis and 4 passengers. Which taxi should collect which passenger in order to minimize

costs?

Each assignment problem has associated with it a table, or matrix. Generally, the rows

contain the objects or people we wish to assign, and the columns comprise the tasks or

things we want them assigned to. The numbers in the table are the costs associated with

each particular assignment.

An assignment problem can be viewed as a transportation problem in which

• the capacity from each source (or person to be assigned) is 1 and

• the demand at each destination (or job to be done) is 1.

As an illustration of the assignment problem, let us consider the case of a Fix-It-Shop,

which has just received three new rush projects to repair: (1) a radio, (2) a toaster oven,

and (3) a broken coffee table. Three repair persons, each with different talents and abilities,

are available to do the jobs. The owner of the shop estimates what it will cost in wages

to assign each of the workers to each of the three projects. The costs which are shown in

Table 18 differ because the owner believes that each worker will differ in speed and skill on

these quite varied jobs.

Table 19 summarizes all six assignment options. The table also shows that the least-cost

solution would be to assign Cooper to project 1, Brown to project 2, and Adams to project

3, at a total cost of $25.

The owner’s objective is to assign the three projects to the workers in a way that will result

in the lowest cost to the shop. Note that the assignment of people to projects must be on

a one-to-one basis; each project will be assigned exclusively to one worker only.
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PROJECT

PERSON 1 2 3

Adams $11 $14 $6

Brown 8 10 11

Cooper 9 12 7

Table 18: Repair costs of the Fix-It-Shop assignment problem

PROJECT ASSIGNMENT

1 2 3 LABOUR COSTS ($) TOTAL COSTS ($)

Adams Brown Cooper 11 + 10 +7 28

Adams Cooper Brown 11 + 12 +11 34

Brown Adams Cooper 8 + 14 + 7 29

Brown Cooper Adams 8 + 12 + 6 26

Cooper Adams Brown 9 + 14 + 11 34

Cooper Brown Adams 9 + 10 + 6 25

Table 19: Assignment alternatives and Costs of Fix-It-Shop assignment problem

Special algorithms exist to solve assignment problems. The most common is probably the

Hungarian solution method. The Hungarian method of assignment provides us with an

efficient means of finding the optimal solution without having to make a direct comparison

of every assignment option. It operates on a principle of matrix reduction, which means

that by subtracting and adding appropriate numbers in the cost table or matrix, we can

reduce the problem to a matrix of opportunity costs. Opportunity costs show the relative

penalties associated with assigning any person to a project as opposed to making the best

or least-cost assignment. We would like to make assignments such that the opportunity

cost for each assignment is zero.

The steps involved in the Hungarian method are outlined below.
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THE HUNGARIAN METHOD

1. Find the opportunity cost table by

(a) Subtracting the smallest number in each row of the original cost table or

matrix from every number in that row.

(b) Then subtracting the smallest number in each column of the table obtained

in part (a) from every number in that column.

2. Test the table resulting from step 1 to see whether an optimal assignment can be

made. The procedure is to draw the minimum number of vertical and horizontal

straight lines necessary to cover all zeros in the table. If the number of lines equals

either the number of rows or columns, an optimal assignment can be made. If

the number of lines is less than the number of rows or columns, we proceed to

step 3.

3. Revise the present opportunity cost table. This is done by subtracting the smallest

number not covered by a line from every other uncovered number. This same

smallest number is also added to any number(s) lying at the intersection of the

horizontal and vertical lines. We then return to step 2 and continue the cycle

until an optimal assignment is possible.

Let us now apply the three steps to the Fix-It-Shop assignment example.

The original cost table for the problem is given in Table 20

PROJECT

PERSON 1 2 3

Adams 11 14 6

Brown 8 10 11

Cooper 9 12 7

Table 20: Initial Table

PROJECT

PERSON 1 2 3

Adams 5 8 0

Brown 0 2 3

Cooper 2 5 0

Table 21: Row reduction (part a)

After the row reduction (Step 1 part a) we get the cost Table 21.

Taking the costs in Table 21 and subtracting the the smallest number in each column from

each number in that column results in the total opportunity costs given in Table 22. This

step is the column reduction of Step 1 part (b)

If we draw vertical and horizontal straight lines (Step 2) to cover all the zeros in Table 22

we get Table 23. Since the number of lines is less than the number of rows or columns an

optimal assignment cannot be made.

Since Table 23 doesn’t give an optimal solution we revise the table. This is accomplished

by subtracting the smallest number not covered by a line from all numbers not covered by
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PROJECT

PERSON 1 2 3

Adams 5 6 0

Brown 0 0 3

Cooper 2 3 0

Table 22: Column Reduction (Step 1 part b)

PROJECT

PERSON 1 2 3

Adams 5 6 0

Brown 0 0 3

Cooper 2 3 0

Table 23: Testing for an optimal solution

a straight line. This same smallest number is then added to every number (including zeros)

lying in the intersection on any two lines. The smallest uncovered number in Table 23 is 2,

so this value is subtracted from each of the four uncovered numbers. A 2 is also added to

the number that is covered by the intersecting horizontal and vertical lines. The results of

this step are shown in Table 24

To test now for an optimal assignment, we return to Step 2 and find the minimum number

of lines necessary to cover all zeros in the revised opportunity cost table. Because it requires

three lines to cover the zeros (see Table 25), an optimal assignment can be made.

PROJECT

PERSON 1 2 3

Adams 3 4 0

Brown 0 0 5

Cooper 0 1 0

Table 24: Revised opportunity cost

table

PROJECT

PERSON 1 2 3

Adams 3 4 0

Brown 0 0 5

Cooper 0 1 0

Table 25: Optimality test on the re-

vised table

Finally, we make the allocation. Note that only one assignment will be made from each row

or column. We use this fact to proceed to making the final allocation as follows:

(a) Find a row or column with only one zero cell.

(b) Make the assignment corresponding to that zero cell.

(c) Eliminate that row and column from the table.

(d) Continue until all the assignments have been made.
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For our Fix-It-Shop problem these steps are summarized in Table 26.

FIRST SECOND THIRD

ASSIGNMENT ASSIGNMENT ASSIGNMENT

1 2 3 1 2 3 1 2 3

Adams 3 4 0 Adams 3 4 0 Adams 3 4 0

Brown 0 0 5 Brown 0 0 5 Brown 0 0 5

Cooper 0 1 0 Cooper 0 1 0 Cooper 0 1 0

Table 26: Making the final assignment

To interpret the table we recall that our objective was to minimize costs, there is only one

assignment that Adams can go to where the opportunity costs are $0. That is to assign

Adams Project 3. If Adams gets assigned to Project 3, then there is only one project left

where the opportunity cost is $0 for Cooper. Therefore Cooper gets assigned to Project 1.

This leaves Brown being assigned to Project 2, where the opportunity costs are $0.

The optimal allocation is to assign Adams to Project 3, Brown to Project 2, and Cooper

to Project 1. The total labour cost of this assignment are computed from the original cost

table (see Table 18). They are as follows:

ASSIGNMENT COST ($)

Adams to Project 3 6

Brown to Project 2 10

Cooper to Project 1 9

Total cost 25

Example 4.3 Suppose we have to allocate 4 tasks (1,2,3,4) between 4 people (W,X,Y,Z).

The costs are set out in the following table:

Task

Person 1 2 3 4

W 8 20 15 17

X 15 16 12 10

Y 22 19 16 30

Z 25 15 12 9

The entries in the table denote the costs of assigning a task to a particular person.

Solution: Step 1 of the Hungarian method involves the following parts:

(a) subtract the minimum value from each column (see Table 27)

(b) subtract the minimum value from each column (see Table 28)
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Task

Person 1 2 3 4

W 0 12 7 9

X 5 6 2 0

Y 6 3 0 14

Z 16 6 3 0

Table 27: Subtract the minimum

value from each row

Task

Person 1 2 3 4

W 0 9 7 9

X 5 3 2 0

Y 6 0 0 14

Z 16 3 3 0

Table 28: subtract the minimum

value from each column

The next step is to check whether optimal assignment can be made. This is done by finding

the minimum number of lines necessary to cross-out all the zero cells in the table. If this

is equal to n (the number of people/tasks) then the solution has been found. The minimum

number of lines necessary to cross through all the zeros (see Table 29)is 3 ¡ n = 4 so that

an optimal allocation has not been found.

( Note that there may be more than one way to draw the lines through the zero cells. It

does not matter which way you choose as long as there is no alternative way involving fewer

lines)

Task

Person 1 2 3 4

W 0 9 7 9

X 5 3 2 0

Y 6 0 0 14

Z 16 3 3 0

Table 29: Checking if an optimal assignment can been made

Next we revise the table by

(a) Finding the minimum uncovered cell. Table 29 shows that the minimum uncovered

cell has a value of 2

(b) Subtracting the value obtained in (a) (i.e subtract 2) from all the uncovered cells.

(c) Adding to all the cells at the intersection of the two lines.

The result of the above steps is given in Table 30.

We then check if the revised allocation is optimal. This is done by finding the minimum

number of lines required to cover all zeros (see Table 31).

This time the minimum number of lines necessary to cross through all the zeros is n = 4 so

that an optimal allocation has been found.

To make the final allocation we use the following steps.
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Task

Person 1 2 3 4

W 0 7 5 9

X 5 1 0 0

Y 8 0 0 16

Z 16 1 1 0

Table 30: Revising the Table

Task

Person 1 2 3 4

W 0 7 5 9

X 5 1 0 0

Y 8 0 0 16

Z 16 1 1 0

Table 31: Checking for optimality

• Find a row or column with only one zero cell.

• Make the assignment corresponding to that zero cell.

• eliminate that row and column from the table.

• Continue until all assignments have been found.

Task

Person 1 2 3 4

W 0 7 5 9

X 5 1 0 0

Y 8 0 0 16

Z 16 1 1 0

• Assign person W to task 1 and eliminate row W and column 1.

• Assign person Y to task 2 and eliminate row Y and column 2.

• Assign person Z to task 4 and eliminate row Z and column 4.

• This leaves final person X assigned to remaining task 3.

From the original cost table, we can determine the costs associated with the optimal assign-

ment:

Total Cost = 48

4.8 Maximization Assignment Problems

Some assignment problems are phrased in terms of maximizing the payoff, profit, or effec-

tiveness of an assignment instead of minimization costs. It is easy to obtain an equivalent

minimization problem by converting all numbers in the table to opportunity costs; efficien-

cies to inefficiencies,etc. This is achieved through subtracting every number in the original

payoff table from the largest single number in the number. The transformed entries represent

opportunity costs; it turns out that minimizing the opportunity costs produces the same
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assignment as the original maximization problem. Once the optimal assignment for this

transformed problem has been computed, the total payoff or profit is found by adding the

original payoffs of those cells that are in the original assignment.

Example. The British Navy wishes to assign four ships to patrol four sectors of the North

Sea. In some areas ships are to be on the outlook for illegal fishing boats, and in other

sectors to watch for enemy submarines, so the commander rates each ship in terms of its

profitable efficiency in each sector. These relative efficiencies are illustrated in Tables 32. On

the basis of the ratings shown, the commander wants to determine the patrol assignments

producing the greatest overall efficiencies.

SECTOR

SHIP A B C D

1 20 60 50 55

2 60 30 80 75

3 80 100 90 80

4 65 80 75 70

Table 32: Efficiencies of British Ships

in Patrol sectors

SECTOR

SHIP A B C D

1 80 40 50 45

2 40 70 20 25

3 20 0 10 20

4 35 20 25 30

Table 33: Opportunity Costs of

British Ships

We start by converting the maximizing efficiency table into a minimization opportunity cost

table. This is done by subtracting each rating from 100, the largest rating in the whole

table. The resulting opportunity costs are given in Table 33.

Next, we follow steps 1 and 2 of the assignment algorithm. The smallest number is sub-

tracted from every number in that row to give Table 34; and then the smallest number in

each column is subtracted from every number in that column as shown in Table 35.

SECTOR

SHIP A B C D

1 40 0 10 5

2 20 50 0 5

3 20 0 10 20

4 15 0 5 10

Table 34: Row opportunity costs for

the British Navy Problem

SECTOR

SHIP A B C D

1 25 0 10 0

2 5 50 0 0

3 5 0 10 15

4 0 0 5 5

Table 35: Total opportunity costs for

the British Navy Problem

The minimum number of straight lines needed to cover all zeros in this total opportunity

cost table is four. Hence an optimal assignment can be made. The optimal assignment is

ship 1 to sector D, ship 2 to sector C, ship 3 to sector B, and ship 4 to sector A.

The overall efficiency, computed from the original efficiency data Table 32, can now be

shown:
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ASSIGNMENT EFFICIENCY

Ship 1 to Sector D 55

Ship 2 to Sector C 80

Ship 3 to Sector B 100

Ship 4 to Sector A 65

Total Efficiency 300

4.9 Summary

In this section we discussed the Hungarian method for solving both maximization and

minimization assignment problems.

4.10 Exercises 4.3: Minimization Assignment Problems

1. Three accountants, Phindile, Rachel and Sibongile, are to be assigned to three projects,

1, 2 and 3. The assignment costs in units of E1000 are given in the table below.

Project

1 2 3

P 15 9 12

Accountant R 7 5 10

S 13 4 6

2. Joy Taxi has four taxis, 1,2,3 and 4, and there are four customers, P, Q, R and S

requiring taxis. The distance between the taxis and the customers are given in the

table below, in Kilometres. The Taxi company wishes to assign the taxis to customers

so that the distance traveled is a minimum.

Customers

P Q R S

1 10 8 4 6

Taxis 2 6 4 12 8

3 14 10 8 2

4 4 14 10 8

3. Four precision components are to be shaped using four machine tools, one tool being

assigned to each component. The machining times, in minutes, are given in the table

below.
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Component

1 2 3 4

A 21 20 39 36

Machine Tool B 25 22 24 25

C 36 22 36 26

D 34 21 25 39

4. In a job shop operation, four jobs may be performed on any of four machines. The

hours required for each job on each machine are presented in the following table. The

plant supervisor would like to assign jobs so that total time in minimized. Use the

assignment method to find the best solution.

MACHINE

JOB W X Y Z

A12 10 14 16 13

A15 12 13 15 12

B2 9 12 12 11

B9 14 16 18 16

Answer: A12 to W, A15 to Z, B2 to Y, B9 to Z, 50 hours.

4.11 Exercises 4.4: Maximization Assignment Problems

1. A head of department has four lecturers to assign to pure maths (1), mechanics (2),

statistics (3) and Quantitative techniques (4). All of the teachers have taught the

courses in the past and have been evaluated with a score from 0 to 100. The scores

are shown in the table below.

1 2 3 4

Peters 80 55 45 45

Radebe 58 35 70 50

Tsabedze 70 50 80 65

Williams 90 70 40 80

The head of department wishes to know the optimal assignment of teachers to courses

that will maximize the overall total score. Use the Hungarian algorithm to solve this

problem. [ P → 1 , R→ 3, T → 4, W → 2 Max Score = 285]

2. A department store has leased a new store and wishes to decide how to place four

departments in four locations so as to maximize total profits. The table below gives

the profits, in thousands of emalangeni, when the departments are allocated to the

various locations. Find the assignment that maximizes total profits.
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Location

1 2 3 4

Shoes 20 16 22 18

Department Toys 25 28 15 21

Auto 27 20 23 26

Housewares 24 22 23 22

3. The head of the business department, has decided to apply the Hungarian method in

assigning lecturers to courses next semester. As a criterion for judging who should

teach each course, the head of department reviews the past two years’ teaching eval-

uations. All the four lecturers have taught each of the courses at one time or another

during the two year period. The ratings are shown in the table below.

Find the best assignment of lecturers to courses to maximize the overall teaching rat-

ing. Total Rating =

335

COURSE

LECTURER STATISTICS MANAGEMENT FINANCE ECONOMICS

Dlamini 90 65 95 40

Khumalo 70 60 80 75

Masuku 85 40 80 60

Nxumalo 55 80 65 55
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2.1 Introduction to CPM / PERT Techniques 

CPM/PERT or Network Analysis as the technique is sometimes called, developed along 

two parallel streams, one industrial and the other military. 

CPM (Critical Path Method) was the discovery of M.R.Walker of E.I.Du Pont de 

Nemours & Co. and J.E.Kelly of Remington Rand, circa 1957. The computation was 

designed for the UNIVAC-I computer. The first test was made in 1958, when CPM was 

applied to the construction of a new chemical plant. In March 1959, the method was 

applied to maintenance shut-down at the Du Pont works in Louisville, Kentucky. 

Unproductive time was reduced from 125 to 93 hours. 

PERT (Project Evaluation and Review Technique) was devised in 1958 for the 

POLARIS missile program by the Program Evaluation Branch of the Special Projects 

office of the U.S.Navy, helped by the Lockheed Missile Systems division and the 

Consultant firm of Booz-Allen & Hamilton. The calculations were so arranged so that 

they could be carried out on the IBM Naval Ordinance Research Computer (NORC) at 

Dahlgren, Virginia. 

Unit 8
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The methods are essentially network-oriented techniques using the same principle. 

PERT and CPM are basically time-oriented methods in the sense that they both lead to 

determination of a time schedule for the project. The significant difference between two 

approaches is that the time estimates for the different activities in CPM were assumed to 

be deterministic while in PERT these are described probabilistically. These techniques 

are referred as project scheduling techniques. 

 

 In CPM activities are shown as a network of precedence relationships using activity-on-

node network construction 

– Single estimate of activity time 

– Deterministic activity times 

USED IN:  Production management - for the jobs of repetitive in nature where the 

activity time estimates can be predicted with considerable certainty due to the existence 

of past experience. 

In PERT activities are shown as a network of precedence relationships using activity-on-

arrow network construction 

– Multiple time estimates  

– Probabilistic activity times 

USED IN: Project management - for non-repetitive jobs (research and development 

work), where the time and cost estimates tend to be quite uncertain. This technique uses 

probabilistic time estimates. 

Benefits of PERT/CPM 

 Useful at many stages of project management 

 Mathematically simple 
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 Give critical path and slack time 

 Provide project documentation 

 Useful in monitoring costs 

Limitations of PERT/CPM 

 Clearly defined, independent and stable activities 

 Specified precedence relationships 

 Over emphasis on critical paths 

 

2.2 Applications of CPM / PERT 

 

These methods have been applied to a wide variety of problems in industries and have 

found acceptance even in government organizations. These include 

 Construction of a dam or a canal system in a region 

 Construction of a building or highway 

 Maintenance or overhaul of airplanes or oil refinery 

 Space flight 

 Cost control of a project using PERT / COST 

 Designing a prototype of a machine 

 Development of supersonic planes 

 

2.3 Basic Steps in PERT / CPM 

 

Project scheduling by PERT / CPM consists of four main steps 

 

1. Planning 
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 The planning phase is started by splitting the total project in to small projects. 

These smaller projects in turn are divided into activities and are analyzed by the 

department or section.  

 The relationship of each activity with respect to other activities are defined and 

established and the corresponding responsibilities and the authority are also 

stated.  

 Thus the possibility of overlooking any task necessary for the completion of the 

project is reduced substantially. 

 

2. Scheduling 

 The ultimate objective of the scheduling phase is to prepare a time chart showing 

the start and finish times for each activity as well as its relationship to other 

activities of the project.  

 Moreover the schedule must pinpoint the critical path activities which require 

special attention if the project is to be completed in time. 

 For non-critical activities, the schedule must show the amount of slack or float 

times which can be used advantageously when such activities are delayed or when 

limited resources are to be utilized effectively. 

 

3. Allocation of resources 

 Allocation of resources is performed to achieve the desired objective. A resource 

is a physical variable such as labour, finance, equipment and space which will 

impose a limitation on time for the project.  

 When resources are limited and conflicting, demands are made for the same type 

of resources a systematic method for allocation of resources become essential.  

 Resource allocation usually incurs a compromise and the choice of this 

compromise depends on the judgment of managers. 

 

4. Controlling 
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 The final phase in project management is controlling. Critical path methods 

facilitate the application of the principle of management by expectation to identify 

areas that are critical to the completion of the project. 

 By having progress reports from time to time and updating the network 

continuously, a better financial as well as technical control over the project is 

exercised. 

 Arrow diagrams and time charts are used for making periodic progress reports. If 

required, a new course of action is determined for the remaining portion of the 

project. 

 

2.4 The Framework for PERT and CPM 

Essentially, there are six steps which are common to both the techniques. The procedure 

is listed below: 

I. Define the Project and all of its significant activities or tasks. The Project (made 

up of several tasks) should have only a single start activity and a single finish 

activity. 

II. Develop the relationships among the activities. Decide which activities must 

precede and which must follow others. 

III. Draw the "Network" connecting all the activities. Each Activity should have 

unique event numbers. Dummy arrows are used where required to avoid giving 

the same numbering to two activities. 

IV. Assign time and/or cost estimates to each activity 

V. Compute the longest time path through the network. This is called the critical 

path. 
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VI. Use the Network to help plan, schedule, and monitor and control the project. 

The Key Concept used by CPM/PERT is that a small set of activities, which make up the 

longest path through the activity network control the entire project. If these "critical" 

activities could be identified and assigned to responsible persons, management resources 

could be optimally used by concentrating on the few activities which determine the fate 

of the entire project. 

Non-critical activities can be replanned, rescheduled and resources for them can be 

reallocated flexibly, without affecting the whole project. 

Five useful questions to ask when preparing an activity network are: 

 Is this a Start Activity?  

 Is this a Finish Activity?  

 What Activity Precedes this?  

 What Activity Follows this?  

 What Activity is Concurrent with this?  

2.5 Network Diagram Representation 

 

In a network representation of a project certain definitions are used 

 

1. Activity 

Any individual operation which utilizes resources and has an end and a beginning is 

called activity. An arrow is commonly used to represent an activity with its head 

indicating the direction of progress in the project. These are classified into four categories 

1. Predecessor activity – Activities that must be completed immediately prior to the 

start of another activity are called predecessor activities. 
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2. Successor activity – Activities that cannot be started until one or more of other 

activities are completed but immediately succeed them are called successor 

activities. 

3. Concurrent activity – Activities which can be accomplished concurrently are 

known as concurrent activities. It may be noted that an activity can be a 

predecessor or a successor to an event or it may be concurrent with one or more of 

other activities. 

4. Dummy activity – An activity which does not consume any kind of resource but 

merely depicts the technological dependence is called a dummy activity. 

 

The dummy activity is inserted in the network to clarify the activity pattern in the 

following two situations 

 To make activities with common starting and finishing points distinguishable 

 To identify and maintain the proper precedence relationship between activities 

that is not connected by events. 

For example, consider a situation where A and B are concurrent activities. C is dependent 

on A and D is dependent on A and B both. Such a situation can be handled by using a 

dummy activity as shown in the figure. 

 

2. Event 

An event represents a point in time signifying the completion of some activities and the 

beginning of new ones. This is usually represented by a circle in a network which is also 

called a node or connector. 

The events are classified in to three categories 

1. Merge event – When more than one activity comes and joins an event such an 

event is known as merge event. 
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2. Burst event – When more than one activity leaves an event such an event is 

known as burst event. 

3. Merge and Burst event – An activity may be merge and burst event at the same 

time as with respect to some activities it can be a merge event and with respect to 

some other activities it may be a burst event. 

 

 

3. Sequencing 

The first prerequisite in the development of network is to maintain the precedence 

relationships. In order to make a network, the following points should be taken into 

considerations 

 What job or jobs precede it? 

 What job or jobs could run concurrently? 

 What job or jobs follow it? 

 What controls the start and finish of a job? 

Since all further calculations are based on the network, it is necessary that a network be 

drawn with full care. 

2.6 Rules for Drawing Network Diagram 

 

Rule 1 

Each activity is represented by one and only one arrow in the network 
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Rule 2 

No two activities can be identified by the same end events 

 

 

Rule 3 

In order to ensure the correct precedence relationship in the arrow diagram, following 

questions must be checked whenever any activity is added to the network 

 What activity must be completed immediately before this activity can start? 

 What activities must follow this activity? 

 What activities must occur simultaneously with this activity? 

 

In case of large network, it is essential that certain good habits be practiced to draw an 

easy to follow network 

 Try to avoid arrows which cross each other 

 Use straight arrows 

 Do not attempt to represent duration of activity by its arrow length 

 Use arrows from left to right. Avoid mixing two directions, vertical and standing 

arrows may be used if necessary. 

 Use dummies freely in rough draft but final network should not have any 

redundant dummies. 

 The network has only one entry point called start event and one point of 

emergence called the end event. 

 

2.7 Common Errors in Drawing Networks 
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The three types of errors are most commonly observed in drawing network diagrams 

 

1. Dangling 

To disconnect an activity before the completion of all activities in a network diagram is 

known as dangling. As shown in the figure activities (5 – 10) and (6 – 7) are not the last 

activities in the network. So the diagram is wrong and indicates the error of dangling 

 

 

 

2. Looping or Cycling 

Looping error is also known as cycling error in a network diagram. Drawing an endless 

loop in a network is known as error of looping as shown in the following figure. 

 

 

3. Redundancy 
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Unnecessarily inserting the dummy activity in network logic is known as the error of 

redundancy as shown in the following diagram 

 

 

 

2.8 Advantages and Disadvantages 
 
PERT/CPM has the following advantages 

  
 A PERT/CPM chart explicitly defines and makes visible dependencies 

(precedence relationships) between the elements, 
 

 PERT/CPM facilitates identification of the critical path and makes this visible, 
 

 PERT/CPM facilitates identification of early start, late start, and slack for each 
activity, 

 
 PERT/CPM provides for potentially reduced project duration due to better 

understanding of dependencies leading to improved overlapping of activities and 
tasks where feasible. 

 
  

PERT/CPM has the following disadvantages: 
  

 There can be potentially hundreds or thousands of activities and individual 
dependency relationships, 

 
 The network charts tend to be large and unwieldy requiring several pages to print 

and requiring special size paper, 
 

 The lack of a timeframe on most PERT/CPM charts makes it harder to show 
status although colours can help (e.g., specific colour for completed nodes), 

 
 When the PERT/CPM charts become unwieldy, they are no longer used to 

manage the project. 
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2.9 Critical Path in Network Analysis 

 

Basic Scheduling Computations 

 

The notations used are 

(i, j) = Activity with tail event i and head event j 

Ei = Earliest occurrence time of event i 

Lj = Latest allowable occurrence time of event j 

Dij = Estimated completion time of activity (i, j) 

(Es)ij = Earliest starting time of activity (i, j) 

(Ef)ij = Earliest finishing time of activity (i, j) 

(Ls)ij = Latest starting time of activity (i, j) 

(Lf)ij = Latest finishing time of activity (i, j) 

 

The procedure is as follows 

 

1. Determination of Earliest time (Ej): Forward Pass computation 

 

 Step 1 

The computation begins from the start node and move towards the end node. For 

easiness, the forward pass computation starts by assuming the earliest occurrence 

time of zero for the initial project event. 

 

 Step 2 

i. Earliest starting time of activity (i, j) is the earliest event time of the tail 

end event i.e. (Es)ij = Ei 

ii. Earliest finish time of activity (i, j) is the earliest starting time + the 

activity time i.e.    (Ef)ij = (Es)ij + Dij or (Ef)ij = Ei + Dij 
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iii. Earliest event time for event j is the maximum of the earliest finish times 

of all activities ending in to that event i.e. Ej = max [(Ef)ij for all 

immediate predecessor of (i, j)] or Ej =max [Ei + Dij] 

 

2. Backward Pass computation (for latest allowable time) 

 

 Step 1 

For ending event assume E = L. Remember that all E’s have been computed by 

forward pass computations. 

 

 Step 2 

Latest finish time for activity (i, j) is equal to the latest event time of event j i.e. 

(Lf)ij = Lj  

 

 Step 3 

Latest starting time of activity (i, j) = the latest completion time of (i, j) – the 

activity time or (Ls)ij =(Lf)ij - Dij  or (Ls)ij = Lj - Dij   

 

 Step 4 

Latest event time for event ‘i’ is the minimum of the latest start time of all 

activities originating from that event i.e. Li = min [(Ls)ij for all immediate 

successor of (i, j)]  = min [(Lf)ij - Dij]  = min [Lj - Dij] 

 

3. Determination of floats and slack times 

 

There are three kinds of floats 
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 Total float – The amount of time by which the completion of an activity could be 

delayed beyond the earliest expected completion time without affecting the 

overall project duration time. 

Mathematically 

(Tf)ij = (Latest start – Earliest start) for activity ( i – j) 

(Tf)ij = (Ls)ij - (Es)ij  or (Tf)ij = (Lj - Dij) - Ei  

 

 Free float – The time by which the completion of an activity can be delayed 

beyond the earliest finish time without affecting the earliest start of a subsequent 

activity.  

Mathematically 

(Ff)ij = (Earliest time for event j – Earliest time for event i) – Activity time for ( i,  

j) 

(Ff)ij = (Ej - Ei) - Dij  

 

 Independent float – The amount of time by which the start of an activity can be 

delayed without effecting the earliest start time of any immediately following 

activities, assuming that the preceding activity has finished at its latest finish time. 

Mathematically 

(If)ij = (Ej - Li) - Dij   

The negative independent float is always taken as zero. 

 

 Event slack - It is defined as the difference between the latest event and earliest 

event times. 

Mathematically 

Head event slack = Lj – Ej, Tail event slack = Li - Ei  

 

4. Determination of critical path 
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 Critical event – The events with zero slack times are called critical events. In 

other words the event i is said to be critical if Ei = Li  

 

 Critical activity – The activities with zero total float are known as critical 

activities. In other words an activity is said to be critical if a delay in its start will 

cause a further delay in the completion date of the entire project. 

 

 Critical path – The sequence of critical activities in a network is called critical 

path. The critical path is the longest path in the network from the starting event to 

ending event and defines the minimum time required to complete the project. 

Exercise 

1. What is PERT and CPM? 

2. What are the advantages of using PERT/CPM? 

3. Mention the applications of PERT/CPM 

4. Explain the following terms 

a. Earliest time 

b. Latest time 

c. Total activity slack 

d. Event slack 

e. Critical path 

5. Explain the CPM in network analysis. 

6. What are the rules for drawing network diagram? Also mention the common 

errors that occur in drawing networks. 

7. What is the difference between PERT and CPM/ 

96



SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY                 COURSE MATERIAL (LECTURE NOTES) 

 

CS6704 RMT UNIT -5 Page 16 

 

8. What are the uses of PERT and CPM? 

9. Explain the basic steps in PERT/CPM techniques. 

10. Write the framework of PERT/CPM. 

 

 

 

 

 

 

 

Unit 3 

3.1 Worked Examples on CPM 

3.2 PERT 

3.3 Worked Examples 

 

3.1 Worked Examples on CPM 

 

Example 1 

Determine the early start and late start in respect of all node points and identify critical 

path for the following network. 
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Solution 

Calculation of E and L for each node is shown in the network 

 

 

 

Activity(i, 

j) 

Normal 

Time 

(Dij) 

Earliest Time Latest Time 
Float Time 

(Li - Dij ) - Ei 
Start 

(Ei) 

Finish 

(Ei + Dij ) 

Start 

(Li - Dij ) 

Finish 

(Li) 

(1, 2) 

(1, 3) 

(1, 4) 

(2, 5) 

(4, 6) 

10 

8 

9 

8 

7 

0 

0 

0 

10 

9 

10 

8 

9 

18 

16 

0 

1 

1 

10 

10 

10 

9 

10 

18 

17 

0 

1 

1 

0 

1 
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(3, 7) 

(5, 7) 

(6, 7) 

(5, 8) 

(6, 9) 

(7, 10) 

(8, 10) 

(9, 10) 

16 

7 

7 

6 

5 

12 

13 

15 

8 

18 

16 

18 

16 

25 

24 

21 

24 

25 

23 

24 

21 

37 

37 

36 

9 

18 

18 

18 

17 

25 

24 

22 

25 

25 

25 

24 

22 

37 

37 

37 

1 

0 

2 

0 

1 

0 

0 

1 

Network Analysis Table 

 

From the table, the critical nodes are (1, 2), (2, 5), (5, 7), (5, 8), (7, 10) and (8, 10) 

 

From the table, there are two possible critical paths 

i. 1 → 2 → 5 → 8 → 10  

ii. 1 → 2 → 5 → 7 → 10  

 

Example 2 

Find the critical path and calculate the slack time for the following network 

 

 

 

Solution 
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The earliest time and the latest time are obtained below 

 

Activity(i, j) 

Normal 

Time 

(Dij) 

Earliest Time Latest Time 
Float Time 

(Li - Dij ) - Ei 
Start 

(Ei) 

Finish 

(Ei + Dij ) 

Start 

(Li - Dij ) 

Finish 

(Li) 

(1, 2) 

(1, 3) 

(1, 4) 

(2, 6) 

(3, 7) 

(3, 5) 

(4, 5) 

(5, 9) 

(6, 8) 

(7, 8) 

(8, 9) 

2 

2 

1 

4 

5 

8 

3 

5 

1 

4 

3 

0 

0 

0 

2 

2 

2 

1 

10 

6 

7 

11 

2 

2 

1 

6 

7 

10 

4 

15 

7 

11 

14 

5 

0 

6 

7 

3 

2 

7 

10 

11 

8 

12 

7 

2 

7 

11 

8 

10 

10 

15 

12 

12 

15 

5 

0 

6 

5 

1 

0 

6 

0 

5 

1 

1 

 

From the above table, the critical nodes are the activities (1, 3), (3, 5) and (5, 9) 
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The critical path is 1 → 3 → 5 → 9  

 

Example 3 

A project has the following times schedule 

 

Activity Times in weeks Activity Times in weeks 

(1 – 2) 

(1 – 3) 

(2 – 4) 

(3 – 4) 

(3 – 5) 

(4 – 9) 

(5 – 6) 

4 

1 

1 

1 

6 

5 

4 

(5 – 7) 

(6 – 8) 

(7 – 8) 

(8 – 9) 

(8 – 10) 

(9 – 10) 

8 

1 

2 

1 

8 

7 

 

Construct the network and compute 

1. TE and TL for each event 

2. Float for each activity 

3. Critical path and its duration 

 

Solution 

 

The network is  
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Event No.: 1 2 3 4 5 6 7 8 9 10 

TE: 0 4 1 5 7 11 15 17 18 25 

TL: 0 12 1 13 7 16 15 17 18 25 

 

Float = TL (Head event) – TE (Tail event) – Duration 

 

Activity Duration TE (Tail event) TL (Head event) Float 

(1 – 2) 

(1 – 3) 

(2 – 4) 

(3 – 4) 

(3 – 5) 

(4 – 9) 

(5 – 6) 

(5 – 7) 

(6 – 8) 

(7 – 8) 

(8 – 9) 

(8 – 10) 

(9 – 10) 

4 

1 

1 

1 

6 

5 

4 

8 

1 

2 

1 

8 

7 

0 

0 

4 

1 

1 

5 

7 

7 

11 

15 

17 

17 

18 

12 

1 

13 

13 

7 

18 

16 

15 

17 

17 

18 

25 

25 

8 

0 

8 

11 

0 

8 

5 

0 

5 

0 

0 

0 

0 

 

The resultant network shows the critical path 
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The two critical paths are 

i. 1 → 3 → 5 →7 → 8 → 9 →10  

ii. 1 → 3 → 5 → 7 → 8 →10  

 

3.2 Project Evaluation and Review Technique (PERT) 

 

The main objective in the analysis through PERT is to find out the completion for a 

particular event within specified date. The PERT approach takes into account the 

uncertainties. The three time values are associated with each activity 

 

1. Optimistic time – It is the shortest possible time in which the activity can be 

finished. It assumes that every thing goes very well. This is denoted by t0. 

2. Most likely time – It is the estimate of the normal time the activity would take. 

This assumes normal delays. If a graph is plotted in the time of completion and 

the frequency of completion in that time period, then most likely time will 

represent the highest frequency of occurrence. This is denoted by tm. 

3. Pessimistic time – It represents the longest time the activity could take if 

everything goes wrong. As in optimistic estimate, this value may be such that 
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only one in hundred or one in twenty will take time longer than this value. This is 

denoted by tp. 

 

In PERT calculation, all values are used to obtain the percent expected value. 

 

1. Expected time – It is the average time an activity will take if it were to be 

repeated on large number of times and is based on the assumption that the activity 

time follows Beta distribution, this is given by 

te = ( t0 + 4 tm + tp ) / 6  

 

2. The variance for the activity is given by  

σ
2 = [(tp – to) / 6] 2 

 

3.3 Worked Examples 

Example 1 

For the project 

 

 

 

Task: A B C D E F G H I J K 

Least time: 4 5 8 2 4 6 8 5 3 5 6 
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Greatest time: 8 10 12 7 10 15 16 9 7 11 13 

Most likely time: 5 7 11 3 7 9 12 6 5 8 9 

 

Find the earliest and latest expected time to each event and also critical path in the 

network. 

Solution 

Task Least time(t0) 
Greatest time 

(tp) 

Most likely 

time (tm) 

Expected time 

(to + tp + 4tm)/6 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

4 

5 

8 

2 

4 

6 

8 

5 

3 

5 

6 

8 

10 

12 

7 

10 

15 

16 

9 

7 

11 

13 

5 

7 

11 

3 

7 

9 

12 

6 

5 

8 

9 

5.33 

7.17 

10.67 

3.5 

7 

9.5 

12 

6.33 

5 

8 

9.17 

 

Task 
Expected 

time (te) 

Start Finish 
Total float 

Earliest Latest Earliest Latest 

A 

B 

C 

D 

E 

5.33 

7.17 

10.67 

3.5 

7 

0 

0 

5.33 

0 

16 

0 

8.83 

5.33 

10 

16 

5.33 

7.17 

16 

3.5 

23 

5.33 

16 

16 

13.5 

23 

0 

8.83 

0 

10 

0 
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F 

G 

H 

I 

J 

K 

9.5 

12 

6.33 

5 

8 

9.17 

3.5 

3.5 

23 

23 

28 

29.33 

13.5 

18.5 

23 

25.5 

30.5 

29.33 

13 

15.5 

29.33 

28 

36 

31.5 

23 

30.5 

29.33 

30.5 

38.5 

38.5 

10 

15 

0 

2.5 

2.5 

0 

 

The network is 

 

 

The critical path is A →C →E → H → K  

 

Example 2 

A project has the following characteristics 

Activity 
Most optimistic time 

(a) 

Most pessimistic time 

(b) 

Most likely time 

(m) 

(1 – 2) 

(2 – 3) 

(2 – 4) 

1 

1 

1 

5 

3 

5 

1.5 

2 

3 
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(3 – 5) 

(4 – 5) 

(4 – 6) 

(5 – 7) 

(6 – 7) 

(7 – 8) 

(7 – 9) 

(8 – 10) 

(9 – 10) 

3 

2 

3 

4 

6 

2 

5 

1 

3 

5 

4 

7 

6 

8 

6 

8 

3 

7 

4 

3 

5 

5 

7 

4 

6 

2 

5 

Construct a PERT network. Find the critical path and variance for each event. 

Solution 

Activity (a) (b) (m) (4m) 
te 

(a + b + 4m)/6 

v 

[(b – a) / 6]2 

(1 – 2) 

(2 – 3) 

(2 – 4) 

(3 – 5) 

(4 – 5) 

(4 – 6) 

(5 – 7) 

(6 – 7) 

(7 – 8) 

(7 – 9) 

(8 – 10) 

(9 – 10) 

1 

1 

1 

3 

2 

3 

4 

6 

2 

5 

1 

3 

5 

3 

5 

5 

4 

7 

6 

8 

6 

8 

3 

7 

1.5 

2 

3 

4 

3 

5 

5 

7 

4 

6 

2 

5 

6 

8 

12 

16 

12 

20 

20 

28 

16 

24 

8 

20 

2 

2 

3 

4 

3 

5 

5 

7 

4 

6.17 

2 

5 

4/9 

1/9 

4/9 

1/9 

1/9 

4/9 

1/9 

1/9 

4/9 

1/4 

1/9 

4/9 

 

The network is constructed as shown below 
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The critical path = 1 → 2 → 4 → 6 → 7 →9 →10  

Example 3 

Calculate the variance and the expected time for each activity  

 

Solution 

Activity (to) (tm) (tp) 
te 

(to + tp + 4tm)/6 

v 

[(tp – to) / 6]2 

(1 – 2) 

(1 – 3) 

(1 – 4) 

3 

6 

7 

6 

7 

9 

10 

12 

12 

6.2 

7.7 

9.2 

1.36 

1.00 

0.69 
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(2 – 3) 

(2 – 5) 

(3 – 6) 

(4 – 7) 

(5 – 8) 

(6 – 7) 

(6 – 9) 

(8 – 9) 

(7 – 10) 

(9 – 11) 

(10 – 11) 

0 

8 

10 

8 

12 

8 

13 

4 

10 

6 

10 

0 

12 

12 

13 

14 

9 

16 

7 

13 

8 

12 

0 

17 

15 

19 

15 

10 

19 

10 

17 

12 

14 

0.0 

12.2 

12.2 

13.2 

13.9 

9.0 

16.0 

7.0 

13.2 

8.4 

12.0 

0.00 

2.25 

0.69 

3.36 

0.25 

0.11 

1.00 

1.00 

1.36 

1.00 

0.66 

 

Example 4 

A project is represented by the network as shown below and has the following data 

 

Task: A B C D E F G H I 

Least time: 5 18 26 16 15 6 7 7 3 
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Greatest time: 10 22 40 20 25 12 12 9 5 

Most likely time: 15 20 33 18 20 9 10 8 4 

Determine the following 

1. Expected task time and their variance 

2. Earliest and latest  time 

 

Solution 

 

 

 

 

1. 

Activity 
Least time 

(t0) 

Greatest time 

(tp) 

Most likely 

time (tm) 

Expected time 

(to + tp + 4tm)/6 

Variance 

(σ
2) 

(1-2) 

(1-3) 

(1-4) 

(2-5) 

(2-6) 

(3-6) 

(4-7) 

(5-7) 

(6-7) 

5 

18 

26 

16 

15 

6 

7 

7 

3 

10 

22 

40 

20 

25 

12 

12 

9 

5 

8 

20 

33 

18 

20 

9 

10 

8 

4 

7.8 

20.0 

33.0 

18.0 

20.0 

9.0 

9.8 

8.0 

4.0 

0.69 

0.44 

5.43 

0.44 

2.78 

1.00 

0.69 

0.11 

0.11 
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2. 

Earliest time 

E1 = 0 

E2 = 0 +7.8 = 7.8 

E3 = 0 +20 = 20 

E4 = 0 +33 = 33 

E5 = 7.8 + 18 = 25.8 

E6 = max [7.8 + 20, 20 + 9] = 29 

E7 = max [33 + 9.8, 25.8 + 8, 29 + 4] = 42.8 

Latest time 

L7 = 42.8 

L6 = 42.8 – 4 = 38.8 

L5 = 42.8 – 8 = 34.3 

L4 = 42.8 – 9.8 = 33 

L3 = 38.8 – 9 = 29.8 

L2 = min [34.8 – 18, 38.8 – 20] = 16.8 

L1 = min [16.8 – 7.8, 29.8 – 20, 33 - 33] = 0 

 

Exercise 
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1. What is PERT? 

2. For the following data, draw network. Find the critical path, slack time after 

calculating the earliest expected time and the latest allowable time 

 

Activity Duration Activity Duration 

(1 – 2) 

(1 – 3) 

(2 – 4) 

(2 – 5) 

(2 – 6) 

(3– 7) 

(3 – 8) 

(4 – 9) 

5 

8 

6 

4 

4 

5 

3 

1 

(5 – 9) 

(6 – 10) 

(7 – 10) 

(8 – 11) 

(9 – 12) 

(10 – 12) 

(11 – 13) 

(12 – 13) 

3 

5 

4 

9 

2 

4 

1 

7 

 

[Ans. Critical path: 1 → 3 → 7 → 10 → 12 →13] 

3. A  project schedule has the following characteristics 

Activity Most optimistic time Most likely time Most pessimistic time 

(1 – 2) 

(2 – 3) 

(2 – 4) 

(3 – 5) 

(4 – 5) 

(4 – 6) 

(5 – 7) 

(6 – 7) 

(7 – 8) 

1 

1 

1 

3 

2 

3 

4 

6 

2 

2 

2 

3 

4 

5 

5 

5 

7 

4 

3 

3 

5 

5 

4 

7 

6 

8 

6 
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(7 – 9) 

(8 – 10) 

(9 – 10) 

4 

1 

3 

6 

2 

5 

8 

3 

7 

 

Construct a PERT network and find out  

a. The earliest possible time 

b. Latest allowable time 

c. Slack values 

d. Critical path 

4. Explain the following terms 

a. optimistic time 

b. Most likely time 

c. Pessimistic time 

d. Expected time 

e. Variance 

5. Calculate the variance and the expected time for each activity  
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Unit 9

Course Structure

• Introduction

• Objectives

• Matrix: definition, order

• Symmetric and skew-symmetric matrices

Introduction

The matrix has a long history of application in solving linear equations. They were known as arrays until the
1800 ‘s. The term “matrix” (Latin for “womb”, derived from mater—mother) was coined by James Joseph
Sylvester in 1850 , who understood a matrix as an object giving rise to a number of determinants today called
minors, that is to say, determinants of smaller matrices that are derived from the original one by removing
columns and rows. An English mathematician named Cullis was the first to use modern bracket notation
for matrices in 1913 and he simultaneously demonstrated the first significant use of the notation A = aij
to represent a matrix where aij refers to the element found in the ith row and the jth column. Matrices
can be used to compactly write and work with multiple linear equations, referred to as a system of linear
equations, simultaneously. Matrices and matrix multiplication reveal their essential features when related to
linear transformations, also known as linear maps.

Objectives

After reading this unit you will be able to:

• describe the parts of a matrix and what they represent

• add, subtract and multiply matrices

• distinguish the symmetric and skew-symmetric matrices

• come across various examples of matrices along with their applications
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Matrix: Definition

In mathematics, a matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged
in rows and columns. Matrices are commonly written in box brackets. Unless specified, we will consider the
entries of matrix to be real or complex numbers. The horizontal and vertical lines of entries in a matrix are
called rows and columns, respectively. The size of a matrix is defined by the number of rows and columns
that it contains. A matrix with m rows and n columns is called an m× n matrix , while m and n are called its
dimensions.The dimensions of the following matrix is 3× 2, because there are three rows and two columns.

A =

1 2
3 4
5 6


The individual items (numbers, symbols or expressions) in a matrix are called its elements or entries. The
elements in a row together form a row vector and the elements in a column together forms a column vector.
Provided that they are the same size (have the same number of rows and the same number of columns), two
matrices can be added or subtracted element by element. The rule for matrix multiplication, however, is that
two matrices can be multiplied only when the number of columns in the first equals the number of rows in the
second. Any matrix can be multiplied element-wise by a scalar from its associated field.

Matrices which have a single row are called row vectors, and those which have a single column are called
column vectors. A matrix which has the same number of rows and columns is called a square matrix. In some
contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns,
called an empty matrix.

Operations of Matrices

Matrix addition, subtraction, and scalar multiplication are types of operations that can be applied to modify
matrices. There are a number of operations that can be applied to modify matrices, such as matrix addition,
subtraction, and scalar multiplication. These form the basic techniques to work with matrices. Matrix addition
and subtraction requires both the matrices to be of equal dimensions. That is, if A and B are both of m × n
order, then only matrix addition and subtraction are defined. Suppose,

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
Then, the matrix addition and subtraction are defined as

A+B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
and A−B =

[
a11 a12
a21 a22

]
−
[
b11 b12
b21 b22

]
=

[
a11 − b11 a12 − b12
a21 − b21 a22 − b22

]
The matrix addition and subtraction of any n × n matrix are analogously defined. Next, we define matrix
multiplication. The first condition that needs to be satisfied for any two matrices Am×n and Bp×q to get
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multiplied is n = p. Then the resulting matrix AB is of order m× q. Let us illustrate a matrix multiplication
of 2× 3 and 3× 2 matrices

[
1 2 1
2 0 3

]3 2
2 1
0 3

 =

[
1× 3 + 2× 2 + 1× 0 1× 2 + 2× 1 + 1× 3
2× 3 + 0× 2 + 3× 0 2× 2 + 0× 1 + 3× 3

]

=

[
7 7
6 13

]
The next thing that we come across is the multiplication of a matrix by a scalar, that is a real number, say k.
The scalar multiplication is defined as

k.A = k

[
a11 a12
a21 a22

]
=

[
k.a11 k.a12
k.a21 k.a22

]

Identity Matrix

We know that whenever a real number, say a, is multiplied by 1, we always get a. That is, a× 1 = 1× a = a.
The same idea is extendible in case of matrices, particularly those matrices Am×n, where m = n (such
matrices are called square matrices). Then the identity matrix of order n× n is defined as

In×n =


1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1


such that for any matrix An×n, we will have,

An×n × In×n = In×n ×An×n = An×n

Inverse of a Matrix

Let An×n be a matrix. A matrix Bn×n is said to be the inverse of the matrix A if it satisfies the following
condition:

A×B = B ×A = I

where, I is the identity matrix of order n. We will learn more about inverse of a matrix in the next unit.

Transpose of a matrix

Let A be an m× n matrix defined as

A =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
xm1 xm2 xm3 . . . xmn
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Then the transpose of A is denoted by AT and defined as

AT =


x11 x21 x31 . . . xn1
x12 x22 x32 . . . xn2
. . . . . . . . . . . . . . . . . . . . . . . . .
x1n x2n x3n . . . xnm


Note that the resulting matrix is of order n×m.

Exercise 9.1. 1. Find the transpose of the matrices

i. [
1 2 3
4 5 6

]
ii.  1 3

−1 0
7 10


iii. [

3 5
8 9

]
2. Let v be an n× 1 matrix. Prove that vvT is a symmetric matrix.

3. If A and B are two n× n symmetric matrices, then show that A+B is also symmetric.

Few properties of transpose are:

• (AT )T = A

• (A±B)T = AT ±BT

• (kA)T = kAT

• (AB)T = ATBT

for any two matrices A and B and a constant k.

Symmetric and Skew-Symmetric Matrices

Let A be an m× n matrix. Then A is said to be a symmetric matrix if A = AT . Suppose,

A =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
xm1 xm2 xm3 . . . xmn


Then, A = AT implies that,

x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
xm1 xm2 xm3 . . . xmn

 =


x11 x21 x31 . . . xn1
x12 x22 x32 . . . xn2
. . . . . . . . . . . . . . . . . . . . . . . . .
x1n x2n x3n . . . xnm


Then from the above equality, we can immediately conclude the following:
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1. m = n

2. xij = xji for all 1 ≤ i, j ≤ n

Example 9.2. i. For all n, the identity matrix is symmetric.

ii.

A =

[
1 2
2 4

]
, B =

1 2 3
2 4 7
3 7 1


are two symmetric matrices.

iii. The matrices [
1 5 8
2 7 4

]
and

1 5 8
2 7 4
4 7 0


are not symmetric.

Skew-Symmetric Matrices

In a similar way, we can define skew-symmetric matrices. Let A be an m× n matrix. Then A is said to be a
skew-symmetric matrix if A = −AT . Suppose,

A =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
xm1 xm2 xm3 . . . xmn


Then, A = −AT implies that,

x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
xm1 xm2 xm3 . . . xmn

 =


−x11 −x21 −x31 . . . −xn1
−x12 −x22 −x32 . . . −xn2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−x1n −x2n −x3n . . . −xnm


Then from the above equality, we can immediately conclude the following:

1. m = n

2. xij = −xji for all 1 ≤ i, j ≤ n and i ̸= j.

3. xii = −xii for all 1 ≤ i ≤ n, which implies that xii = 0, ∀ i.

Thus, any skew-symmetric matrix looks like
0 x12 x13 x14 . . . x1n

−x12 0 x23 x24 . . . x2n
−x13 −x23 0 x34 . . . x3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−x1n −x2n −x3n −x4n . . . 0


Theorem 9.3. For any matrix A with real entries, A+AT is symmetric and A−AT is skew-symmetric.
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Proof. Let A be a matrix and let B = A+AT and C = A−AT . Then we see that,

BT = (A+AT )T

= AT + (AT )T

= AT +A

= A+AT

= B

Similarly,

CT = (A−AT )T

= AT − (AT )T

= AT −A

= −(A−AT )

= −C

Hence, B is symmetric and C is skew-symmetric.

Theorem 9.4. Any square matrix can be written as the sum of a symmetric and a skew symmetric matrix.

Proof. Let A be a given matrix. Then A can be written as,

A =
1

2
(A+AT ) +

1

2
(A−AT )

From the previous theorem, we can say that 1
2(A + AT ) is symmetric and 1

2(A − AT ) is skew-symmetric.
Hence the theorem.

Exercise 9.5. Let A and B be two n× n skew-symmetric matrices.

1. Prove that A+B is skew-symmetric.

2. Prove that cA is skew-symmetric for any scalar c.

3. Let P be any m× n matrix. Prove that P TAP is skew-symmetric.

4. Prove that, if AB = −BA, then AB is a skew-symmetric matrix.



Unit 10

Course Structure

• Introduction

• Objectives

• Determinant of a matrix, elementary properties of determinants

• Inverse of a matrix

• Normal form of a matrix, rank of a matrix

Introduction

Determinant of a square matrix is a real number that is assigned to every square matrix. It is a scalar property
of the matrix , which can be thought of as the volume enclosed by the row vectors of the matrix. Note that
determinant is not defined for any arbitrary matrix. Now, Determinants are mathematical objects that are very
useful in the analysis and solution of systems of linear equations. Determinants also have wide applications
in engineering, science, economics and social science as well. In this unit, we will mainly study determinant
of a matrix and its basic properties and few applications.

Objectives

After reading this unit, you will be able to:

• find the determinant of matrices (of lower order)

• know the properties of determinants

• learn few applications of determinant such as finding inverse of a matrix

• know about cofactors and minors of a matrix

• find the rank of a matrix
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Determinant of a Matrix

Let A be a square matrix with real entries. Then, the determinant of A is denoted by |A|, or detA. Finding
|A| depends upon the dimension of the matrix. For 2× 2 matrix

A =

[
a11 a12
a21 a22

]
the determinant is defined as

|A| = a11a22 − a12a21

Also, the determinant of a 3× 3 matrix is

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

In general, the determinant of any n× n matrix is calculated as

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

where Cij are referred to as the cofactors of A and are computed as

Cij = (−1)i+j detMij

The term Mij is known as the Minor Matrix, which is the matrix obtained by eliminating the ith row and jth
column of the matrix A. So to find the determinant of e.g. a 4× 4 matrix, you end up calculating a bunch of
3× 3 matrix determinants which is much easier. Let us illustrate it for a 4× 4 matrix.

Let

A =


2 −1 3 0
−3 1 0 4
−2 1 4 1
−1 3 0 −2


We intend to find the determinant of A. For that, we will first find the cofactors. We will set up a checkerboard
of positive and negative signs as follows: for ith row and jth column, we write the sign as (−1)i+j as a
superscript of the corresponding entries.

A =


2+ −1− 3+ 0−

−3− 1+ 0− 4+

−2+ 1− 4+ 1−

−1− 3+ 0− −2+


Next we will pick a row or column to expand on. It is easier to choose the row or column having maximum
zeros, since it will make the calculations easier. We are using column 3.

|A| = (1)(3)

∣∣∣∣∣∣
−3 1 4
−2 1 1
−1 3 −2

∣∣∣∣∣∣+ (−1)(0)

∣∣∣∣∣∣
2 −1 0
−2 1 1
−1 3 −2

∣∣∣∣∣∣+ (1)(4)

∣∣∣∣∣∣
2 −1 0
−3 1 4
−1 3 −2

∣∣∣∣∣∣+ (−1)(0)

∣∣∣∣∣∣
2 −1 0
−3 1 4
−2 1 1

∣∣∣∣∣∣
= 3

∣∣∣∣∣∣
−3 1 4
−2 1 1
−1 3 −2

∣∣∣∣∣∣+ 4

∣∣∣∣∣∣
2 −1 0
−3 1 4
−1 3 −2

∣∣∣∣∣∣
= 3(−10) + 4(−18)

= 102
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Exercise 10.1. Find the determinant of the following matrices:

1. [
1 2
3 4

]
2. 1 5 7

5 2 −6
2 1 0


3. 

3 2 −1 4
2 1 5 7
0 5 2 −6
−1 2 1 0


Let us now discuss a few important properties of determinant. Let A be an n× n square matrix. Then,

• If two rows of A are equal or, any row of A is expressible as a linear combination of other rows, then
|A| = 0. This is true for columns as well.

• |A| = |AT |

• The value of the determinant remains unchanged if both rows and columns are interchanged.

• If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes.

• If each element of a row (or a column) of a determinant is multiplied by a constant k, then its value gets
multiplied by k. In other words, |kA| = kn|A|.

• If some or all elements of a row or column of a determinant are expressed as the sum of two (or more)
terms, then the determinant can be expressed as the sum of two (or more) determinants.

• If all the elements of a row (or a column) are zero, then the determinant is zero.

Let us work out some examples using the properties of determinant.

Example 10.2. Let us find the value of the determinant∣∣∣∣∣∣
sin2 x cos2 x 1
cos2 x sin2 1
−10 12 2

∣∣∣∣∣∣
By C1 = C1 + C2, the above determinant transforms to∣∣∣∣∣∣

1 cos2 x 1
1 sin2 1
2 12 2

∣∣∣∣∣∣ = 0

since the columns C1 and C2 are identical.
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Example 10.3. Solve for x ∣∣∣∣∣∣
x 2 −1
2 5 x
−1 2 x

∣∣∣∣∣∣ = 0

By R3 = R3 −R2, the L.H.S. gets reduced to ∣∣∣∣∣∣
x 2 −1
2 5 x
−3 −3 0

∣∣∣∣∣∣ = 0

or, x(5× 0 + 3x)− 2(2× 0 + 3x)− 1(−6 + 15) = 0

or, 3x2 − 6x− 9 =

or, x2 − 2x− 3 =

or, (x− 3)(x+ 1) = 0

or, x = 3,−1

Example 10.4. We show that ∣∣∣∣∣∣
115 106 97
10 1 −8
106 97 88

∣∣∣∣∣∣ = 0

Operating C2 = C2 − 1
2(C1 + C3), we get, ∣∣∣∣∣∣

115 0 97
10 0 −8
106 0 88

∣∣∣∣∣∣ = 0

Exercise 10.5. 1. Without expanding, prove that,∣∣∣∣∣∣
1 a a2 − bc
1 b b2 − ca
1 c c2 − ab

∣∣∣∣∣∣ = 0

2. Evaluate ∣∣∣∣∣∣
1 logx y logx z

logy x 1 logy z

logz x logz y 1

∣∣∣∣∣∣
where x, y, z are positive.

Inverse of a Matrix

As mentioned in the previous unit, an n× n matrix is said to be invertible if there exists another n× n matrix
B such that

AB = BA = I

where I is the identity matrix of order n.

We can also define invertible matrix as follows:
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Definition 10.6. An n × n matrix A is said to be invertible or non-singular if |A| ≠ 0. The matrix whose
determinant is zero is called singular matrix. The set of all non-singular matrices of order n and entries from a
set X is called the General Linear Group of order n and denoted by GL(n,X). If X is the set of real numbers,
then it is denoted by GL(n,R).

But why do we need to find the inverse of a matrix in the first place? To understand this, let’s see the
following equation:

ax = b

where a and b are real numbers, and we intend to find x. What we do is simply divide both sides by a and get
the solution as

x =
b

a

provided that a ̸= 0. But what happens if we replace the real numbers a, b, x by real matrices?

AX = B

where A, B, X are matrices. We could not do it like below

X =
B

A

since the division of matrix is as such not defined. This is where, the matrix inverse comes into play. What we
do is multiply both sides by the inverse of A, provided the inverse exists, that is, |A| ≠ 0(which is analogous
to the condition a ̸= 0 in the previous case). What we get in that case is,

A−1AX = A−1B

or, IX = A−1B

or, X = A−1B

and hence, we are done.

How to find the inverse of a given matrix?

Suppose we are given an n× n matrix A as:

A =


x11 x12 x13 x14 . . . x1n
x21 x22 x23 x24 . . . x2n
x31 x32 x33 x34 . . . x3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xn1 xn2 xn3 xn4 . . . xnn


First check whether |A| = 0 or not. If so, then the inverse of A does not exist and we are done. If not, then
proceed to the next step. Find out the cofactor for each term of the matrix. Let Cij be the cofactor of each
term aij of the matrix A. Then the inverse is given by

A−1 =
1

|A|


C11 C12 C13 C14 . . . C1n

C21 C22 C23 C24 . . . C2n

C31 C32 C33 C34 . . . C3n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cnn Cn2 Cn3 Cn4 . . . Cnn


T

Note that the transpose of the cofactor matrix is called adjoint of the matrix.
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Illustration

Let A be a 3× 3 matrix given below:

A =

1 2 3
0 1 5
5 6 0


First of all find the determinant of A by the said method. We see that |A| = 5. Then, we find the cofactor of
each term. For example, let us find C11. For this, first exclude the first row and fist column from the matrix.
Then find the determinant of the remaining matrix and multiply it by (−1)1+1 = (−1)2 = 1, that is,

C11 = 1.

∣∣∣∣1 5
6 0

∣∣∣∣
= 1.0− 5.6

= −30

Similarly, we find C12 = 25, C13 = −5, C21 = 18, C22 = −15, C23 = 4, C31 = 7, C32 = −5, C33 = 1.
Hence the adjoint is given by,

C =

−30 18 7
25 −15 −5
−5 −4 1


Hence, the inverse is

A−1 =
1

5

−30 18 7
25 −15 −5
−5 −4 1


=

−6 18/5 7/5
5 −3 −1
−1 −4/5 1/5


Exercise 10.7. Find the inverse of the following matrices(if exists):

1. [
3 4
6 8

]
2. 1 2 0

1 0 1
2 2 2





Unit 11

Course Structure

• Introduction

• Objectives

• Elementary concept of a vector space

• Linear dependence and independence of vectors, basis of a vector space, row space, column space

• Solution of system of linear equations, Cramar’s rule

Introduction

Consider arrows in a fixed plane starting at one fixed point, say the origin. Given any two such arrows, v and
w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too.
This new arrow is called the sum of the two arrows and is denoted v + w. In the special case of two arrows
on the same line, their sum is the arrow on this line whose length is the sum or the difference of the lengths,
depending on whether the arrows have the same direction. Another operation that can be done with arrows is
scaling: given any positive real number a, the arrow that has the same direction as v, but is dilated or shrunk
by multiplying its length by a, is called multiplication of v by a. It is denoted av. When a is negative, av is
defined as the arrow pointing in the opposite direction, instead.

Objectives

After studying this unit, you will be able to:

• know the definition of vector spaces

• learn various standard vector spaces

• visualize linearly independent and dependent vectors

• find out basis of a vector space

• solve system of linear equations independently and by Cramer’s Rule
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Vector Space

As the name suggests, a vector space is a non-empty set V , say, with two binary compositions, one external
between the elements of V and the associated field F , and one internal composition between two elements of
V , defined as follows:

1. for x, y ∈ V , we have, x+ y ∈ V (closure property)

2. for x, y, z ∈ V , we have, (x+ y) + z = x+ (y + z)(associativity)

3. for all v ∈ V , we have, v + 0 = 0 + v = v(identity property)

4. for all v ∈ V , there exists −v ∈ V such that, v + (−v) = (−v) + v = 0(additive inverse property)

5. for x ∈ V and s ∈ F , we will always have sx ∈ V

6. for x ∈ V and r, s ∈ F , we have, r(sx) = (rs)x

7. for x ∈ V and r, s ∈ F , we have, (r + s)x = rx+ sx

8. for x, y ∈ V , r ∈ F , we have, r(x+ y) = rx+ ry

9. for x ∈ V , we always have 1.x = x.1 = x, where 1 is the multiplicative identity in V

Then, (V,+, .) forms a vector space over the field of scalars F . A vector space always has at least one element,
the zero vector. Hence the set ({0},+, .), forms a vector space, called the trivial space.

Example 11.1. 1. The set of real numbers R is a vector space over the field R with respect to addition and
multiplication.

2. The set of n-tuples of real numbers, Rn, where n is a positive integer, is a vector space over the field R.

3. The set of complex numbers C forms a vector space over both the fields R and C.

4. The set of all matrices form a vector space over the field R and C.

In the study of any algebraic structure, it is of interest to examine subsets that possess the same structure as
the set under consideration. We define the apt substructure of a vector space as follows:

Definition 11.2. A subset W of a vector space V over the field F , is said to be a subspace of V if W forms a
vector space over the field F with respect to the operations of addition and multiplication defined over V .

In any vector space V , the zero set {0} and V itself are always a vector subspace of V . These are called
the trivial subspaces of V .

Example 11.3. 1. The subset {(x, y, z) ∈ R3 : x = y + z} is a subspace of R3 while the subset
{(x, y, z) ∈ R3 : x = y + z + 1} is not a subspace of R3.

2. Check whether the subset {(x, y, z) ∈ R3 : xyz = 0} is a subspace of R3.

Example 11.4. Let u, v ∈ V , where V is a vector space over a field F . Define the set W as

W = {ru+ sv : r, s ∈ F}

Check that W forms a vector space over F . This set W is said to be spanned by the vectors u and v and is
denoted by W = L(u, v).
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Figure 11.6.1: Representation of vectors in the xy-plane

In a similar way, the set

W = {c1v1 + c2v2 + · · ·+ cnvn : c1, c2, . . . , cn ∈ F}

where v1, v2, . . . , vn ∈ V forms a vector subspace of V .

Definition 11.5. Let V be a vector space and let v1, v2, . . . , vn ∈ V , then we define a linear combination of
v1, v2, . . . , vn ∈ V as

v = c1v1 + c2v2 + · · ·+ cnvn

where c1, c2, . . . , cn ∈ F .

Definition 11.6. The subset W of V is called the Linear Span of v1, v2, . . . , vn which is represented as
LS(v1, v2, . . . , vn).

Linear Dependence and Independence

Consider the vector space R2 and a vector say (1, 2) in R2. Consider two other vectors (3, 6) and (2, 2). We
see that the vector (3, 6) can be written as (3, 6) = 3(1, 2), that is, (3, 6) lies on the line joining (0, 0) and
(1, 2). But this is not the case with (2, 2). Then (1, 2) and (3, 6) are said to be linearly dependent and (1, 2)
and (2, 2) are said to be linearly independent. We formally define linear dependence and independence as
follows:

Definition 11.7. The vectors v1, v2, . . . , vn in a vector space V are said to be linearly independent if

c1v1 + c2v2 + · · ·+ cnvn = 0
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can be satisfied only when ci = 0, ∀i. If v1, v2, . . . , vn are not linearly independent, then they are said to be
linearly dependent. In other words, if v1, v2, . . . , vn are linearly dependent, then any equation as

c1v1 + c2v2 + · · ·+ cnvn = 0

can be satisfied when at least one of ci is non-zero.

For the above example, the given vectors can be written as

(3, 6) + (−3)(1, 2) = 0

We can also say that (3, 6) is a linear combination of the set of vectors {(1, 2)}.

Now, let {v1, v2, . . . , vn} are a set of linearly dependent vectors. Then for any equation

c1v1 + c2v2 + · · ·+ cnvn = 0

we must have at least one value of c, say ck ̸= 0. Then the above equation can be written as

c1v1 + c2v2 + · · ·+ ckvk + · · ·+ cnvn = 0

or, c1v1 + c2v2 + · · ·+ cnvn = −ckvk

or, − c1
ck

v1 −
c2
ck

v2 − · · · − cn
ck

vn = vk

From the last line, we can say that vk is a linear combination of the set of vectors {v1, v2, . . . , vk−1,
vk+1, . . . , vn}. Thus, if you have a set of linearly dependent vectors, then you can remove the vector(s) that
have a dependence and not change the possible things that the other vectors sum to. We thus have

LS{v1, v2, . . . , vn} = LS{v1, v2, . . . , vk−1, vk+1, . . . , vn}

Now, consider the vector space V . Then of course V spans itself. Then we choose an element say v which
can be written as the linear combination of some other elements of V . Since deletion of a linearly dependent
element does not affect the linear span, so we delete v from V . Again we select an element from V \{v} which
can be written as the linear combination of some elements of V \ {v}. We continue the process and obtain
a minimal set that spans the whole set V . Let the set be {v1, v2, . . .}. Of course this set is linearly independent.

Now, consider an element v1 of a vector space V . Then the linear span of v1 is {av1 : a ∈ F} is of course
a subspace of V . If LS(v1) = V , then we stop here and say that v1 spans the whole set V . If not, then we can
find an element, say v2 /∈ LS(v1). Thus v1, v2 are linearly independent and again LS(v1, v2) is a subspace of
V . Again if LS(v1, v2) = V then we say that V is spanned by {v1, v2}. If not, then we continue the process
and get a linearly independent set {v1, v2, . . .} that spans V . Such a set is called the basis of V . We define the
basis of a vector space V as

Definition 11.8. Let V be a vector space. Then a set of elements of V {v1, v2, . . .} is said to be a basis of V
if

• it spans V , that is, every element of V can be written as a linear combination of the elements of the set

• it is linearly independent

Note that, a basis is the maximal linearly independent set and minimal spanning set of V . That is, if we
add an element in the basis, then it no longer remains linearly independent. Also, if we exclude an element
from the basis, then it no longer spans V . The number of elements in the basis of a vector space is called the
dimension of V . If the basis of V contains infinite number of elements, then the dimension of V is infinite.
Otherwise, the dimension of V is finite.
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Some results related to the basis and dimension of a vector space

Let V be a vector space and let S = {v1, v2, . . . , vn} be a basis of V . Then we have the following results:

1. Every element of V can be written uniquely as a linear combination of the elements of S.

Proof. Let v ∈ V . Then there exists c1, c2, . . . , cn such that

v = c1v1 + c2v2 + · · ·+ cnvn

Again, let v has another representation as

v = d1v1 + d2v2 + · · ·+ dnvn

Then, subtracting the two, we get

0 = (c1 − d1)v1 + (c2 − d2)v2 + · · ·+ (cn − dn)vn

Since {v1, v2, . . .} is linearly independent, so we will get, ci = di, ∀i. Hence proved.

This result is also true for infinite dimensional vector spaces.

2. Any subset of V with more than n elements is dependent.

3. Any subset of V with fewer than n elements cannot span V .

4. Any linearly independent set having exactly dimV number of elements is a basis of V .

5. If W is a subspace of V such that dimV = dimW , then V = W .

Example 11.9. 1. R is a one-dimensional vector space over the field R with basis {1}. What happens if
we replace the field by the set of all rational numbers Q?

2. Rn is an n-dimensional vector space over the field R with basis {(1, 0, . . . , 0), (0, 1, . . . , 0),
. . . , (0, 0, · · · , 1)}.

3. C is a one-dimensional vector space over the field C whose basis is {1}. It is also a 2-dimensional
vector space if we replace the field by the field of real numbers R. In that case, the basis is {1, i}.

4. The set of all polynomials of degree less than or equal to n is a vector space over the field R. The basis
in that case is {1, x, x2, . . . , xn}.(verify!)

5. Consider the vector space R2. Is the set {(1, 1), (1, 0)} linearly independent? Is it a basis of R2?

6. The matrices [
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
is a basis of the set of all 2 × 2 matrices over the field R. Similarly, we can find the basis of the set of
all n× n matrices over the field R. (Find it)

7. Let A be an m × n matrix with real entries. Then the set spanned by the row vectors(or linearly
independent row vectors) of A is called the row space of A. It is a subspace of Rn. We can similarly
define the column space of A which would be a subspace of Rm.
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Figure 11.9.1: Geometrical Interpretation of the solution of the system of linear equations

System of Linear Equations

Consider the system of linear equations

x+ y = 1

x− y = 0

These two are a set of linear equations in R2. Any solution of these two equations are straight lines in the xy-
plane. Solution of this system is the point where these two lines intersect. For the given system, (1/2, 1/2) is
the unique solution. Now, what happens if the second equation is replaced by x+ y = 4? Then the equations
represent two parallel straight lines which never intersects. Hence such system will have no solution. If
instead, we have the second equation as 2x + 2y = 2, then clearly, it is a linear combination of the first
equation. Hence in such case the equation has infinitely many solutions.

General Form

The most general form of a system of linear equations is

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

which can be written in the matrix form as
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . . . .
am1 am2 . . . amn



x1
x2
...
xn

 =


b1
b2
...
bm
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or,
Ax = b

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . . . .
am1 am2 . . . amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bm


When the elements bi = 0, ∀ i, then the system is called homogeneous. Otherwise, it is called non-
homogeneous system of linear equations. Notice that, (0, 0, . . . , 0) is always a solution of the homogeneous
system. This is called the trivial solution. Hence, if the solution set is Sh, then it is always non-empty. Now,
if u, v are two solutions of the homogeneous system, then cu+ dv is always a solution of it, for real constants
c, d (verify). Hence,the solution set Sh forms a vector space over the field R. If {x1, x2, . . . , xn} is the basis
of Sh, then the most general solution of the homogeneous system is c1x1 + c2x2 + · · · + cnxn, where ci are
real constants. If x1, x0 are solutions of the homogeneous and non-homogeneous systems respectively, then
check that x1 + x0 is also a solution of the non-homogeneous system. Thus, the most general solution of the
non-homogeneous system is c1x1 + c2x2 + · · ·+ cnxn + x0, where ci are real constants.

Solution of System of Linear Equations

A system of linear equations can be solved in many ways. One of the ways is by finding the inverse of the
corresponding coefficient matrix, if it exists. The solution in such case, is given by

x = A−1b

Illustration

Let a system of linear equation be given as

2x+ y = 1

3x− y = 0

The corresponding coefficient matrix is [
2 1
3 −1

]
Hence, the solution is given by [

x
y

]
=

[
2 1
3 −1

]−1 [
1
0

]
= −5

[
1
0

]
=

[
−5
0

]
which is the required solution.

Note that the above process can only be used when the number of equations is equal to the number of
unknowns, that is, the coefficient matrix is a square matrix.
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The solution of the above system can also be found by elimination. For example, adding the two equations
yield

5x = 1

or, x =
1

5

Putting the value of x in the second equation yields

y =
3

5

Notice that the solutions obtained by the two methods are different. In fact, it is not mandatory for system of
linear equations to have unique solution. They can have more than one solution by virtue of the description
given in the previous section.

Cramer’s Rule

Cramer’s Rule is an explicit way of finding the solution of a system of linear equations whose number of
equations and number of unknowns are same. Instead of solving the entire system of equations, you can use
Cramer’s to solve for just one single variable. Let’s illustrate it with an example.

Illustration

Let the following be a linear system:

2x+ y + z = 3

x− y − z = 0

x+ 2y + z = 0

First we find the determinant of the coefficient matrix which is

D =

∣∣∣∣∣∣
2 1 1
1 −1 −1
1 2 1

∣∣∣∣∣∣ = 3 (verify)

Define D1, D2, D3 as the determinant of the coefficient matrix in which the first, second and third columns
respectively are replaced by the matrix b. That is,

D1 =

∣∣∣∣∣∣
3 1 1
0 −1 −1
0 2 1

∣∣∣∣∣∣ = 3, D2 =

∣∣∣∣∣∣
2 3 1
1 0 −1
1 0 1

∣∣∣∣∣∣ = −6, D3 =

∣∣∣∣∣∣
2 1 3
1 −1 0
1 2 0

∣∣∣∣∣∣ = 9

The solutions are given by

x =
D1

D
= 1

y =
d2
D

= −2

z =
D3

D
= 3

There are other ways to find the solution of linear systems in which the number of equations and the number
of unknowns are not same. But in this unit, we restrict ourselves to the linear system having same number of
equations as the number of unknowns.
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Exercise 11.10. Find the solution of the following systems:

a.

2x+ y + z = 1

x− y + 4z = 0

x+ 2y − 2z = 3

b.

3x− y = 7

−5x+ 4y = −2

c.

−6x+ 8y = 17

13x− 2y = −4

d.

2x− y + 6z = 10

−3x+ 4y − 5z = 11

8x− 7y − 9z = 12

e.

2x− 3y = 4

−x+ 4y − z = 11

6x− 5y + 2z = −3



Unit 12

Course Structure

• Introduction

• Objectives

• Eigen values and Eigen vectors of matrices

• Cayley Hamilton Theorem

• Diagonalization of matrices

Introduction

Consider the matrix

A =

[
1 2
0 3

]
When we operate the matrix over a vector (v1, v2) of R2, and equate it to a constant multiple of (v1, v2), we
get the system

v1 + 2v2 = cv1

3v2 = cv2

Geometrically speaking, when we take a particular vector (v1, v2) of the xy-plane and operate the matrix on
it, we the resulting vector is a scalar multiple of the original one. That is, the resulting vector is either a
contracted or expanded form of the original vector depending on the value of c. For example, if we take the
vector (1, 1), then the resulting vector will be (3, 3) = 3(1, 1). That is, the particular vector is expanding to
thrice its original value. On the other hand, if we operate the matrix over the vector (0, 1), then the resulting
vector (2, 3) is not on the line joining (0, 1) and (2, 3). The vector (1, 1) is called an eigen vector and 3 is the
corresponding eigen value. (0, 1) is not an eigen vector. We are now in a position to formally define eigen
values and eigen vectors of a matrix.

135
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Figure 12.0.1: Eigen Values and Eigen Vectors Geometrically

Objectives

After reading this unit, you will be able to:

• find the eigen values and eigen vectors of a matrix

• learn the Cayley Hamilton theorem

• find the characteristic polynomial of a matrix

• find the eigen values from the characteristic polynomial

• define diagonalizability of a matrix

• find out when a matrix will be called diagonalizable

Eigen values and Eigen vectors of a matrix

Let A be an n× n matrix. The number c is called an eigen value of A if there exists a non-zero vector v such
that

Av = cv

In such a case v is called the eigen vector corresponding to the eigen value c.

Computation of Eigen values and eigen vectors

The equation
Av = cv

can be re-written as
(A− cI)v = 0
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Now, for non-trivial solution of the above equation, A − cI must not be invertible, because in that case, we
would have

(A− cI)−1(A− cI)v = (A− cI)−10

or, v = 0

So det(A−cI) = 0. We call f(c) = det(A−cI) as the characteristic polynomial of A. Solving this for c, we
get the eigen values. Hence, the roots of the characteristic polynomial of A gives the eigen values of A. Also
the power to which the factor of any eigen value is raised, is called its algebraic multiplicity, that is, if λ is an
eigen value of A, and d is the highest power to which (x−λ) is raised, then d is the algebraic multiplicity of λ.

To find the eigen vectors of A, we need to simply solve the system of linear equations given by

(A− cI)v = 0

Let’s illustrate it by an example.

Illustration

Let the given matrix be

A =

[
1 2
2 4

]
Let c be an eigen value of A and (v1, v2) be the corresponding eigen vector. Then

(A− cI)v = 0

will give non-trivial solution if det(A− cI) = 0. Solving this for c will give us all the eigen values. So,∣∣∣∣1− c 2
2 4− c

∣∣∣∣ = 0

or, (1− c)(4− c)− 4 = 0

or, c(c− 5) = 0

or c = 0, 5

Hence, 5 and 0 are the eigen values of A. Now, we will find the corresponding eigen vectors.
For c = 0, [

1 2
2 4

] [
v1
v2

]
= 0

[
v1
v2

]
=

[
0
0

]
This gives us the homogeneous system of linear equations

v1 + 2v2 = 0

2v1 + 4v2 = 0

Solving, we get v1 = −2v2. If we take v2 = k, then the eigen vector is given by (−2k, k) = k(−2, 1),
where k is any real constant. Thus any element of the subspace S = {k(−2, 1) : k ∈ R} is an eigen vector
of A corresponding to the eigen value 0.Taking k = 1 we get a particular eigen vector (−2, 1) corresponding
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to the eigen value 0. We can also say that (−2, 1) spans the set S. This set is called the eigen space of A
corresponding to the eigen value 0.
For c = 5, we will have [

1 2
2 4

] [
v1
v2

]
= 5

[
v1
v2

]
=

[
5v1
5v2

]
which gives us the homogeneous system

−4v1 + 2v2 = 0

2v1 − v2 = 0

Solving, we get 2v1 = v2. If we take v1 = k, then the eigen vectors will be given by (k, 2k) = k(1, 2) for any
real constant k. Thus the eigen space, say T corresponding to the eigen value 5 is given by {k(1, 2) : k ∈ R}.
Putting k = 1, a particular eigen vector corresponding to the eigen value 5 is (1, 2).

Remark: The dimension of the eigen space corresponding to the eigen value c of a matrix A is called its
geometric multiplicity.

Exercise 12.1. Find the eigen values and eigen vectors of the following matrices:[
2 3
2 1

]
,

[
0 1
−2 −3

]
,

3 6 −8
0 0 6
0 0 2


Theorem 12.2. If v1, v2, . . . , vk are eigen vectors of a matrix A, corresponding to its distinct eigen values
c1, c2, . . . , ck, then the set {v1, v2, . . . , vk} is linearly independent.

Proof. Let us consider the equation

r1v1 + r2v2 + · · ·+ rkvk = 0

for real constants r1, r2, . . . , rk. We have to show that these constants are zero. For any positive i ≤ k, if we
operate the matrix (A− ciI) on both sides of the equation

Theorem 12.3. The determinant of an n× n matrix is 0 if and only if 0 is an eigen value of A.

Proof. Let 0 be an eigen value of A. Then

(A− oI)v = 0

which yields detA = 0 for non-trivial solution. Hence we are done.
Conversely, let detA = 0. This implies that

det(A− 0I) = 0

which implies that the equation
(A− 0I)v = 0

has non-trivial solution. Hence, 0 is an eigen value of A.

Remark: Note that the zero vector can never be an eigen vector of any matrix.

Definition 12.4. Two n×n matrices A and B are said to be similar if there exists an invertible matrix P such
that

A = PBP−1

Two similar matrices always have the same characteristic polynomial. So they have the same eigen values.
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Diagonalizability

An n × n matrix A is said to be diagonalizable if it has n linearly independent eigen vectors. If A has n
distinct eigen values then the corresponding eigen vectors are linearly independent. So, the existence of n
distinct eigen values guarantees the diagonalizability of A. If A does not have distinct eigen values then we
check the dimension of the eigen spaces. For example, if λ is a repeated root of the characteristic polynomial
of A, then we consider the eigen space corresponding to λ. If the geometric multiplicity of every eigen value
of A is equal to its algebraic multiplicity, then A is diagonalizable. Let’s illustrate it with an example.

Illustration

Let us consider the matrix

A =

[
0 1
0 0

]
First we find the eigen values of A by

det(A− cI) = 0

which gives the characteristic polynomial A as below,

c2 = 0

and hence, the only eigen value of A is 0 with algebraic multiplicity 2. We will consider the eigen space of 0.
Let us find the eigen vector of A corresponding to 0. For that, consider the system of equations

(A− 0I)v = 0

which gives v2 = 0 and v1, undetermined. So the eigen space is the set {k(1, 0) : k ∈ R}. Thus the eigen
space is spanned by only one element and hence, the geometric multiplicity of 0 is 1 < 2, the algebraic
multiplicity of 0. Hence, A is not diagonalizable.

Exercise 12.5. Show that the following matrices are not diagonalizable:[
3 1
0 3

]
,

[
2 −1
1 0

]
Let us have another example of a matrix which is diagonalizable. Consider the matrix

A =

 2 0 0
1 2 1
−1 0 1


We find the eigen values of A by the equation

det(A− cI) = 0

which gives us the characteristic polynomial of A as

(2− c)2(1− c) = 0

Thus, the eigen values of A are 1 and 2 of algebraic multiplicities 1 and 2 respectively. Next we find the
corresponding eigen spaces.
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For c = 1, let v = (v1, v2, v3) be the eigen vector of A. Then we solve the system of linear equations as

(A− 1I)v = 0

which gives

2v1 + 0v2 + 0v3 = 0

v1 + v2 + v3 = 0

−v1 + 0v2 + 0v3 = 0

Solving, we get v1 = 0, v3 = −v2. Thus, if we take v2 = k, for some real constant k, then the eigen space
will be {k(0, 1,−1) : k ∈ R}. Thus, the eigen space is spanned by (0, 1,−1), and hence the geometric
multiplicity of 1 is 1.

For c = 2, let v = (v1, v2, v3) be the eigen vector of A. Then we solve the system of linear equations as

(A− 2I)v = 0

which gives

0v1 + 0v2 + 0v3 = 0

v1 + 0v2 + v3 = 0

−v1 + 0v2 − v3 = 0

solving, we get v3 = −v1 and v2 remains undetermined. So, if we take v1 = k and v2 = l, then we get
the eigen space as {(k, l,−k) : k, l ∈ R} = {k(1, 0,−1) + l(0, 1, 0) : k, l ∈ R}. Hence, the eigen space
corresponding to 2 is spanned by the vectors (1, 0,−1) and (0, 1, 0), hence the geometric multiplicity of 2 is
2.

Exercise 12.6. Are the following matrices diagonalizable?2 4 6
0 2 2
0 0 4

 ,

2 0 0
2 6 0
3 2 1


Cayley Hamilton Theorem

Cayley Hamilton theorem is an important tool to find the inverse and powers of a matrix in an easier way. We
will learn to do a few of such applications. First let us state the theorem as follows:

Theorem 12.7. Let A be an n× n matrix and f(t) be its characteristic polynomial. Then f(A) is the n× n
zero matrix.

Let us verify the Cayley-Hamilton theorem for the matrix

A =

[
6 −2
6 −1

]
First find the characteristic polynomial of A. Verify that, it is c2 − 5c+ 6 = 0. Now we will find A2.

A2 =

[
6 −2
6 −1

] [
6 −2
6 −1

]
=

[
24 −10
30 −11

]
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So,

A2 − 5A+ 6I =

[
24 −10
30 −11

]
− 5

[
6 −2
6 −1

]
+ 6

[
1 0
0 1

]
=

[
24 −10
30 −11

]
−
[
30 −10
30 −5

]
+

[
6 0
0 6

]
=

[
0 0
0 0

]
Hence, A satisfies its characteristic polynomial.

Exercise 12.8. Verify Cayley-Hamilton theorem for the following matrices:

[
1 1
1 3

]
,

[
1 2
0 3

]
,

 2 0 0
1 2 1
−1 0 1


Applications of the Cayley-Hamilton theorem

Example 12.9. Let us find the inverse of

A =

[
1 2
0 3

]
The characteristic equation of A is f(t) = t2 − 4t+ 3. Then by Cayley-Hamilton theorem,

A2 − 4A+ 3I = 0

Multiplying both sides by A−1, we get

A−1(A2 − 4A+ 3I) = A−1.0

which gives

A− 4I + 3A−1 = 0

A−1 =
1

3
(4I −A)

=
1

3

[
4 0
0 4

]
− 1

3

[
1 2
0 3

]
=

[
1 −2/3
0 1/3

]
Exercise 12.10. a. Calculate and simplify the expression

−T 3 + 4T 2 + 5T − 2I

where, I is the 3× 3 identity matrix and

T =

1 0 2
0 1 1
0 0 2
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b. Find the inverse of the matrix A using Cayley-Hamilton theorem, where

A =

1 1 2
9 2 0
5 0 3


c. Find the inverse of the matrix B using Cayley-Hamilton theorem, where

B =

 7 2 −2
−6 −1 2
6 2 −1





Unit 13

Course Structure

• Linearization of a dynmaical system

• Minimum Variance Unbiased Estimator

• Method of Maximum Likelihood for Estimation of a parameter

13.1 Linearization of a dynamical system

In mathematics, linearization is finding the linear approximation to a function at a given point. The linear
approximation of a function is the first order Taylor expansion around the point of interest. In the study of
dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a sys-
tem of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as
engineering, physics, economics, and ecology.

A two dimensional dynamical system may be written as ẋ = f(x) where x = (x1, x2) and f(x) =
(f(x1), f(x2)).

Existence and Uniqueness Theorem: Consider the initial value problem ẋ = f(x), x(0) = x0. Suppose

that f is continuous and that all its partial derivatives
∂fi
∂xj

, i, j = 1, ·, n are continuous for x in some open

connected set D ⊂ Rn. Then for x0 ∈ D, the initial value problem has a solution x(t) on some time interval
(−τ, τ) about t = 0, and the solution is unique.

Corollary: Different trajectories never intersect.

In this section, we first discuss the linearization technique for two dimensional dynamical system. Consider
the system

ẋ = f(x, y)

ẏ = g(x, y)

143
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and suppose that (x∗, y∗) is the fixed point, i.e.,

f(x∗, y∗) = 0 and g(x∗, y∗) = 0.

Let u = x−x∗, v = y−y∗ denote the components of a small disturbance from the fixed point. To see whether
the disturbance grows or decays, we need to derive differential equations for u and v. Let us do u-equation
first.

We have u = x− x∗. Differentiating with respect to time t,

u̇ = ẋ (since x∗ is a constant)

= f(x∗ + u, y∗ + v) (By substitution)

= f(x∗, y∗) + u
∂f

∂x
+ v

∂f

∂y
+O(u2, v2, uv) (Expanding in Taylor series)

= u
∂f

∂x
+ v

∂f

∂y
+O(u2, v2, uv) (Since f(x∗, y∗) = 0).

To simplify the notation, we have written ∂f
∂x and ∂f

∂y , but remember these partial derivatives are to be evaluated
at the fixed point (x∗, y∗), thus they are numbers, not functions. Also the shorthand notation O(u2, v2, uv)
denotes quadratic terms in u and v. Since u and v are small, these quadratic terms are extremely small.

Similarly, we find

v̇ =
∂g

∂x
+ v

∂g

∂y
+O(u2, v2, uv).

Hence the disturbance (u, v) evolves according to[
u̇
v̇

]
=

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

] [
u
v

]
+ Quadratic terms (13.1.1)

The matrix A =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
x∗,y∗

is called the Jacobian matrix at the fixed point (x∗, y∗). Now since the

quadratic terms in Eq. (13.1.1) are tiny, it is tempting to neglect them. If we do that, we obtain the linearized
system [

u̇
v̇

]
=

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

] [
u
v

]
whose dynamics can be analysed as before.

Effect of small nonlinear terms:

Is it really safe to neglect the quadratic terms? In other words, does the linearized system give a qualita-
tively correct picture near (x∗, y∗)?

The answer is yes, as long as the fixed point for the linearized system is not of the borderline case (centers,
degenerate nodes, stars or non-isolated fixed pints). In other words, if the linearized system predicts a saddle,
node, or spiral for the original nonlinear equations.
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Find all the fixed points of the system

ẋ = −x+ x3

ẏ = −2y

and use linearization to classify them.

Solution: Fixed points occurs where ẋ = 0 and ẏ = 0 simultaneously, which give us x = 0 or x = ±1 and
y = 0.

Thus there are three fixed points, viz (0, 0), (1, 0), and (−1, 0). The Jacobian matrix at the general point
(x, y) is

A =

[
∂
∂x(−x+ x3) ∂

∂y (−x+ x3)
∂
∂x(−2y) ∂

∂y (−2y)

]
=

[
−1 + 3x2 0

0 −2

]
Next we evaluate A at the fixed points.

At the point (0, 0), we find A =

[
−1 0
0 −2

]
which gives two negative eigenvalues, viz λ1 = −1 and

λ2 = −2. Therefore, the fixed point (0, 0) is a stable node.

At (±1, 0), A =

[
2 0
0 −2

]
, which gives two eigenvalues of opposite sign. So both the fixed points (1, 0)

and (−1, 0) are saddle point.

Now since stable nodes and saddle points are not borderline cases, it is certain that the fixed points for the
given nonlinear system has been predicted correctly.

Consider the system

ẋ = −y + ax(x2 + y2)

ẏ = x+ ay(x2 + y2)

where a is a parameter. Show that the linearized system incorrectly predicts that the origin is a center for all
values of a, whereas in fact the origin is a stable spiral if a < 0 and unstable spiral if a > 0.

Solution: To obtain the linarization about the origin, i.e. about (x∗, y∗) = (0, 0), we can either compute the
Jacobain matrix directly form the definition, or we can take the following shortcut.

For any system with a fixed point at the origin, x and y represent deviations from the fixed point, since
u = x− x∗ = x and v = y− y∗ = y; hence we can linearize by simply omitting the nonlinear terms in x and
y. Thus the linearized system is given by

ẋ = −y

ẏ = x

The Jacobain at the fixed point (0, 0) is A =

[
0 −1
1 0

]
which has τ = 0,∆ = 1 > 0, so the origin is always a

center.
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To analyze the nonlinear system, we change variables to polar coordinates. Let

x = r cos θ

y = r sin θ.

To derive a differential equation for r, we note x2 + y2 = r2, so on differentiation we obtain

xẋ+ yẏ = rṙ

⇒ rṙ = x{−y + ax(x2 + y2)}+ y{x+ ay(x2 + y2}
⇒ rṙ = a(x2 + y2)2

⇒ rṙ = ar4

⇒ ṙ = ar3

Now since θ = tan−1
(y
x

)
, we have

θ̇ =
1

1 + y2

x2

[
xẏ − yẋ

x2

]
=

xẏ − yẋ

x2 + y2

⇒ θ̇ =
1

r2
[x{−y + ax(x2 + y2)} − y{x+ ay(x2 + y2)}]

⇒ θ̇ =
x2 + y2

r2
=

r2

r2

⇒ θ̇ = 1

Thus in polar coordinates the original system becomes

ṙ = ar3

θ̇ = 1

The system is easy to analyse in this form, because the radial and angular motions are independent. All tra-
jectories rotate about the origin with constant angular velocity θ̇ = 1.

If a < 0, then r(t) → 0 monotonically as t → ∞. In this case, the origin is a stable spiral.

If a = 0, then r(t) = r0 for all t and the origin is a center.

Finally if a < 0, then then r(t) → ∞ monotonically and the origin is a unstable spiral.

13.1.1 A general interaction model for two population

In order to explain mathematical modelling with systems of differential equations, we investigate the following
general two species interaction model:

ẋ = αx+ βxy

ẏ = γy + δxy (13.1.2)

where x(t) and y(t) denote the concentration (or number) of two populations and α, β, γ, δ are constant real
numbers.
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X

y

X

y

X

y

a=0a<0 a>0

The linear terms αx and γy describe the growth or decay of the corresponding population x and y in
isolation. For example, if α > 0 and β = 0, the population x will grow like eαt; if α < 0, it will decay expo-
nentially. Similarly, if δ = 0, then the sign of γ decides whether y(t) is exponentially growing or decaying.

We begin by writing (13.1.2) in vector notation:

d

dt

[
x
y

]
=

[
f1(x, y)
f2(x, y)

]
with f1(x, y) = αx + βxy and f2(x, y) = γx + δxy. To find the x-nullclines, say ηx, we set f1(x, y) =

0. Hence, the x-nullclines are ηx =

{
(x, y) : x = 0 or y = −α

β

}
. Similary, the y-nullclines are ηy ={

(x, y) : y = 0 or x = −γ

δ

}
. The steady stated (x∗, y∗) are intersection points of the nullclines and they

satisfy f1(x
∗, y∗) = 0 and f2(x

∗, y∗) = 0. We have two steady states, namely,

P1 = (0, 0) and P2 =

(
−γ

δ
,−α

β

)
.

The linearization of the given system (13.1.2) is given by

d

dt

[
z1
z2

]
= Df(x∗, y∗)

[
z1
z2

]

where Df(x∗, y∗) =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
(x∗,y∗)

=

[
α+ βy βx

δy γ + δx

]
(x∗,y∗)

. We evaluate this matrix at the two

steady states, P1 and P2. For P1, we find

Df(0, 0) =

[
α 0
0 γ

]
which has two eigenvalues λ1 = α and λ2 = γ. Similarly, for P2, we find

Df

(
−γ

δ
,−α

β

)
=

[
0 −βγ

δ

−αδ
β 0

]
= A, say.

Since trace(A) = 0 and det(A) = −αγ, hence the eigenvalues are λ1,2 = ±√
αγ. To identify the type of

steady states, we nee to have more information. In particular, we need to know the signs of the parameters
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α, β, γ, and δ. Analysis of three specific cases follows:

Case I: A prey-predator model:

We assume that α < 0, β > 0, γ > 0 and δ < 0. Hence, we see that one eigenvalue is negative
(λ1 = α < 0) and the other eigenvalue is positive (λ2 = γ > 0). Hence P1(0, 0) is a saddle point. Before we

study P2 =

(
−γ

δ
,−α

β

)
we have to ensure that it is biologically relevant, i.e., −γ

δ
,−α

β
both are positive. The

product αγ < 0, so that the eigenvalues are purely imaginary, namely λ1,2 = ±i
√

|αγ|. Hence the critical

point
(
−γ

δ ,−
α
β

)
is a center. Thus P2 is not hyperbolic and the Hartman-Grobman theorem can not be applied.

Case II: Mutualism of two species:

We assume two species which cannot survive alone. For this α < 0 and γ < 0. The eigenvalues of Df(0, 0)

are α < 0 and γ < 0. Hence (0, 0) is a stable node. Also, −α

β
> 0 and −γ

δ
> 0 and hence P2 is biologi-

cally relevant. The product αγ > 0. Hence the eigenvalues are λ1,2 = ±√
αγ. Therefore, P2 is a saddle point.

Case III: A competition model:

In this case, we assume that α > 0 and β < 0, thus the critial point (0, 0) is a saddle point. But P2 is
not bilogically relevant because −γ

δ
< 0. Thus the population y goes extinct while population x can grow

without competition.
A basic epidemic Model: We consider the spread of an infectious disease in a host population. Let S, I

and R denote the number of susceptible, infectious, and recovered individuals respectively.

If the disease is transmitted through direct contact, then the rate of new incidences, βIS, is in proportion
to the number of susceptible and to the number of infectious individuals. With these assumptions, the disease
process is descrbed by the following classical SIR (Susceptibles-Infected-Recovered) model which is given
by

Ṡ = −βIS + γR

İ = βIS − αI (13.1.3)

Ṙ = αI − γR

For simplicity, we assume γ = 0. This can be understood as assuming the mean immune period
1

γ
→ ∞; the

disease incurs permanent immunity. The simplified model is known as the Kermack-Mckendric model which
is given by

Ṡ = −βIS

İ = βIS − αI (13.1.4)

Qualitative Analysis of the epidemic model:

Let us analyse the epidemic model given in (13.1.4). To find the steady states, we set Ṡ = 0 and İ = 0.

If Ṡ = 0, then eigher S = 0 or I = 0 and if İ = 0, then either I = 0 or S = α/β. Therefore, the system
(13.1.4) has a ray of steady states along the positive S-axis, {(S, 0) : S > 0}.
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To find the stability of each steady state (S, 0), we examine the Jacobian matrix,[
−βI −βS
βI βS − α

]
S=S,I=0

=

[
0 −βS

0 βS − α

]
The two eigenvalues of this Jacobian matrix are λ1 = 0 and λ2 = βS−α. The eigenvalue λ1 = 0 corresponds
to the neutrally stable direction along the ary of steady states. The second eigenvalue λ2 = βS−α is positive
if S >

α

β
and negative if S <

α

β
.

To construct the phase portrait, we write one unknown, I , as a function of the other, S. This way, we still
follow the trajectory of an epidemic, but we forget about the time course for a moment. To achieve this, we
use the chain rule. In particular if I = I(S(t)), then

dI

dt
=

dI

dS
· dS
dt

.

Hence,
dI

dS
=

İ

Ṡ
=

βIS − αI

−βIS
= −1 +

α

βS
.

If we regard I as a function of S, and integrate the above equation from S0 to S, then we obtain

I(S)− I(S0) = −(S − S0) +
α

β
(lnS − lnS0)

⇒ I(S) =
α

β
lnS − S + c1

I

SO βα

Figure 13.1.1

where the constant c1 is determined by the initial condition S(t) = S0, I(t) = I0 at t = 0, so that
c1 = I(S0) + S0 − α

β lnS0.

As shown in Fig. 13.1.1 the steady state to the right of
α

β
, namely, S >

α

β
are unstable in the direction

away from the S-axis, and those to the left of
α

β
are stable.

Biologically,
α

β
represents the critical population size to sustain an epidemic. If the initial susceptible

population is below
α

β
, then no epidemic is possible and the number of infections decreases, whereas if

S0 >
α

β
, then the number of infection initially increases, reaching its maximum when S =

α

β
and then

declines.



Unit 14

Course Structure

• Stability and Liapunov Functions

14.1 Stability and Liapunov Functions

Here we discuss the stability of the equilibrium points of the non-linear system

ẋ = f(x). (14.1.1)

The stability of any hyperbolic equilibrium point x0 of (14.1.1) is determined by the sign of real parts of the
eigen values λj of the matrix Df(x0). A hyperbolic equilibrium point x0 is asymptotically stable if and only
if Re(λj) < 0 for j = 1, . . . , n, while it is unstable if and only if it is saddle or Re(λj) > 0 for j = 1, . . . , n.
The stability of non-hyperbolic equilibrium points is typically more difficult to determine. A method due to
Liapunov, that is very useful for deciding the stability of non-hyperbolic equilibrium points. Consider the
non-linear autonomous systen

dx

dt
= P (x, y) (14.1.2)

dy

dt
= Q(x, y). (14.1.3)

Assume that this system has an isolated critical point at the origin (0, 0) and that P and Q have continuous first
order partial derivatives for all (x, y). Let E(x, y) be positive definite for all (x, y) in a domain D containing
the origin and such that the derivative Ė(x, y) of E with respect to the above system is negative semi-definite
for all (x, y) ∈ D. Then E is called a Liapunov function for the system in D.

Show that E(x, y) = x2 + y2 is a Liapunov function for the non-linear system

dx

dt
= −x+ y2

dy

dt
= −y + x2.

150
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Solution. Here the critical point is given by (0, 0). Now,

Ė =
∂E

∂x

dx

dt
+

∂E

∂y

dy

dt

= 2x(−x+ y2) + 2y(−y + x2)

= −2x2 + 2xy2 − 2y2 + 2x2y

= −2(x2 + y2) + 2(x2y + xy2).

Here, E(0, 0) = 0 and E(x, y) = x2 + y2 > 0 for all x, y ̸= 0. Hence E(x, y) is positive definite in any
domain D containing the origin (0, 0). Now clearly Ė(0, 0) = 0 and if x < 1 and y ̸= 0, then xy2 < y2.
Also, if y < 1 and x ̸= 0, then x2y < x2. Thus, if x < 1, y < 1 and (x, y) ̸= (0, 0), then

x2y + xy2 < x2 + y2.

Hence,
Ė = −2(x2 + y2) + 2(x2y + xy2) < −2(x2 + y2) + 2(x2 + y2) = 0.

Hence, Ė < 0. Thus, in every domain D containing (0, 0) and such that x < 1 and y < 1, Ė(x, y) is a
negative definite function and hence negative semi-definite.

Therefore, E = x2 + y2 is a Liapunov function for the given system. ■

Theorem 14.2. Consider the system

dx

dt
= P (x, y)

dy

dt
= Q(x, y).

Assume that this system has an isolated critical point at the origin (0, 0) and that P and Q have continuous
first order partial derivatives for all (x, y). If there exists a Liapunov function E for the above system in some
domain D containing (0, 0), then the critical point (0, 0) of the above system is stable.

1. If Ė < 0 for all x ̸= 0, then (0, 0) is asymptotically stable.

2. If Ė > 0 for all x ̸= 0, then (0, 0) is unstable.

3. If Ė = 0 for all x ∈ R2, then (0, 0) is a stable equilibrium point which is not asymptotically stable and
solution curves lie on circles centered at the origin.

Use the Liapunov function v(x) = x21 + x22 to establish the following results.

1. The origin is an asymptotically stable equilibrium point of

Ẋ =

[
0 −1
1 0

]
X +

[
−x31 − x1x

2
2

−x32 − x2x
2
1

]
.

2. The origin is an unstable equilibrium point of

Ẋ =

[
0 −1
1 0

]
X +

[
x31 + x1x

2
2

x32 + x2x
2
1

]
.

3. The origin is a stable equilibrium point which is not asymptotically stable for

Ẋ =

[
0 −1
1 0

]
X +

[
−x1x2
x21

]
.
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Solution. Here, v(x) = x21 + x22. Differentiating with respect to time t, we have

v̇(x1, x2) = 2x1ẋ1 + 2x2ẋ2. (14.2.1)

1. The system is given by

ẋ1 = −x2 − x31 − x1x
2
2

ẋ2 = x1 − x32 − x2x
2
1.

From (14.2.1),

v̇(x1, x2) = 2x1[−x2 − x31 − x1x
2
2] + 2x2[x1 − x32 − x2x

2
1]

= −2x1x2 − 2x41 − 2x21x
2
2 + 2x1x2 − 2x42 − 2x22x

2
1

= −2[x41 + x42 + 2x21x
2
2]

= −2(x21 + x22).

Hence v̇(0, 0) = 0 and v̇(x1, x2) < 0 for all x1, x2 ∈ R. Thus the origin is an aysmptotically stable
equilibrium point.

2. The system is equivalent to

ẋ1 = −x2 + x31 + x1x
2
2

ẋ2 = x1 + x32 + x2x
2
1.

Now from (14.2.1),

v̇(x1, x2) = 2x1ẋ1 + 2x2ẋ2

= 2x1(−x2 + x31 + x1x
2
2) + 2x2(x1 + x32 + x2x

2
1)

= −2x1x2 + 2x41 + 2x21x
2
2 + 2x1x2 + 2x42 + 2x21x

2
2

= 2x41 + 2x42 + 4x21x
2
2

= 2(x21x
2
2)

2.

Hence v̇(0, 0) > 0 for all (x1, x2) ∈ R2. Thus, (0, 0) is unstable critical point.

3. The system is given by

ẋ1 = −x2 − x1x2

ẋ2 = x1 + x21.

Now from (14.2.1),

v̇(x1, x2) = 2x1ẋ1 + 2x2ẋ2

= 2x1(−x2 − x1x2) + 2x2(x1 + x21)

= −2x1x2 − 2x21x2 + 2x1x2 + 2x21x2

= 0.

Thus the origin is stable equilibrium point which is not asymptotically stable.

■
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Show that the stable equilibrium point E0(1, 0) pf the SIR epidemic model

dS

dt
= µ(1− S)− βSI

dI

dt
= βSI − (µ+ γ)I

is globally asymptotically stable if R0 =
β

µ+ γ
< 1, where S and I are proportions of the susceptibles and

infectives at time t respectively. Use the Liapunov function v = I + S − 1 + lnS.

Solution. It is easy to verify that (1, 0) is a critical point. Now the Liapunov function is given by

v = I + S − 1 + lnS.

Differentiating with respect to time t,

dv

dt
=

dI

dt
+

dS

dt
− 1

S

dS

dt

= µ(1− S)− βSI + βSI − (µ+ γ)I − 1

S
[µ(1− S)− βSI]

= µ(1− S)− 1

S
µ(1− S) + βI − (µ+ γ)I

= −µ(S − 1)2

S
+ I[β − (µ+ γ)]

= −µ(S − 1)2

S
+ (µ+ γ)I

[
β

µ+ γ
− 1

]
= −µ(S − 1)2

S
+ (µ+ γ)I(R0 − 1).

Thus,
dv

dt
< 0 ⇒ R0 − 1 < 0 ⇒ R0 < 1 ⇒ β

µ+ γ
< 1. Hence the critical point E0(1, 0) is asymptotically

stable if R0 =
β

µ+ γ
< 1. ■



Unit 15

Course Structure

• Limit cycles and periodic solutions

• Existence and Non-existence of limit cycles

• Bendixon’s Non-existence criterion, Dulac’s criterion

15.1 Limit Cycles and Periodic solutions

Given an autonomous system
dx

dt
= P (x, y)

dy

dt
= Q(x, y).

(15.1.1)

One is often most interested in determining the existence of periodic solution of the system. If x = f1(t),
y = g1(t), where f1 and g1 ate not both constant functions, is a periodic solution of the above system, then
the path which the solution defines is a closed path. On the other hand, let C be a closed path of the above
system defined by a solution x = f(t), y = g(t), and suppose f(t0) = x0, g(t0) = y0. Since C is a closed
path, there exists a value t1 = t0 + T where T > 0, such that f(t0) = x0, g(t0) = y0. Now the pair

x = f(t+ T )

y = g(t+ T )

is a solution of (15.1.1). In other words, f(t + T ) = f(t), g(t + T ) = g(t) for all t, and so the solution
x = f(t), y = g(t) defining the closed path C is a periodic solution.

A closed path C of the system (15.1.1) which is approached spirally from either the inside or the outside
by a non-closed path C1 of (15.1.1) either as t → +∞ or t → −∞ is called a limit cycle of (15.1.1).

The following example of a system having a limit cycle will illustrate the above discussion and definition.
Consider the following system.

dx

dt
= y + x(1− x2 − y2)

dy

dt
= −x+ y(1− x2 − y2).

(15.1.2)

154
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X

y

C

To study this system, we shall introduce polar coordinates (r, θ), where

x = r cos θ

y = r sin θ.

From these relations, we find that

x
dx

dt
+ y

dy

dt
= r cos θ

[
−r sin θ

dθ

dt
+

dr

dt
cos θ

]
+ r sin θ

[
r cos θ

dθ

dt
+

dr

dt
sin θ

]
= r

dr

dt
. (15.1.3)

Similarly,

x
dy

dt
− y

dx

dt
= r2

dθ

dt
. (15.1.4)

Now, from (15.1.2),

x
dx

dt
+ y

dy

dt
= (x2 + y2)(1− x2 − y2)

⇒ r
dr

dt
= r2(1− r2) [Using (15.1.3)]

⇒ dr

dt
= r(1− r2).

Again, from (15.1.2),

y
dx

dt
− x

dy

dt
= y2 + x2

⇒ −r2
dθ

dt
= r2 [Using (15.1.4)]

⇒ dθ

dt
= −1.

Thus in polar coordinate system, we have

dr

dt
= r(1− r2) (15.1.5)

dθ

dt
= −1. (15.1.6)
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Integrating (15.1.6), we have, θ = −t+ t0, t0 is constant. From (15.1.5),

dr

r(1− r2)
= dt

⇒ r2 + (1− r2)

r(1− r2)
dr = dt

⇒ rdr

1− r2
+

dr

r
= dt

⇒ 2rdr

1− r2
+ 2

dr

r
= 2dt.

Integrating, we get

ln r2 − ln |1− r2| = 2t+ ln |C0|

⇒ r2

1− r2
= C0 e2t

⇒ r2 = (1− r2)C0 e2t

⇒ (1 + C0 e2t)r2 = C0 e2t

⇒ r2 =
C0 e2t

1 + C0 e2t

⇒ r =
1√

1 + C e−2t
,

where C =
1

C0
. Thus the solution of the system may be written as

r =
1√

1 + C e−2t
,

θ = −t+ t0,

where C and t0 are arbitrary constants. We may choose t0 = 0. Then θ = −t, and hence

x =
cos t√

1 + C e−2t
, and y =

sin t√
1 + C e−2t

. (15.1.7)

If C = 0, the path defined by (15.1.7) is the circle x2 + y2 = 1. If C ̸= 0, the path defined by (15.1.7) are not
closed paths but rather paths having a spiral behaviour. If C > 0, the paths are spirals lying inside the circle
x2 + y2 = 1. As t → ∞, they approach this circle, while as t → −∞, they approach the critical point (0, 0).
If C < 0, the paths lied outside the circle x2 + y2 = 1.

Since the closed path x2 + y2 = 1 approached spirally, both the inside and outside by non-closed paths as
t → +∞, we conclude that this cycle is a limit cycle of the given system.

15.1.1 Existence and Non-existence of Limit cycles

Bendixon’s Non-existence criterion

Let D be a domain in the xy-plane. Consider the autonomous system

dx

dt
= P (x, y)

dy

dt
= Q(x, y)

(15.1.8)
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X

y

-1 1

where P and Q have continuous first order partial derivatives in D. Suppose that
∂P (x, y)

∂x
+

∂Q(x, y)

∂y
has

the same sign throughout D. Then the system (15.1.8) has no closed path in the domain D.

Proof. Let C be a closed curve in D. Let R be the region bounded by C and apply Green’s theorem in the
plane. We have ∫

C
[P (x, y)dy −Q(x, y)dx] =

∫ ∫
R

[
∂P

∂x
+

∂Q

∂y

]
dxdy

where the line integral is taken in the positive sense. Now assume that C is a closed path of (15.1.8). Let
x = f(t), y = g(t) be an arbitrary solution of (15.1.8), defining C parametrically and let T denote the period
of this solution. Then

df(t)

dt
= P [f(t), g(t)] and

dg(t)

dt
= Q[f(t), g(t)]

along C and we have∫
C
[P (x, y)dy −Q(x, y)dx] =

∫ T

0

{
P [f(t), g(t)]

dg(t)

dt
−Q[f(t), g(t)]

df(t)

dt

}
dt

=

∫ T

0
{P [f(t), g(t)]Q[f(t), g(t)]−Q[f(t), g(t)]P [f(t), g(t)]} dt

= 0.

Thus, ∫ ∫
R

[
∂P

∂x
+

∂Q

∂y

]
dx dy = 0.

But this double integral can be zero only if
∂P

∂x
+

∂Q

∂y
changes sign. This is a contradiction. Thus C is not a

path of (15.1.8) and hence (15.1.8) possesses no closed path in D.

Show that the following system has no closed path

dx

dt
= 2x+ y + x3

dy

dt
= 3x− y + y3.
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Solution. Here,

P (x, y) = 2x+ y + x3

Q(x, y) = 3x− y + y3.

Now,
∂P

∂x
+

∂Q

∂y
= 3(x2 + y2) + 1.

Since this expression is positive throughout every domain D in the xy-plane, the given system has no closed
path in any such domain. ■

By constructing a Liapunov function, show that the system

ẋ = −x+ 4y

ẏ = −x+ y3

has no closed orbit.

Solution. Consider v(x, y) = x2 + ay2, where a is a parameter to be chosen later. Then

v̇ = 2xẋ+ 2ayẏ

= 2x(−x+ 4y) + 2ay(−x+ y3)

= −2x2 + (8− 2a)xy − 2ay4.

If we choose a = 4, the xy term disappears and

v̇ = −2x2 − 8y4.

By inspection, v > 0 and v̇ < 0 for all (x, y) ̸= (0, 0). Hence, v = x2 + y2 is u is a Liapunov function and
so there are no closed orbits. In fact, all trajectories approach the origin as t → ∞. ■

1. Show that the system ẋ = y−x3, ẏ = −x−y3 has no closed orbit, by constructing a Liapunov function
v = ax2 + by2 with a suitable a, b.

2. Show that v = ax2 + 2bxy + cy2 is positive definite if and only if a > 0 and ac− b2 > 0.

3. Show that ẋ = −x+ 2y3 − 2y4, ẏ = −x− y+ xy has no periodic solution. [Hint: Choose a, m and n
such that v = xm + ayn is a Liapunov function]

15.1.2 Dulac’s Criterion

This is a method for ruling out closed orbits is based on Green’s theorem, and is known as Dulac’s criterion.

Theorem 15.2. Let ẋ = f(x) be a continuously differentiable vector field defined on a simply connected
subset of R of the plane. If there exists a continuously differentiable real valued function g(x) such that
▽ · (gẋ) has one sign throughout R, then there are no closed orbits lying entirely in R.

Proof. Suppose there were a closed orbit C lying entirely in the region R. Let A denote the region inside C.
Then Green’s theorem yields ∫ ∫

A
▽ · (gẋ)dA =

∮
C
gẋ · ηdl
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A
R

C

X
.

n

where η is the outward normal and dl is the element of arc length along C. Since ▽ · (gẋ) has one sign
in R, hence the double integral on the left side must be non-zero. On the other hand, the line integral on the
right equals zero. Since ẋ · η = 0 everywhere, by assumption that C is a trajectory (the tangent vector ẋ is
orthogonal to η). This contradiction implies that no such C can exist.

Dulac’s criterion suffers from the same drawback as Liapunov’s method; there is no algorithm for finding
g(x). Most commonly used g(x) are

g = 1,
1

xαyβ
, eax, and eay .

Show that the system ẋ = x(2− x− y), ẏ = y(4x− x2 − 3) has no closed orbit om the positive quadrant
x, y > 0.

Solution. Let us choose g =
1

xy
. Then

▽ · (gẋ) =
∂

∂x
(gẋ) +

∂

∂y
(gẏ)

=
∂

∂x

(
2− x− y

y

)
+

∂

∂y

(
4x− x2 − 3

x

)
= −1

y
< 0.

Since the region x, y > 0 is simply connected and g and f satisfy the required smoothness conditions. Hence
Dulac’s criterion implies that there are no closed orbits in the positive quadrant. ■

Show that the system ẋ = y, ẏ = −x− y − x2 + y2 has no closed orbits.

Solution. Let g = e−2x. Then

▽ · (gẋ) = −2 e−2x y + e−2x(1− 2y) = − e−2x < 0.

By Dulac’s criterion, there are no closed orbits. ■

1. Using Dulac’s criterion with weight function g = (N1N2)
−1, show that the system

Ṅ1 = r1N1

(
1− N1

K1

)
− b1N1N2

Ṅ2 = r2N2

(
1− N2

K2

)
− b2N1N2

has no periodic orbits in the first quadrant N1, N2 > 0.
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2. Using Dulac’s criterion, show that the system

ẋ = −x+ y2

ẏ = y(2 + 2x− y2)

has no closed orbits. You may use a Dulac’s function g(x, y) =
1

y
.

3. Use the Dulac’s function B(x, y) = b e−2βx to show that the system

ẋ = y

ẏ = −ax− by + αx2 + βy2

has no limit cycle in R2.



Unit 16

Course Structure

• Bifurcation

16.1 Bifurcation

The dynamics of vector fields is very limited. All solutions either settle down to equilibrium or head out to
±∞. The most interesting fact of a dynamical system is the parametric dependence. Mathematical models
often rise to differential equations that have many parameters. When the parameter values are changed, we
may expect a change in the behaviour of the solution of the differential equation. If the variation of a parameter
changes the qualitative behaviour of the solution, we call it bifurcation.

For example, consider the equation for linear growth or linear decay.

x′ = µx.

If µ > 0, solution grows exponentially; if µ < 0, all solutions tend to zero.
The qualitative behaviour of solutions for µ < 0 and µ > 0 are quite different, whereas the behaviour of

solution for µ = 1 and µ = 2 are very similar. For this example, µ = 0 is a bifurcation value.
To understand a mathematical model properly, it is important to know when and how a bifurcation occurs.

In this unit, we introduce four common bifurcations that occur at the equilibria.
We consider a scalar differential equation depending on a scalar parameter

x′ = f(x, µ), x ∈ R, µ ∈ R,

where µ is the parameter, and f : R2 → R is continuously differentiable.
We say that x∗ is a bifurcation point and µ∗ is a bifurcation value if

f(x∗, µ∗) = 0, and
∂

∂x
f(x∗, µ∗) = 0,

where
∂

∂x
denotes the partial derivative with respect to x. Note that, f(x∗, µ∗) = 0 implies x∗ is a steady state

of the differential equation x′ = f(x, µ∗). We know that, x∗ is a hyperbolic steady state if fx(x∗, µ∗) ̸= 0.
Thus, bifurcation points must be non-hyperbolic steady states.

We now discuss the normal forms of the four most common bifurcations. The first three (saddle-node,
transcritical and pitchfork) can be exhibited in scalar equations. The Hopf bifurcation can occur in system
having dimension atleast 2.

161
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16.1.1 Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are created and destroyed. As a
parameter is varied, two fixed points move towards each other, collide and mutually annihilate.

The prototypical example of a saddle-node bifurcation is given by the first order system

ẋ = r + x2

where r is a parameter, which may be positive, negative or zero. When r is negative, there are two fixed
points, one is stable and one unstable.

X

X XX

r=0r<0 r>0

XX
. . .

Figure 16.1.1: Saddle-Node Bifurcation

• As r approaches 0 from below, the parabola moves up and the two fixed points move towards each other.

• When r = 0, the fixed points coalesce into a half stable fixed point at x∗ = 0. This type of fixed point
is extremely delicate: it vanishes as soon as r → 0 and now there are no fixed point at all.

In this case, we say that a bifurcation occurred at r = 0. Since the vector field for r < 0 and r > 0 are
qualitatively different.

Graphical Conventions

We now show a stack of vector fields for discrete values of r. This representation emphasizes the dependence
of the fixed points on R. In the limit of a continuous stack of vector fields, we have a picture like figure 16.1.2.
The curve shown is r = −x2, that is, ẋ = 0, which gives the fixed points for different r. To distinguish
between stable and unstable fixed points, we use a solid line for fixed points and a broken line for unstable
ones.

r=0

r>0

r<0

Figure 16.1.2
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The most common way to depict the bifurcation is to invert the axis of Figure 16.1.3. The rationale is that r
plays the role of an independent variable, and so should be plotted horizontally (Figure 16.1.4). The drawback
is that now the x-axis has to be plotted vertically, which looks strange at first. Arrows are sometimes included
in the graph, but not always. This picture is called the bifurcation diagram for the saddle-node bifurcation.

X

r

unstablestable

Figure 16.1.3

X

r

unstable

stable

Figure 16.1.4

Show that the first order system ẋ = r− x− e−x undergoes a saddle-node bifurcation as r varied, and find
the value of r at the bifurcation point.

Solution. Using the Taylor series expansion for e−x about x = 0, we have

e−x = 1− x+
x2

2!
− . . .

Now,

ẋ = r − x− e−x

= r − x−
[
1− x+

x2

2!
− . . .

]
= (r − 1)− x2

2!
+ . . .

If we ignore the higher order terms, then we have

ẋ = (r − 1)− x2

2!
.

This is equivalent to the normal form of saddle-node bifurcation, ẋ = r+x2. Thus, the given system undergoes
a saddle-node bifurcation. The bifurcation point is given by

r − 1 = 0 ⇒ r = 1.

Differentiating partially with respect to x, we have

∂f

∂x
= −1 + e−x .
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Hence the critical point is given by

∂f

∂x
= 0 ⇒ −1 + e−x = 0

⇒ e−x = 1

⇒ −x ln | e | = ln(1)

⇒ −x = 0

⇒ x = 0.

Thus the critical point is x∗ = 0 and bifurcation point is given by r∗ = 1. ■

16.1.2 Transcritical Bifurcation

There are certain situations where a fixed point exists for all values of a parameter and can never be destroyed.
However, such a fixed point may change its stability as the parameter is varied. The transcritical bifurcation
is the standard mechanism for such changes in stability. The normal form for a transcritical bifurcation is

ẋ = rx− x2.

The following figure shows the vector field as r varies. Note that there is a fixed point at x∗ = 0 for all values
of r.

X

X XX

r=0r<0 r>0

XX
. . .

Figure 16.1.5: Transcritical Bifurcation

For r < 0, there is an unstable fixed point at x∗ = r and a stable fixed point at x∗ = 0. As r increases,
the unstable fixed point approaches the origin and coalesces with it when r = 0. Finally, when r > 0, the
origin has become unstable and x∗ = r is now stable. Thus an exchange of stability conditions has taken
place between the two fixed points.

The important difference between the saddle-node and transcritical bifurcations is that the two fixed points
don’t disappear after bifurcation; instead they just switch their stability.

Figure 16.1.6 shows the bifurcation diagram for the transcritical bifurcation.
Show that the first order system

ẋ = x(1− x2)− a(1− e−bx)

undergoes a transcritical bifurcation at x = 0 when the parameters a, b satisfy a certain equation to be deter-
mined.



16.1. BIFURCATION 165

r

x

stable

stable

unstable

unstable

Figure 16.1.6: Bifurcation Diagram

Solution. Here, x = 0 is a fixed point for all a, b. For small x, we find,

1− e−bx = 1−
[
1− bx+

1

2
b2x2 +O(x3)

]
= bx− 1

2
b2x2 +O(x3).

Thus,

ẋ = x− a

(
bx− 1

2
b2x2

)
+O(x3)

= (1− ab)x+
1

2
b2x2 +O(x3).

Hence, the transcritical bifurcation occurs when 1− ab = 0 ⇒ ab = 1. This equation represents the equation
of bifurcation curve. The non-zero critical point for small x is given by

(1− ab) +
1

2
b2x∗ ≃ 0 ⇒ x∗ ≃ 2(ab− 1)

ab2
.

■

Show that the system
ẋ = r ln(x) + x− 1

undergoes a transcritical bifurcation at a certain value of r.

Solution. Here f(x) = r ln(x) + x − 1. Now, f(1) = 0. Hence, x = 1 is a critical point for all values of r.
Since we are interested in the dynamics near the fixed point, we introduce a new variable u = x− 1, where u
is very small. Then

u̇ = ẋ = r ln(u+ 1) + u

= r

[
u− 1

2
u2 +O(u3)

]
+ u

= (r + 1)u− 1

2
ru2 +O(r3).

Hence the transcritical bifurcation occurs at r + 1 = 0 ⇒ r = −1. ■
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16.1.3 Pitchfork Bifurcation

Here we discuss the third type of bifurcation, the so called pitchfork bifurcation. This bifurcation is common
in physical problems that have a symmetry. There are two very different types of pitchfork bifurcation, namely
supercritical bifurcation and subcritical bifurcation.

Supercritical Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is

ẋ = rx− x3. (16.1.1)

This equation is invariant under the change of variable x → −x. That is, if we replace x by −x and then
cancel the resulting minus sign on both sides of the equation, we get equation (16.1.1) again. This invariance
is the mathematical expression of the left right symmetry.

The following figure shows the vector field for different values of r.

X

X XX

r=0r<0 r>0

XX
. . .

Figure 16.1.7: Supercritical Pitchfork Bifurcation

When r < 0, the origin is the only fixed point, and it is stable. When r = 0, the origin is still stable, but
much weakly so, since linearization vanishes. Finally, when r > 0, the origin has become unstable. Two new
stable fixed points appear on either side of the origin, symmetrically located at x∗ = ±

√
r.

r

x

stable

stable

unstable

stable

Figure 16.1.8: Bifurcation diagram for pitchfork bifur-
cation

r

x

stable

unstable

unstable

unstable

Figure 16.1.9: Bifurcation diagram for subcritical pitch-
fork bifurcation
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Subcritical pitchfork bifurcation

The normal form of subcritical pitchfork bifurcation is given by

ẋ = rx+ x3.

16.2 Hopf Bifurcation

A Hopf Bifurcation occurs when a periodic solution or limit cycle, surrounding an equilibrium point, arises
or goes away as a parameter varies. When a stable limit cycle surrounds an unstable equilibrium point, the
bifurcation is called a supercritical Hopf bifurcation. If the limit cycle is unstable and surrounds a stable
equilibrium point, then the bifurcation is called a subcritical Hopf bifurcation.

Theorem 16.3. Hopf Bifurcatoin Theorem: Consider the planar system

ẋ = fµ(x, y),

ẏ = gµ(x, y), (16.3.1)

where µ is a parameter. Suppose it has a fixed point, which without loss of generality we may assume to
be located at (x, y) = (0, 0). Let the eigenvalues of the linearized system about the fixed point be given by
λ(µ), λ(µ) = α(µ) ± iβ(µ). Suppose further that for a certain value of µ (which we may assumed to be 0)
the following conditions are satisfied:

1. α(0) = 0, β(0) = ω ̸= 0, where sgn(ω) = sgn
[(

∂gµ
∂x

) ∣∣∣
µ=0

(0, 0)

]
(non-hyperbolicity condition:

conjugate pair of imaginary eigenvalues)

2.
dα(µ)

dµ

∣∣∣
µ=0

= d ̸= 0 (transversality condition: the eigenvalues cross the imaginary axis with non-zero

speed)

3. a ̸= 0, where

a =
1

16
(fxxx + fxyy + gxxy + gyyy) +

1

16ω
[fxy(fxx + fyy)

−gxy(gxx + gyy)− fxxgxx + fyygyy

with
[(

∂2fµ
∂x∂y

) ∣∣∣
µ=0

(0, 0)

]
, etc. (genericity condition)

Then a unique curve of periodic solutions bifurcates from the origin into the region µ > 0 if ad < 0 or µ < 0
if ad > 0. The origin is a stable fixed point for µ > 0 (resp. µ < 0) and an unstable fixed point for µ < 0
(resp. µ > 0) if d < 0 (resp. d > 0) whilst the periodic solutions are stable (resp. unstable) if the origin is
unstable (resp. stable) on the side of µ = 0 where the periodic solutions exist. The amplitude of the periodic
orbits grows like

√
|µ| whilst their periods tend to 2π/|ω| as |µ| tends to zero.

Illustration: Consider the two dimensional system

x′1 = −x2 + x1(µ− x21 − x22)
x′2 = x1 + x2(µ− x21 − x22).

(16.3.2)
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Using polar coordinates,
x1 = r cos θ and x2 = r sin θ.

We can rewrite the system (16.3.2) as
r′ = r(µ− r2)
θ′ = 1.

(16.3.3)

Note that the equation for r in (16.3.3) is the normal form for a pitchfork bifurcation. Thus as µ passes through
the bifurcation value 0, the system (16.3.3) undergoes a pitchfork bifurcation.

The steady state r = 0 corresponds to the steady state (0, 0) while the other steady state r =
√
µ, corre-

sponds to a periodic orbit √
x21 + x22 =

√
µ.

The corresponding bifurcation diagram is shown in the figure below.

x
stable

unstable

stable

μ

2

x1
μr=
12

Figure 16.3.1: Hopf bifurcation diagram

Note that the Jacobian matrix Df(0, 0) is given by[
µ −1
1 µ

]
which has a pair of complex eigen values, namely λ = µ ± i. At the bifurcation value µ = 0, the eigen
values are purely imaginary. The occurance of purely imaginary eigen values for a set of parameter values is
an important indicator of Hopf bifurcation.

Perform a bifurcation analysis for the Liénard equation

ẍ− (µ− x2)ẋ+ x = 0

If we let u = x, v = ẋ, we can rewrite the equation as a two-dimensional first order system

u̇ = v

v̇ = −u+ (µ− u2)v

The only equilibrium point is the origin. The Jacobian matrix for the linearized system about the origin is[
0 1
−1 µ

]
.
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The eigenvalues of the Jacobian matrix are

α(µ) + β(µ) =
µ

2
± i

√
4− µ2

2
.

Notice that
α(0) = 0 and ω = β(0) = −1.

Also,

d =
dα(µ)

dµ

∣∣∣
µ=0

=
1

2
̸= 0.

Lastly, a = −1

8
̸= 0. Hence, all the conditions of the Hopf Bifurcation Theorem are satisfied. Since

ad = − 1

16
< 0, the origin is stable for µ < 0 (see Fig. 16.3.2) and unstable for µ > 0, where there is a stable

periodic orbit (see Fig. 16.3.3). The system has a supercritical Hopf bifurcaton at µ = 0.

Figure 16.3.2: The origin is stable focus µ = −0.3 Figure 16.3.3: The origin is unstable focus µ = 1

Perform a bifurcation analysis for the following logistic model.

ẋ = rx(1− x)− h

where r > 0 is the rate of logistic growth and h is a harvesting component, say the amount of fishing allowed
in a lake. If h is positive or the amount of stocked fish added to the lake per year if h is negative. Here,
f(x, r, h) = rx(1− x)− h. For critical point,

f(x∗, r, h) = 0

⇒ rx∗(1− x∗)− h = 0

⇒ r (x∗)2 − rx∗ + h = 0

⇒ x∗ =
r ±

√
r2 − 4rh

2r
=

1

2

[
1±

√
1− 4h

r

]
.

Letting µ =
4h

r
, we have the critical points

x∗ =
1

2
(1±

√
1− µ).
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When µ < 1, we have two equilibrium points. When µ = 1, we have only one equilibrium point. When
µ > 1, there is no equilibrium point.

In order to determine the stability, we need to look at the derivative of f(x, r, h). Thus,

d

dx
f(x, r, h) = −2rx+ r = −r(2x− 1).

Now,
d

dx
f(x∗, r, h) = −r[1±

√
1− µ− 1] = ∓r

√
1− µ.

Since r > 0 when µ < 1, x∗ =
1

2

[
1 +

√
1− 4h

r

]
is stable while x∗ =

1

2

[
1−

√
1− 4h

r

]
is unstable. As µ

increased towards 1, the two equilibria moves towards each other, eventually colliding each other. This point

in the (µ;x∗) plane
(
1,

1

2

)
is called the bifurcation point. A qualitative bifurcation diagram is as follows.

μ=1

x
stable

unstable

μ

*

Bifurcation Point (1,1/2)

Figure 16.3.4: Bifurcation diagram

Show that the system
dx

dt
= x(1− x)− h

x

a+ x

can have one, two or three fixed points, depending on the values of a and h.

• Analyse the dynamics near x = 0 and show that a bifurcation occurs when h = a. What type of
bifurcation is it?

• Show that another bifurcation occurs when h =
1

4
(a+ 1)2, for a < ac, where ac is to be determined.

Classify this bifurcation.



References

1. D.M. Burton, The History of Mathematics, Allyn and Bacon, 5th edition.

2. Carl B. Boyer and Uta C. Merzbach, A History of Mathematics, 3rd Edition .

3. Florian Cajori , A History of Mathematics.

4. J.H. Eves, An Introduction to the History of Mathematics, Saunders, 1990.

5. H.A. Taha: Operations Research

6. J.G. Chakraborty and P.R. Ghosh: Linear Programming and Game Theory

7. P.K. Gupta and D.S. Hira: Operations Research

8. K. Swarup, P. K. Gupta and Man Mohan: Operations Research.

9. I. N. Herstein, Topics in Algebra.

10. K.Hoffman and R. Kunze, Linear Algebra.

11. B. C. Chatterjee, Linear Algebra.

12. L. Perko: Differential Equations and Dynamical Systems, Springer Verlag.

13. F. Verhulust, Nonlinear Differential Equations and Dynamical Systems, Springer.

14. S.H. Strogatz, Nonlinear Dynamics and Chaos.

15. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics-Integrability, Chaos and Patterns.

171


	COR_2_1.pdf
	Director's Message
	
	Introduction
	Measure Theory
	Extended Real Number System
	Algebra and  algebra of sets
	Lebesgue Outer Measure
	Lebesgue Measure


	
	Introduction
	Characterization by open and closed sets
	Borel Sets
	Non-measurable Sets

	
	Introduction
	Measurable Functions
	Sequence of Measurable Functions

	
	Introduction
	Simple Functions
	Simple Approximation Theorem

	
	Introduction
	Lusin's and Egoroff's Theorems
	Convergence in Measure

	
	Introduction
	Riemann Integral: A short recapitulation
	Lebesgue Integral

	
	Introduction
	The Lebesgue integral for non-negative measurable functions

	
	Introduction
	Fatou's Lemma and Lebesgue Monotone converegnce theorem
	Lebesgue Integral and Lebesgue Integrability

	
	Introduction
	Differentiation of an integral
	Integral of the derivative

	
	Introduction
	Contour Integration
	Conformal Mappings
	Bilinear Transformations


	
	Introduction
	Analytic Continuation
	Natural Boundary

	Multivalued Functions

	
	Introduction
	Zeros of an analytic function
	Singularities and their classification


	
	Introduction
	Limit points of Zeros and poles
	Riemann's Theorem On Removable Singularity
	Casorati-Weierstrass Theorem
	Behaviour of a function at the point at infinity


	
	Introduction
	Theory of Residues
	Argument Principle
	Rouche's Theorem
	Maximum Modulus Theorem


	
	Introduction
	Linear Operators

	
	Introduction
	Linear Operators on Normed Linear Spaces

	
	Introduction
	Hahn-Banach Theorem
	Hahn Banach Theorem


	
	Introduction
	Inner Product Spaces
	Orthogonality

	
	Introduction
	Hilbert Spaces
	Orthogonal Complements and Direct Sums


	
	Introduction
	Riesz Representation Theorem 
	Convergence of series corresponding to orthogonal sequence



	COR_2_2
	Director's Message
	
	Introduction
	Basic Concepts
	Coordinate Systems
	Degrees of Freedom - Configuration Space
	Constraints

	Generalized Coordinates
	Principle of virtual work
	D'Alembert's Principle
	Lagrange's equations from D'Alembert's Principle
	Procedure for formation of Lagrange's equations
	Lagrange's equations in presence of non-conservative forces
	Generalized Potential

	
	Introduction
	Fictitious or Pseudo Force
	Centrifugal Force
	Uniformly Rotating Frames
	Motion Relative to the Earth
	Some other effects of Coriolis force

	
	Generalized coordinates of a rigid body
	Body and space reference system

	Euler's equations of motion for a rigid body
	Newtonian method
	Lagrange's method

	Torque free motion of a rigid body
	Euler's Angles

	
	Introduction
	The Calculus of Variations and Euler-Lagrange Equation
	Application of Variational Principle to Shortest Distance
	Application of Variational Principle to Minimum Surface of Revolution
	Brachistochrone Problem
	Geodesics

	
	Hamilton's Principle
	Lagrange's equation from Hamilton's principle

	Lagrange's Equations of Motion for Non-holonomic systems
	Physical Significance of Lagrange's Multipliers i
	Hamiltonian Dynamics
	Generalized Momentum and Cyclic Coordinates
	Hamiltonian Function H and Conservation of Energy
	Hamilton's Equation


	
	Canonical Transformations
	Legendre Transformations
	Generating Functions
	Procedure for Application of Canonical Transformations
	Condition for Canonical Transformations
	Bilinear Invariant Condition
	Integral Invariance of Poincare
	Infinitesimal Contact Transformations


	
	Introduction
	Poisson's Brackets
	Lagrange Brackets
	Relation between Lagrange and Poisson Brackets
	Invariance of Poisson Bracket with respect to Canonical Transformations
	Fundamental Poisson brackets under canonical transformation
	Poisson brackets under canonical transformation

	Invariance of Lagrange's Bracket with respect to Canonical Transformations
	Jacobi's identity
	Hamilton-Jacobi Equation
	Solution of Harmonic Oscillator Problem by Hamilton-Jacobi Method

	
	Introduction
	General Theory of Small Oscillations
	Secular Equation and Eigen value Equation
	Solution of the Eigenvalue Equation
	Small Oscillations in Normal Coordinates

	Two body problems
	Two coupled pendulums
	Double Pendulum


	
	Introduction
	Rings
	Subrings
	Integral Domains

	Fields
	Characteristic of a Ring

	
	Introduction
	Ideals in rings
	Factor Rings (or Quotient Rings)
	Types of Ideals
	Factorization

	
	Introduction
	Ring Homomorphisms

	
	Introduction
	Polynomial rings
	Division Algorithm
	Remainder Theorem
	Factor Theorem


	
	Introduction
	Euclidean Domain
	Principal Ideal Domain
	Unique Factorisation Domain
	Irreducible Polynomials
	Eisenstein's criterion for irreducibility


	
	Introduction
	Field extensions
	Normal Extensions
	Separable Extensions

	
	Introduction
	Changes in the Cost/Profit Coefficient cj
	Changes in the Right-Hand Side of the Constraints bi
	Addition of a New Variable
	Changes in the Coefficients of the Constraints (Resource requirement vector) aij
	Addition of a New Constraint

	
	Introduction
	Parametric Cost Problem
	Parametric Right-Hand Side Problem

	
	Introduction
	Types of Failures
	Replacement of items that deteriorate
	Replacement of items whose maintenance and repair costs increase with time, ignoring changes in the value of money during the period
	Replacement of items whose maintenance costs increase with time and value of money also changes with time 


	
	Introduction
	Characteristics of dynamic programming
	Dynamic programming approach
	Formulation of dynamic programming problems
	Dynamic programming approach to stage-coach problems
	Application of dynamic programming

	
	Constrained Extremal Problem for non-linear programming
	Problem with one Equality Constraint
	Necessary and Sufficient Conditions for a General NLPP
	When concavity (convexity) is not known

	Constrained extremal problem with more than one equality constant
	Non-linear programming problem with one inequality constraint
	Non-linear programming problem with more than one inequality constraint

	
	Introduction
	Separable Functions
	 Reduction to separable form

	Piece-Wise Linear Approximation of Non-linear Functions
	Mixed-Integer Approximation of Separable NLP Problem


	COR_2_3
	Director's Message
	
	Introduction
	Round-off Error
	Floating Point Arithmetic and Error Propagation
	Propagated Error in Arithmetic Operations
	Error Propagation in Function of Single Variable
	Error Propagation in Function of More than One Variable

	Truncation Error
	Loss of Significance: Condition and Stability
	Some Interesting Facts about Error 

	
	Introduction
	Hermite Interpolation
	Spline Interpolation
	Cubic Spline Interpolation
	Cubic Spline for Equi-spaced Points

	Divided Differences
	Newton's General Interpolation Formula
	Interpolation by Iteration

	
	Introduction
	Least Squares Curve Fitting Procedures
	Fitting a Straight Line

	Nonlinear Curve Fitting by Linearization of Data
	Curve Fitting by Polynomials
	Weighted Least Square Approximation
	Linear Weighted Least Squares Approximation
	Nonlinear Weighted Least Squares Approximation


	
	Orthogonal Polynomial approximation method
	Gram-Schmidt Orthogonalization Process
	Chebyshev Polynomials Approximation

	
	Introduction
	Gaussian quadrature formula
	Euler-MacLaurin Formula

	
	Gregory-Newton quadrature formula
	Richardson Extrapolation
	Romberg Integration

	
	Introduction
	LU Decomposition (or) Factorization (or) Triangularization Method
	Doolittle Method
	Crout Method

	Cholesky Method

	
	Eigen value and Eigenvector Problems
	Direct Method
	Iterative method
	Power Method
	Inverse Power Method
	Shifted Power Method


	
	Introduction
	Fixed point iteration method
	Modified Newton-Raphson method
	Accelerated Newton-Raphson Method
	Muller Method

	
	Inverse Interpolation
	An important application of Inverse Interpolation

	
	Introduction
	Picard's Successive Approximation Method

	Single Step Methods
	Euler's Method
	Error Bounds for Euler's Method

	Modified (or) Improved Euler Method (or) Heun Method

	
	Runge–Kutta (RK) Methods
	Milne's Predictor-Corrector Method
	Computational Procedure


	
	Introduction
	Finite difference method for elliptic partial differential equations
	Solution of Laplace's equation
	Derivation of error in the approximation for the Laplace's equation
	Solution of Poisson equation


	
	Finite difference method for parabolic partial differential equations
	Explicit Method
	Truncation error of the Schmidt method
	Implicit method



	DSE_2_4_PURE_STREAM
	Director's Message
	
	Curves
	Surface in Three Dimensions
	Smooth Surfaces


	
	Tangents and Derivatives
	Normals and Orientability
	Examples of Surfaces


	
	Lengths of curves on surfaces
	First Fundamental form on Sphere
	Conformal Mappings


	
	Normal and geodesic curvature of a curve on a surface
	Matrix Representation of Normal Curvature


	
	Introduction

	
	Introduction
	Geodesics on Surface
	Geodesic Equations


	
	Introduction
	Plateau's Problem

	
	Introduction
	Gausse's remarkable theorem
	Gauss-Bonnet Theorem.

	
	Introduction
	Smooth Manifold


	
	Introduction

	
	Introduction
	Connected Spaces
	Connected Sets on the Real line


	
	Components
	Path Connectedness
	Quasicomponents


	
	Compact Spaces
	Lebesgue Lemma
	Limit Point Compactness


	
	Countable Compactness
	Local Compactness
	Baire Spaces


	
	Constructing a Mbius Strip
	The Identification Topology


	
	Orbit Spaces

	
	Elementary Properties of Topological Groups
	Separation properties and functions
	Connectedness


	
	The Group GL(n,R)
	Subgroups of GL(n,R)


	
	Fundamental Group

	
	Covering Spaces
	Fundamental groups of the circle


	GEC_2_5
	
	
	
	
	
	
	
	
	
	Linearization of a dynamical system
	A general interaction model for two population


	
	Stability and Liapunov Functions

	
	Limit Cycles and Periodic solutions
	Existence and Non-existence of Limit cycles
	Dulac's Criterion


	
	Bifurcation
	Saddle-Node Bifurcation
	Transcritical Bifurcation
	Pitchfork Bifurcation

	Hopf Bifurcation



